1
|
Li Z, Wu X, Wang W, Wen X, Niu F, Han D, Zhong W, Ordomsky VV, Wang Q, Wei R, Liang T. Monolayer Amphiphiles Hydrophobicize MoS 2-Mediated Real-Time Water Removal for Efficient Waterproof Hydrogen Detection. ACS Sens 2024. [PMID: 39527835 DOI: 10.1021/acssensors.4c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ensuring water-fouling-free operation of semiconductor-based gas sensors is essential to maintaining their accuracy, reliability, and stability across diverse applications. Despite the use of hydrophobic strategies to prevent external water intrusion, addressing in situ-produced water transport during H2 detection remains a challenge. Herein, we construct a novel waterproof H2 sensor by integrating single-atom Ru(III) self-assembly with monolayer amphiphiles embedded in MoS2. The unique monolayer structure enables the sensor to detect H2 in the presence of water, as well as facilitate the self-transport of in situ-generated water from the H2-O2 reaction during H2 detection. Molecular dynamics simulations reveal that monolayer amphiphiles exhibit a higher water diffusion coefficient than multilayer amphiphiles, making them more advantageous for removing in situ-produced water. Deployable on mobile platforms, it enables wireless H2cat detection for up to 6 months, without the introduction of protective membranes against dust and water ingress. This work not only enhances the performance of H2 detection but also introduces a new concept for the advancement of stable water-sensitive sensors.
Collapse
Affiliation(s)
- Zongke Li
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiao Wu
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoming Wen
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Feng Niu
- College of Materials and Chemistry, China Jiliang University, Zhejiang 310018, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wei Zhong
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Vitaly V Ordomsky
- UMR 8181-UCCS-Unit'e de Catalyse et Chimie du Solide, University of Lille, CNRS, Centrale Lille, ENSCL, University of Artois, Lille F-59000, France
| | - Qiyan Wang
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ronghan Wei
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tianshui Liang
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Gao C, Wang H, Zhou B, Wang B, Wang R, Long Y, Wang D, Peng Y, Li J. Palladium-assisted NO x storage and release on Ce xZr 1-xO 2 for passive NO x adsorber in diesel exhaust aftertreatment. COMMUNICATIONS ENGINEERING 2024; 3:164. [PMID: 39528686 DOI: 10.1038/s44172-024-00311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Understanding Pd effects on NOx storage and release is crucial for designing passive NOx adsorber (PNA) to control NOx emissions during diesel cold-starts. Herein, we report two oxidation states of Pd species on CexZr1-xO2 regulated by metal-support interaction. Pdδ+ (0 < δ < 2) in Pd/Ce0.25Zr0.75O2 exhibits a high affinity for O2 adsorption, which promotes the oxidation of adsorbed NO to nitrates at 100 °C. These nitrates are thermally unstable due to electron transfer from the Pd atom to the N-O bond, facilitating the decomposition of nitrates to NO2 above 200 °C. In contrast, Pd2+ in Pd/Ce0.75Zr0.25O2 prefer to NO adsorption. A large amount of adsorbed NO and nitrites accumulate on Pd2+ and Ce4+ results in high levels of NO release below 200 °C. For the potential application in PNA, Pd/Ce0.25Zr0.75O2 is recommended due to its proper NOx release temperature as well as better water and SO2 resistance.
Collapse
Affiliation(s)
- Chuan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Bin Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, China
| | - Rong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunpeng Long
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Bai M, Wang T, Xing Z, Huang H, Wu X, Adeli M, Wang M, Han X, Ye L, Cheng C. Electron-donable heterojunctions with synergetic Ru-Cu pair sites for biocatalytic microenvironment modulations in inflammatory mandible defects. Nat Commun 2024; 15:9592. [PMID: 39505847 PMCID: PMC11541594 DOI: 10.1038/s41467-024-53824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The clinical treatments of maxillofacial bone defects pose significant challenges due to complex microenvironments, including severe inflammation, high levels of reactive oxygen species (ROS), and potential bacterial infection. Herein, we propose the de novo design of an efficient, versatile, and precise electron-donable heterojunction with synergetic Ru-Cu pair sites (Ru-Cu/EDHJ) for superior biocatalytic regeneration of inflammatory mandible defects and pH-controlled antibacterial therapies. Our studies demonstrate that the unique structure of Ru-Cu/EDHJ enhances the electron density of Ru atoms and optimizes the binding strength of oxygen species, thus improving enzyme-like catalytic performance. Strikingly, this biocompatible Ru-Cu/EDHJ can efficiently switch between ROS scavenging in neutral media and ROS generation in acidic media, thus simultaneously exhibiting superior repair functions and bioadaptive antibacterial properties in treating mandible defects in male mice. We believe synthesizing such biocatalytic heterojunctions with exceptional enzyme-like capabilities will offer a promising pathway for engineering ROS biocatalytic materials to treat trauma, tumors, or infection-caused maxillofacial bone defects.
Collapse
Grants
- 52161145402, 52173133, 52373148 National Natural Science Foundation of China (National Science Foundation of China)
- 82470962, 82001020 National Natural Science Foundation of China (National Science Foundation of China)
- U21A20368 National Natural Science Foundation of China (National Science Foundation of China)
- sklpme2021-4-02 State Key Laboratory of Polymer Materials Engineering
- National Key R&D Program of China (2021YFB3800700),Sichuan Science and Technology Program (2023YFH0008),the 1·3·5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZYJC21047).
- Sichuan Science and Technology Program (2024NSFSC0672, 2021YFG0238),China Postdoctoral Science Foundation (2019M663525), Research Funding from West China School/Hospital of Stomatology Sichuan University (RCDWJS2023-16), and Research and Develop Program, West China Hospital of Stomatology Sichuan University (RD-02-202206).
- National Key R&D Program of China (2023YFC3605600), Sichuan Science and Technology Program (2023YFS0019), Med-X Innovation Programme of Med-X Center for Materials, Sichuan University (MCMGD202301)
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Haoju Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Chong Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Qi F, Peng J, Liang Z, Guo J, Liu J, Fang T, Mao H. Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100443. [PMID: 39157790 PMCID: PMC11327470 DOI: 10.1016/j.ese.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
The strong metal-support interaction (SMSI) in supported catalysts plays a dominant role in catalytic degradation, upgrading, and remanufacturing of environmental pollutants. Previous studies have shown that SMSI is crucial in supported catalysts' activity and stability. However, for redox reactions catalyzed in environmental catalysis, the enhancement mechanism of SMSI-induced oxygen vacancy and electron transfer needs to be clarified. Additionally, the precise control of SMSI interface sites remains to be fully understood. Here we provide a systematic review of SMSI's catalytic mechanisms and control strategies in purifying gaseous pollutants, treating organic wastewater, and valorizing biomass solid waste. We explore the adsorption and activation mechanisms of SMSI in redox reactions by examining interfacial electron transfer, interfacial oxygen vacancy, and interfacial acidic sites. Furthermore, we develop a precise regulation strategy of SMSI from systematical perspectives of interface effect, crystal facet effect, size effect, guest ion doping, and modification effect. Importantly, we point out the drawbacks and breakthrough directions for SMSI regulation in environmental catalysis, including partial encapsulation strategy, size optimization strategy, interface oxygen vacancy strategy, and multi-component strategy. This review article provides the potential applications of SMSI and offers guidance for its controlled regulation in environmental catalysis.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Rahman MS, Paudyal N, Hill LD, Zhou J, Xu Y. The Structure, Oxidation States, and Energetics of Co Nanoparticles on CeO 2(111): An STM and DFT Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18430-18441. [PMID: 39502805 PMCID: PMC11533201 DOI: 10.1021/acs.jpcc.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/08/2024]
Abstract
Co nanoparticles (NPs) dispersed on ceria have been widely studied as active catalytic materials for many industrially relevant reactions. The detailed nature of such particles and the factors affecting their interaction with ceria remain to be better understood. In this study, a very low coverage (∼0.02 ML) of Co is deposited on a model CeO2(111) thin-film surface and is examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The Co NPs that nucleate on terrace sites grow with coverage in this range to a maximum size of ca. 40 Co atoms, with an average diameter and height of 16.1 and 1.1 Å, respectively. Global minimization of the structures of Co NPs consisting of up to 23 Co atoms on CeO2(111) is performed based on the minima hopping algorithm and density functional theory (DFT) calculations, and the energetic and chemical properties of the resulting NPs are analyzed. While the theoretical findings are consistent with the STM observations on the strong Co-ceria interactions and the prevalence of oxidic Co species, some notable discrepancies are identified, including inconsistent aspect ratios and the existence of a low oxidation state Coδ+ species. The combined experimental and theoretical findings provide new insights into Co NPs formed on ceria and identify areas requiring further investigation.
Collapse
Affiliation(s)
- Md. Saeedur Rahman
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Nishan Paudyal
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Linze Du Hill
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jing Zhou
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Ye Xu
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
7
|
Safari Yazd M, Motahari S, Rahimpour MR, Froud Moorjani S, Sobhani Bazghaleh F. The support effect on the performance of a MOF-derived Co-based nano-catalyst in Fischer Tropsch synthesis. NANOSCALE 2024; 16:19422-19444. [PMID: 39347750 DOI: 10.1039/d4nr02499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The catalyst plays a central role in the Fischer-Tropsch synthesis (FTS) process, and the choice of catalyst support significantly impacts FTS catalyst performance by enhancing its attributes. In this study, the effects of utilizing various metal oxides-CeO2, ZrO2, and TiO2-on a cobalt-based FTS nanocatalyst are investigated by evaluating the catalyst's reducibility, stability, syngas chemisorption, intermediate species spillover, charge transfer, and metal-support interaction (MSI). This evaluation is conducted both theoretically and experimentally through diverse characterization tests and molecular dynamics (MD) simulations. Characterization tests reveal that the ceria-supported catalyst (Ceria Nano Catalyst, CNC) demonstrates the highest reducibility, stability, CO chemisorption, and spillover, while the zirconia-supported catalyst (Zirconia Nano Catalyst, ZNC) exhibits the highest hydrogen chemisorption and spillover. The MD simulation results align well with these findings; for instance, ZNC has the lowest hydrogen adsorption enthalpy (ΔHAds.), whereas CNC has the lowest ΔHAds. for CO. Additionally, MD simulations indicate that the titania-supported catalyst (Titania Nano Catalyst, TNC) possesses the highest MSI value, closely resembling that of ZNC, albeit with a minor difference. The TNC catalyst's performance in other tests is also similar to that of ZNC. Finally, FTS performance tests illustrate that the ZNC catalyst achieves the highest CO conversion at 88.1%, while the CNC catalyst presents the lowest CO conversion at 82.2%. Notably, the CNC catalyst showcases the highest durability, with only a 4.4% loss in CO conversion and an 8.55% loss in C5+ yield after 192 h of operation.
Collapse
Affiliation(s)
- Masoud Safari Yazd
- Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University, Tehran, Iran
| | - Sirous Motahari
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran.
| | | | - Sadegh Froud Moorjani
- Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
8
|
Liu HX, Wang WW, Fu XP, Liu JC, Jia CJ. Direct cleavage of C=O double bond in CO 2 by the subnano MoO x surface on Mo 2N. Nat Commun 2024; 15:9126. [PMID: 39443491 PMCID: PMC11500354 DOI: 10.1038/s41467-024-53484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Compared to H2-assisted activation mode, the direct dissociation of CO2 into carbonyl (*CO) with a simplified reaction route is advantageous for CO2-related synthetic processes and catalyst upgrading, while the stable C = O double bond makes it very challenging. Herein, we construct a subnano MoO3 layer on the surface of Mo2N, which provides a dynamically changing surface of MoO3↔MoOx (x < 3) for catalyzing CO2 hydrogenation. Rich oxygen vacancies on the subnano MoOx surface with a high electron donating capacity served as a scissor to directly shear the C = O double bond of CO2 to form CO at a high rate. The O atoms leached in CO2 dissociation are removed timely by H2 to regenerate active oxygen vacancies. Owing to the greatly enhanced dissociative activation of CO2, this MoOx/Mo2N catalyst without any supported active metals shows excellent performance for catalyzing CO2 hydrogenation to CO. The construction of highly disordered defective surface on heterostructures paves a new pathway for molecule activation.
Collapse
Affiliation(s)
- Hao-Xin Liu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | - Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
9
|
Hu D, Wang Y, Chen W, Jiang Z, Deng B, Jiang ZJ. Strong Metal-Support Interaction Modulation between Pt Nanoclusters and Mn 3O 4 Nanosheets through Oxygen Vacancy Control to Achieve High Activities for Acidic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402652. [PMID: 38838056 DOI: 10.1002/smll.202402652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The optimization of metal-support interactions is used to fabricate noble metal-based nanoclusters with high activity for hydrogen evolution reaction (HER) in acid media. Specifically, the oxygen-defective Mn3O4 nanosheets supported Pt nanoclusters of ≈1.71 nm in diameter (Pt/V·-Mn3O4 NSs) are synthesized through the controlled solvothermal reaction. The Pt/V·-Mn3O4 NSs show a superior activity and excellent stability for the HER in the acidic media. They only require an overpotential of 19 mV to drive -10 mA cm-2 and show negligible activity loss at -10 and -250 mA cm-2 for >200 and >60 h, respectively. Their Pt mass activity is 12.4 times higher than that of the Pt/C and even higher than those of many single-atom based Pt catalysts. DFT calculations show that their high HER activity arises mainly from the strong metal-support interaction between Pt and Mn3O4. It can facilitate the charge transfer from Mn3O4 to Pt, optimizing the H adsorption on the catalyst surface and promoting the evolution of H2 through the Volmer-Tafel mechanism. The oxygen vacancies in the V·-Mn3O4 NSs are found to be inconducive to the high activity of the Pt/V·-Mn3O4 NSs, highlighting the great importance to reduce the vacancy levels in V·-Mn3O4 NSs.
Collapse
Affiliation(s)
- Dongxiong Hu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Weiheng Chen
- Department of Mechanical Engineering, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Han Z, Chang Y, Gao J, Liu T, Li J, Liu J, Liu J, Gao Y, Gao J. Microfluidic Continuous Synthesis of Size- and Facet-Controlled Porous Bi 2O 3 Nanospheres for Efficient CO 2 to Formate Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403778. [PMID: 38948957 DOI: 10.1002/smll.202403778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Indexed: 07/02/2024]
Abstract
Bismuth-based catalysts are effective in converting carbon dioxide into formate via electrocatalysis. Precise control of the morphology, size, and facets of bismuth-based catalysts is crucial for achieving high selectivity and activity. In this work, an efficient, large-scale continuous production strategy is developed for achieving a porous nanospheres Bi2O3-FDCA material. First-principles simulations conducted in advance indicate that the Bi2O3 (111)/(200) facets help reduce the overpotential for formate production in electrocatalytic carbon dioxide reduction reaction (ECO2RR). Subsequently, using microfluidic technology and molecular control to precisely adjust the amount of 2, 5-furandicarboxylic acid, nanomaterials rich in (111)/(200) facets are successfully synthesized. Additionally, the morphology of the porous nanospheres significantly increases the adsorption capacity and active sites for carbon dioxide. These synergistic effects allow the porous Bi2O3-FDCA nanospheres to stably operate for 90 h in a flow cell at a current density of ≈250 mA cm- 2, with an average Faradaic efficiency for formate exceeding 90%. The approach of theoretically guided microfluidic technology for the large-scale synthesis of finely structured, efficient bismuth-based materials for ECO2RR may provide valuable references for the chemical engineering of intelligent nanocatalysts.
Collapse
Affiliation(s)
- Zhenze Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuan Chang
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Jiaxuan Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Taolue Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jialuo Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinxuan Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiaxu Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yan Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Wang J, Chen S, Ticali P, Summa P, Mai S, Skorupska K, Behrens M. Support effect on Ni-based mono- and bimetallic catalysts in CO 2 hydrogenation. NANOSCALE 2024; 16:17378-17392. [PMID: 39189188 DOI: 10.1039/d4nr02025a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Aiming at a comprehensive understanding of support effects on Ni-based bimetallic catalyst for CO2 hydrogenation, spectroscopy (DRIFTS) with CO as a probe molecule and temperature-programmed techniques were used to investigate the impact of different supports (MgO, CeO2, ZrO2) on Ni- and Ni,Fe catalysts. Kinetic parameters revealed that the higher selectivity to methanation for Ni and Ni,Fe supported on the reducible oxides (CeO2, ZrO2) is due to the inhibition of reverse water-gas shift reaction (RWGS) by hydrogen. A promoting effect of Fe on Ni was only observed on MgO-supported catalysts. In situ DRIFTS with CO adsorption showed different electronic properties of Ni sites with partially reduced oxide (i.e. ZrO2 and CeO2). H2-TPR and CO2-TPD confirmed the significant role of metal-support interaction (MSI) in CeO2-supported catalysts for CO2 activation. The MSI between Ni/Ni,Fe and reducible supports are crucial for catalytic performance, ultimately leading to the higher activity and stability in CO2 hydrogenation.
Collapse
Affiliation(s)
- Jihao Wang
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - Shilong Chen
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - Pierfrancesco Ticali
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - Paulina Summa
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Simon Mai
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| | - Katarzyna Skorupska
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany.
| |
Collapse
|
12
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
13
|
Yang C, Zhang J, Liu W, Cheng Y, Yang X, Wang W. Rational H 2 Partial Pressure over Nickel/Ceria Crystal Enables Efficient and Durable Wide-Temperature-Zone Air-Level CO 2 Methanation. Chemistry 2024:e202402516. [PMID: 39168823 DOI: 10.1002/chem.202402516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
On the way to carbon neutrality, directly catalyzing atmospheric CO2 into high-value chemicals might be an effective approach to mitigate the negative impacts of rising airborne CO2 concentrations. Here, we pioneer the investigation of the influence of the H2/CO2 partial pressure ratio (PPR) on air-level CO2 methanation. Using Ni/CeO2 as a case catalyst, increasing H2/CO2 PPR significantly improves low-temperature CO2 conversion and high-temperature CH4 selectivity, i. e., from 10 of H2/CO2 PPR on, CO2 is completely methanized at 250 °C, and nearly 100 % CH4 selectivity is achieved at 400 °C. 100-hour stability tests demonstrate the practical application potential of Ni/CeO2 at 250 °C and 400 °C. In-situ DRIFTS reveal that reinforced formate pathway by increasing H2/CO2 PPR is responsible for the high CH4 yield. In contrast, even though the CO pathway dominated CO2 conversion on Ni is enhanced by rising H2/CO2 PPR, but at a high reaction temperature, the promoted CO desorption still leads to lower CH4 selectivity. This work offers deep insights into the direct air-level CO2 resourceization, contributing to the achievement of airborne CO2 reductions.
Collapse
Affiliation(s)
- Chaoyang Yang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junlei Zhang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Weiping Liu
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yao Cheng
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xueyi Yang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanglei Wang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
14
|
Zhu R, Liu Q, He Y, Liang P. Rapid construction of nickel phyllosilicate with ultrathin layers and high performance for CO 2 methanation. J Colloid Interface Sci 2024; 668:352-365. [PMID: 38678890 DOI: 10.1016/j.jcis.2024.04.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The traditional techniques for the synthesis of nickel phyllosilicates usually time-consuming and energy-intensive, which often lead to the formation of layers with excessive thickness due to uncontrolled crystal growth. In order to overcome these challenges, this work introduces a microwave-assisted synthesis strategy to facilitate the synthesis of Ni-phyllosilicate-based catalysts within an exceptionally short duration of only five minutes, attaining a peak temperature of merely 102 °C. To enhance the specific surface area and to increase the exposure of active sites, an investigation was conducted involving three surfactants. The employment of hexadecyl trimethyl ammonium bromide (CTAB) has yielded remarkable results, with an ultrahigh specific surface area reaching 535 m2 g-1 and an ultrathin lamellar thickness of 1.43 nm. The catalyst exhibited an impressive CO2 conversion of 81.7 % at 400 °C, 60 L g-1 h-1, 0.1 MPa. It also demonstrated a substantial turnover frequency for CO2 (TOFCO2) of 5.4 ± 0.1 × 10-2 s-1, alongside a relatively low activation energy (Ea) of 80.74 kJ·mol-1. Moreover, the catalyst maintained its high stability over a period of 100 h and displayed high resistance to sintering. To further elucidate growth temperature gradient of the catalyst and concentration gradient of the materials involved, COMSOL Multiphysics (COMSOL) simulations were effectively utilized. In conclusion, this work breaks the limitation associated with traditional, laborious synthesis methods for Ni-phyllosilicates, which can produce materials with high surface area and thin-layer characteristics.
Collapse
Affiliation(s)
- Ruixuan Zhu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yan He
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Peng Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
15
|
Hong X, Zhao Q, Chen Y, Yu Z, Zhou M, Chen Y, Luo W, Wang C, Ta N, Li H, Ye R, Zu X, Liu W, Liu J. Visualizing Phase Evolution of Co 2C for Efficient Fischer-Tropsch to Olefins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404046. [PMID: 38842820 DOI: 10.1002/adma.202404046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cobalt carbide (Co2C) possesses high catalytic efficiency Fischer-Tropsch synthesis (FTS), while the products selectivity appears sensitive to crystallography geometry. Since the Anderson-Schulz-Flory (ASF) distribution in FTS is broken through fabricating facetted Co2C nanocrystals, yet the underlying mechanism of Co2C crystallization remains unclarified suffering from sophisticated catalyst composition involving promoter agents. Herein, the synthesis of high-purity single-crystal nanoprisms (Co2C-p) for highly efficient FTS is reported to lower olefins. Through comprehensive microstructure analysis, e.g., high-resolution TEM, in situ TEM and electron diffraction, as well as finite element simulation of gas flow field, for the first time the full roadmap of forming catalytic active cobalt carbides is disclosed, starting from reduction of Co3O4 precursor to CoO intermediate, then carburization into Co2C-s and subsequent ripening growth into Co2C-p. This gas-induced engineering of crystal phase provides a new synthesis strategy, with many new possibilities for precise design of metal-based catalyst for diverse catalytic applications.
Collapse
Affiliation(s)
- Xiaoling Hong
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Qiao Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Zhibin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mengzhen Zhou
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Chen
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Wenhao Luo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| | - Chang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Na Ta
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
- DICP-Surrey Joint Centre for Future Materials, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| |
Collapse
|
16
|
Zhao J, Urrego-Ortiz R, Liao N, Calle-Vallejo F, Luo J. Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions. Nat Commun 2024; 15:6391. [PMID: 39079996 PMCID: PMC11289485 DOI: 10.1038/s41467-024-50691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Electrocatalysis holds the key to enhancing the efficiency and cost-effectiveness of water splitting devices, thereby contributing to the advancement of hydrogen as a clean, sustainable energy carrier. This study focuses on the rational design of Ru nanoparticle catalysts supported on TiN (Ru NPs/TiN) for the hydrogen evolution reaction in alkaline conditions. The as designed catalysts exhibit a high mass activity of 20 A mg-1Ru at an overpotential of 63 mV and long-term stability, surpassing the present benchmarks for commercial electrolyzers. Structural analysis highlights the effective modification of the Ru nanoparticle properties by the TiN substrate, while density functional theory calculations indicate strong adhesion of Ru particles to TiN substrates and advantageous modulation of hydrogen adsorption energies via particle-support interactions. Finally, we assemble an anion exchange membrane electrolyzer using the Ru NPs/TiN as the hydrogen evolution reaction catalyst, which operates at 5 A cm-2 for more than 1000 h with negligible degradation, exceeding the performance requirements for commercial electrolyzers. Our findings contribute to the design of efficient catalysts for water splitting by exploiting particle-support interactions.
Collapse
Affiliation(s)
- Jia Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Ricardo Urrego-Ortiz
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Barcelona, Spain
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, San Sebastian, Spain
| | - Nan Liao
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, Spain.
| | - Jingshan Luo
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China.
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| |
Collapse
|
17
|
Li J, Zhang L, An X, Feng K, Wang X, He J, Huang Y, Liu J, Zhang L, Yan B, Li C, He L. Tuning Adsorbate-Mediated Strong Metal-Support Interaction by Oxygen Vacancy: A Case Study in Ru/TiO 2. Angew Chem Int Ed Engl 2024; 63:e202407025. [PMID: 38742866 DOI: 10.1002/anie.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The adsorbate-mediated strong metal-support interaction (A-SMSI) offers a reversible means of altering the selectivity of supported metal catalysts, thereby providing a powerful tool for facile modulation of catalytic performance. However, the fundamental understanding of A-SMSI remains inadequate and methods for tuning A-SMSI are still in their nascent stages, impeding its stabilization under reaction conditions. Here, we report that the initial concentration of oxygen vacancy in oxide supports plays a key role in tuning the A-SMSI between Ru nanoparticles and defected titania (TiO2-x). Based on this new understanding, we demonstrate the in situ formation of A-SMSI under reaction conditions, obviating the typically required CO2-rich pretreatment. The as-formed A-SMSI layer exhibits remarkable stability at various temperatures, enabling excellent activity, selectivity and long-term stability in catalyzing the reverse water gas-shift reaction. This study deepens the understanding of the A-SMSI and the ability to stabilize A-SMSI under reaction conditions represents a key step for practical catalytic applications.
Collapse
Affiliation(s)
- Juan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Lin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Xuchun Wang
- Department of Chemistry, Soochow University-Western University Centre for Synchrotron Radiation Research, University of Western Ontario, London, N6 A 5B7, Ontario, Canada
| | - Jiari He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Yang Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jingjing Liu
- Institute of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou, 215009, Jiangsu, PR China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| |
Collapse
|
18
|
Wang X, Li N, Wang GC, Liu M, Zhang C, Liu S. Ultrafine Nanoclusters Unlocked 3d-4f Electronic Ladders for Efficient Electrocatalytic Water Oxidation. ACS NANO 2024. [PMID: 39047140 DOI: 10.1021/acsnano.4c05130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The vast extensional planes of two-dimensional (2D) nanomaterials are recognized as desirable ground for electrocatalytic reactions. However, they tend to exhibit catalytic inertia due to their surface-ordered coordination configurations. Herein, an in situ autoxidation strategy enables high-density grafting of ultrafine CeO2 nanoclusters on 2D Co(OH)2. Affluent active units were activated at the inert interface of Co(OH)2 via the formation of Co-O-Ce units. The optimized catalyst exhibits oxygen evolution reaction activity with an overpotential of 83 mV lower than that of Co(OH)2 at 10 mA cm-2. The cascade orbital coupling between Co (3d) and Ce (4f) in Co-O-Ce units drives electron transfer by unlocking a "d-f electron ladder". Meanwhile, the bond-order theorem analyses and the d-band center show that the occupancy of Co-3d-eg is optimized to balance the adsorption-desorption process of active sites to the key reaction intermediate *OOH, thereby making it easier to release oxygen. This work will drive the development of wider area electron modulation methods and provide guidance for the surface engineering of 2D nanomaterials.
Collapse
Affiliation(s)
- Xuemin Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Na Li
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cui Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Baek JW, Han S, Lee SE, Ahn J, Park C, Nam JS, Kim YH, Shin E, Kim M, Jang JS, Kim J, Park HJ, Kim ID. Cobalt-Doped Ceria Sensitizer Effects on Metal Oxide Nanofibers: Heightened Surface Reactivity for High-Performing Chemiresistive Sensors. ACS NANO 2024; 18. [PMID: 39012788 PMCID: PMC11295259 DOI: 10.1021/acsnano.4c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Chemiresistive gas sensors based on semiconducting metal oxides typically rely on noble metal catalysts to enhance their sensitivity and selectivity. However, noble metal catalysts have several drawbacks for practical utilization, including their high cost, their propensity for spontaneous agglomeration, and poisoning effects with certain types of gases. As such, in the interest of commercializing the chemiresistive gas sensor technology, we propose an alternative design for a noble-metal-free sensing material through the case study of Co-doped ceria (Co-CeO2) catalysts embedded in a SnO2 matrix. In this investigation, we utilized electrospinning and subsequent calcination to prepare Co-CeO2 catalyst nanoparticles integrated with SnO2 nanofibers (NFs) with uniform particle distribution and particle size regulation down to the sub-2 nm regime. The resulting Co-CeO2@SnO2 NFs exhibited superior gas sensing characteristics toward isoprene (C5H8) gas, a significant biomarker for monitoring the onset of various diseases through breath diagnostics. In particular, we identified that the Co-CeO2 catalysts, owing to the transition metal doping, facilitated the spillover of chemisorbed oxygen species to the SnO2 sensing body. This resulting in the sensor having a 27.4-fold higher response toward 5 ppm of C5H8 (compared to pristine SnO2), exceptionally high selectivity, and a low detection limit of 100 ppb. The sensor also exhibited high stability for prolonged response-recovery cycles, attesting to the strong anchoring of Co-CeO2 catalysts in the SnO2 matrix. Based on our findings, the transition metal-doped metal oxide catalysts, such as Co-CeO2, demonstrate strong potential to completely replace noble metal catalysts, thereby advancing the development of the commercially viable chemiresistive gas sensors free from noble metals, capable of detecting target gases at sub-ppm levels.
Collapse
Affiliation(s)
- Jong Won Baek
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seunghee Han
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Eun Lee
- Department
of Materials Science and Engineering, Dankook
University, 119 Dandea-ro, Cheonan 31116, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chungseong Park
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Seok Nam
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yoon Hwa Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minhyun Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Electronic
Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jihan Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee Jung Park
- Department
of Materials Science and Engineering, Dankook
University, 119 Dandea-ro, Cheonan 31116, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Zhou JF, Peng B, Ding M, Shan BQ, Zhu YS, Bonneviot L, Wu P, Zhang K. The nature of crystal facet effect of TiO 2-supported Pd/Pt catalysts on selective hydrogenation of cinnamaldehyde: electron transfer process promoted by interfacial oxygen species. Phys Chem Chem Phys 2024; 26:18854-18864. [PMID: 38946575 DOI: 10.1039/d4cp01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Supported noble metal nanocatalysts typically exhibit strong crystal plane dependent catalytic behavior, but their working mechanism is still unclear. Herein, using anatase TiO2 with well-exposed crystal facets of {101}, {100} and {001} as a prototype support, Pd- and Pt-based supported TiO2 nanocatalysts (TiO2-Pd and TiO2-Pt) were prepared by chemical reduction with NaBH4 as reducer, and they showed a distinct metal-dependent crystal facet effect in the selective hydrogenation of cinamaldehyde (CAL). For Pd-based nanocatalysts, most Pd species on the {100} plane of TiO2 are present in the oxidized form with positive charges and unexpectedly show higher reactivity than the Pd species in the zero-valence state on the {101} and {001} planes. On the contrary, Pt species on all three crystal planes of TiO2 show zero-valence state, with relatively low conversion, but much better selectivity for hydrogenation of a CO bond than Pd-based catalysts. Well-designed experiments manipulating the stability and type of surface oxygen species confirmed that the essence of the crystal facet effect of the catalyst support actually creates a unique nanoconfined interface at the molecular level to construct a surface p-band intermediate state (PBIS), which provides a new alternative channel for surface electron transfer and consequently accelerates the reaction kinetics.
Collapse
Affiliation(s)
- Jia-Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Ding
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bing-Qian Shan
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yi-Song Zhu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Laurent Bonneviot
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364 CEDEX 07, France
| | - Peng Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Kun Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
21
|
Wang W, Li C, Zhou C, Xiao X, Li F, Huang NY, Li L, Gu M, Xu Q. Enrooted-Type Metal-Support Interaction Boosting Oxygen Evolution Reaction in Acidic Media. Angew Chem Int Ed Engl 2024; 63:e202406947. [PMID: 38650436 DOI: 10.1002/anie.202406947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Supported metal catalysts with appropriate metal-support interactions (MSIs) hold a great promise for heterogeneous catalysis. However, ensuring tight immobilization of metal clusters/nanoparticles on the support while maximizing the exposure of surface active sites remains a huge challenge. Herein, we report an Ir/WO3 catalyst with a new enrooted-type MSI in which Ir clusters are, unprecedentedly, atomically enrooted into the WO3 lattice. The enrooted Ir atoms decrease the electron density of the constructed interface compared to the adhered (root-free) type, thereby achieving appropriate adsorption toward oxygen intermediates, ultimately leading to high activity and stability for oxygen evolution in acidic media. Importantly, this work provides a new enrooted-type supported metal catalyst, which endows suitable MSI and maximizes the exposure of surface active sites in contrast to the conventional adhered, embedded, and encapsulated types.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Cheng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
- School of Physics and Astronomy, University of Birmingham, B15 2TT, Birmingham, UK
| | - Chuan Zhou
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501, Kyoto, Japan
| |
Collapse
|
22
|
Guo M, Li X, Wang L, Xue Z, Xu J. Redispersing Ir Nanoparticles via a Carbon-Assisted Pyrolysis Process to Break the Activity-Stability Trade-Off of H 2 Sensors. ACS Sens 2024; 9:3327-3337. [PMID: 38863381 DOI: 10.1021/acssensors.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Oxide semiconductor-supported metal nanoparticles often suffer from a high-temperature gas sensing process, resulting in agglomeration and coalescence, which significantly decrease their surface activity and stability. Here, we develop an in situ pyrolysis strategy to redisperse commercial Ir particles (∼15.6 nm) into monodisperse Ir species (∼5.4 nm) on ZnO supports, exhibiting excellent sintering-resistant properties and H2 sensing. We find that large-size Ir nanoparticles can undergo an unexpected splitting decomposition process and spontaneously migrate along the encapsulated carbon layer surface during high-temperature pyrolysis of ZIF-8. This resultant monodisperse status can be integrally reserved, accompanying further oxidation sintering. The final Irred/ZnO-450-based sensor exhibits outstanding stability, H2 response (10-2000 ppm), fast response/recovery capability (7/9.7 s@100 ppm), and good moisture resistance. In situ Raman and ex situ XPS further experimentally verify that highly dispersive Ir species can promote the electron transfer process during the gas sensing process. Our strategy thus provides important insights into the design of agglomeration-resistant gas sensing materials for highly effective H2 detection.
Collapse
Affiliation(s)
- Mengmeng Guo
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaojie Li
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lingli Wang
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Zhenggang Xue
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaqiang Xu
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
23
|
Chen YJ, Wen J, Luo ZR, Sun FL, Chen WX, Zhuang GL. Metal-support spin orders: Crucial effect on electrocatalytic oxygen reduction. J Chem Phys 2024; 160:224702. [PMID: 38856683 DOI: 10.1063/5.0207891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Magnetic property (e.g. spin order) of support is of great importance in the rational design of heterogeneous catalysts. Herein, we have taken the Ni-supported ferromagnetic (FM) CrBr3 support (Nix/CrBr3) to thoroughly investigate the effect of spin-order on electrocatalytic oxygen reduction reaction (ORR) via spin-polarized density functional theory calculations. Specifically, Ni loading induces anti-FM coupling in Ni-Cr, leading to a transition from FM-to-ferrimagnetic (FIM) properties, while Ni-Ni metallic bonds create a robust FM direct exchange, benefiting the improvement of the phase transition temperature. Interestingly, with the increase in Ni loading, the easy magnetic axis changes from out-of-plane (2D-Heisenberg) to in-plane (2D-XY). The adsorption properties of Nix/CrBr3, involving O2 adsorption energy and configuration, are not governed by the d-band center but strongly correlate with magnetic anisotropy. It is noteworthy that the applied potential and electrolyte acidity triggers spin-order transition phenomena during the ORR and induces the catalytic pathway change from 4e- ORR to 2e- ORR with the excellent onset potential of 0.93 V/reversible hydrogen electrode, comparable to the existing most excellent noble-metal catalysts. Generally, these findings offer new avenues to understand and design heterogeneous catalysts with magnetic support.
Collapse
Affiliation(s)
- Yi-Jie Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Jun Wen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Zhi-Rui Luo
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Fu-Li Sun
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Wen-Xian Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Gui-Lin Zhuang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, People's Republic of China
| |
Collapse
|
24
|
Ren Y, Fu Y, Li N, You C, Huang J, Huang K, Sun Z, Zhou J, Si Y, Zhu Y, Chen W, Duan L, Liu M. Concentrated solar CO 2 reduction in H 2O vapour with >1% energy conversion efficiency. Nat Commun 2024; 15:4675. [PMID: 38824139 PMCID: PMC11144235 DOI: 10.1038/s41467-024-49003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
H2O dissociation plays a crucial role in solar-driven catalytic CO2 methanation, demanding high temperature even for solar-to-chemical conversion efficiencies <1% with modest product selectivity. Herein, we report an oxygen-vacancy (Vo) rich CeO2 catalyst with single-atom Ni anchored around its surface Vo sites by replacing Ce atoms to promote H2O dissociation and achieve effective photothermal CO2 reduction under concentrated light irradiation. The high photon flux reduces the apparent activation energy for CH4 production and prevents Vo from depletion. The defects coordinated with single-atom Ni, significantly promote the capture of charges and local phonons at the Ni d-impurity orbitals, thereby inducing more effective H2O activation. The catalyst presents a CH4 yield of 192.75 µmol/cm2/h, with a solar-to-chemical efficiency of 1.14% and a selectivity ~100%. The mechanistic insights uncovered in this study should help further the development of H2O-activating catalysts for CO2 reduction and thereby expedite the practical utilization of solar-to-chemical technologies.
Collapse
Affiliation(s)
- Yuqi Ren
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Yiwei Fu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Naixu Li
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China.
| | - Changjun You
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Jie Huang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Zhenkun Sun
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 210096, PR China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Yitao Si
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Yuanhao Zhu
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 211189, PR China
| | - Wenshuai Chen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, PR China
| | - Lunbo Duan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, No. 2 Dongnandaxue Road, Nanjing, Jiangsu, 210096, PR China.
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China.
| |
Collapse
|
25
|
Sun W, Cui L, Zhou D. Synergy of a CuO/C 3N 4 interface and CuO nanoparticles in the ethynylation of formaldehyde for 1,4-butynediol synthesis. Dalton Trans 2024; 53:8893-8897. [PMID: 38738949 DOI: 10.1039/d4dt00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Catalysts made of CuO/Bi2O3 nanoparticles supported on g-C3N4 were synthesized using a MOF-derived strategy. The activation of CuO to CuCCCu species and stabilization of the catalyst were facilitated by the synergistic effect of the CuO/C3N4 interface and CuO nanoparticles, resulting in enhanced catalytic efficacy in the ethynylation of formaldehyde.
Collapse
Affiliation(s)
- Wei Sun
- Shandong Hualu-Hengsheng Chemical Co., Ltd, Dezhou 253024, China.
| | - Lifeng Cui
- Shandong Hualu-Hengsheng Chemical Co., Ltd, Dezhou 253024, China.
| | - Danyang Zhou
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
26
|
Musab Ahmed S, Ren J, Ullah I, Lou H, Xu N, Abbasi Z, Wang Z. Ni-Based Catalysts for CO 2 Methanation: Exploring the Support Role in Structure-Activity Relationships. CHEMSUSCHEM 2024; 17:e202400310. [PMID: 38467564 DOI: 10.1002/cssc.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
The catalytic hydrogenation of CO2 to methane is one of the highly researched areas for the production of chemical fuels. The activity of catalyst is largely affected by support type and metal-support interaction deriving from the special method during catalyst preparation. Hence, we employed a simple solvothermal technique to synthesize Ni-based catalysts with different supports and studied the support role (CeO2, Al2O3, ZrO2, and La2O3) on structure-activity relationships in CO2 methanation. It is found that catalyst morphology can be altered by only changing the support precursors during synthesis, and therefore their catalytic behaviours were significantly affected. The Ni/Al2O3 with a core-shell morphology prepared herein exhibited a higher activity than the catalyst prepared with a common wet impregnation method. To have a comprehensive understanding for structure-activity relationships, advanced characterization (e. g., synchrotron radiation-based XAS and photoionization mass spectrometry) and in-situ diffuse reflectance infrared Fourier transform spectroscopy experiments were conducted. This research opens an avenue to further delve into the role of support on morphologies that can greatly enhance catalytic activity during CO2 methanation.
Collapse
Affiliation(s)
- Syed Musab Ahmed
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P.R. China
| | - Jie Ren
- Department of Thermal Science and Energy, University of Science and Technology of China, Hefei 230029, Anhui, P.R. China
| | - Inam Ullah
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P.R. China
| | - Hao Lou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P.R. China
| | - Nuo Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P.R. China
| | - Zeeshan Abbasi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P.R. China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P.R. China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, Liaoning, P.R. China
| |
Collapse
|
27
|
Wang H, Cui G, Lu H, Li Z, Wang L, Meng H, Li J, Yan H, Yang Y, Wei M. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO 2-x catalyst. Nat Commun 2024; 15:3765. [PMID: 38704402 PMCID: PMC11069590 DOI: 10.1038/s41467-024-48122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The dry reforming of methane provides an attractive route to convert greenhouse gases (CH4 and CO2) into valuable syngas, so as to resolve the carbon cycle and environmental issues. However, the development of high-performance catalysts remains a huge challenge. Herein, we report a 0.6% Ir/CeO2-x catalyst with a metal-support interface structure which exhibits high CH4 (~72%) and CO2 (~82%) conversion and a CH4 reaction rate of ~973 μmolCH4 gcat-1 s-1 which is stable over 100 h at 700 °C. The performance of the catalyst is close to the state-of-the-art in this area of research. A combination of in situ spectroscopic characterization and theoretical calculations highlight the importance of the interfacial structure as an intrinsic active center to facilitate the CH4 dissociation (the rate-determining step) and the CH2* oxidation to CH2O* without coke formation, which accounts for the long-term stability. The catalyst in this work has a potential application prospect in the field of high-value utilization of carbon resources.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Guoqing Cui
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), 102249, Beijing, P. R. China.
| | - Hao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Zeyang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China
| | - Hao Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China.
| |
Collapse
|
28
|
Zhang K, Xu C, Zhang X, Huang Z, Pian Q, Che K, Cui X, Hu Y, Xuan Y. Structural Heredity in Catalysis: CO 2 Self-Selective CeO 2 Nanocrystals for Efficient Photothermal CO 2 Hydrogenation to Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308823. [PMID: 38102099 DOI: 10.1002/smll.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The chemical inertness of CO2 molecules makes their adsorption and activation on a catalyst surface one of the key challenges in recycling CO2 into chemical fuels. However, the traditional template synthesis and chemical modification strategies used to tackle this problem face severe structural collapse and modifier deactivation issues during the often-needed post-processing procedure. Herein, a CO2 self-selective hydrothermal growth strategy is proposed for the synthesis of CeO2 octahedral nanocrystals that participate in strong physicochemical interactions with CO2 molecules. The intense affinity for CO2 molecules persists during successive high-temperature treatments required for Ni deposition. This demonstrates the excellent structural heredity of the CO2 self-selective CeO2 nanocrystals, which leads to an outstanding photothermal CH4 productivity exceeding 9 mmol h-1 mcat -2 and an impressive selectivity of >99%. The excellent performance is correlated with the abundant oxygen vacancies and hydroxyl species on the CeO2 surface, which create many frustrated Lewis-pair active sites, and the strong interaction between Ni and CeO2 that promotes the dissociation of H2 molecules and the spillover of H atoms, thereby greatly benefitting the photothermal CO2 methanation reaction. This self-selective hydrothermal growth strategy represents a new pathway for the development of effective catalysts for targeted chemical reactions.
Collapse
Affiliation(s)
- Kai Zhang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles, Ministry of Industry and Information Technology, Nanjing, 210016, China
| | - Cuiping Xu
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xingjian Zhang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhiyi Huang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Qixiang Pian
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kunhong Che
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaokun Cui
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueru Hu
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yimin Xuan
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles, Ministry of Industry and Information Technology, Nanjing, 210016, China
| |
Collapse
|
29
|
Wang A, Cao H, Zhang L, Wang A. Co/SiO 2 Catalyst for Methoxycarbonylation of Acetylene: On Catalytic Performance and Active Species. Molecules 2024; 29:1987. [PMID: 38731477 PMCID: PMC11085306 DOI: 10.3390/molecules29091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Reppe carbonylation of acetylene is an atom-economic and non-petroleum approach to synthesize acrylic acid and acrylate esters, which are key intermediates in the textile, leather finishing, and polymer industries. In the present work, a noble metal-free Co@SiO2 catalyst was prepared and evaluated in the methoxycarbonylation reaction of acetylene. It was discovered that pretreatment of the catalyst by different reductants (i.e., C2H2, CO, H2, and syngas) greatly improved the catalytic activity, of which Co/SiO2-H2 demonstrated the best performance under conditions of 160 °C, 0.05 MPa C2H2, 4 MPa CO, and 1 h, affording a production rate of 4.38 gMA+MP gcat-1 h-1 for methyl acrylate (MA) and methyl propionate (MP) and 0.91 gDMS gcat-1 h-1 for dimethyl succinate (DMS), respectively. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectra of CO adsorption (CO-DRIFTS) measurements revealed that an H2 reduction decreased the size of the Co nanoparticles and promoted the formation of hollow architectures, leading to an increase in the metal surface area and CO adsorption on the catalyst. The hot filtration experiment confirmed that Co2(CO)8 was generated in situ during the reaction or at the pre-activation stage, which served as the genuine active species. Our work provides a facile and convenient approach to the in situ synthetization of Co2(CO)8 for a Reppe carbonylation reaction.
Collapse
Affiliation(s)
- An Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (A.W.); (H.C.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchen Cao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (A.W.); (H.C.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (A.W.); (H.C.); (L.Z.)
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (A.W.); (H.C.); (L.Z.)
| |
Collapse
|
30
|
Peng Y, Si XL, Shang C, Liu ZP. Abundance of Low-Energy Oxygen Vacancy Pairs Dictates the Catalytic Performance of Cerium-Stabilized Zirconia. J Am Chem Soc 2024; 146:10822-10832. [PMID: 38591182 DOI: 10.1021/jacs.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cerium-stabilized zirconia (Ce1-xZrxOy, CZO) is renowned for its superior oxygen storage capacity (OSC), a key property long believed to be beneficial to catalytic oxidation reactions. However, 50% Ce-containing CZO recorded with the highest OSC has disappointingly poor performance in catalytic oxidation reactions compared to those with higher Ce contents but lower OSC ability. Here, we employ global neural network (G-NN)-based potential energy surface exploration methods to establish the first ternary phase diagram for bulk structures of CZO, which identifies three critical compositions of CZO, namely, 50, 60, and 80% Ce-containing CZO that are thermodynamically stable under typical synthetic conditions. 50% Ce-containing CZO, although having the highest OSC, exhibits the lowest O vacancy (Ov) diffusion rate. By contrast, 60% Ce-containing CZO, despite lower OSC (33.3% OSC compared to that of 50% Ce-containing CZO), reaches the highest Ov diffusion ability and thus offers the highest CO oxidation catalytic performance. The physical origin of the high performance of 60% Ce-containing CZO is the abundance of energetically favorable Ov pairs along the ⟨110⟩ direction, which reduces the energy barrier of Ov diffusion in the bulk and promotes O2 activation on the surface. Our results clarify the long-standing puzzles on CZO and point out that 60% Ce-containing CZO is the most desirable composition for typical CZO applications.
Collapse
Affiliation(s)
- Yao Peng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xia-Lan Si
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institution, Shanghai 200030, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Qi Zhi Institution, Shanghai 200030, China
| |
Collapse
|
31
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
32
|
Hu P, Zhang C, Chu M, Wang X, Wang L, Li Y, Yan T, Zhang L, Ding Z, Cao M, Xu P, Li Y, Cui Y, Zhang Q, Chen J, Chi L. Stable Interfacial Ruthenium Species for Highly Efficient Polyolefin Upcycling. J Am Chem Soc 2024; 146:7076-7087. [PMID: 38428949 DOI: 10.1021/jacs.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Congyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department of Chemistry, University of Western Ontario, London N6A 5B7, Canada
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xianpeng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhifeng Ding
- Department of Chemistry, University of Western Ontario, London N6A 5B7, Canada
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| | - Panpan Xu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yifan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yi Cui
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| |
Collapse
|
33
|
Li Q, Wang C, Wang H, Chen J, Chen J, Jia H. Disclosing Support-Size-Dependent Effect on Ambient Light-Driven Photothermal CO 2 Hydrogenation over Nickel/Titanium Dioxide. Angew Chem Int Ed Engl 2024; 63:e202318166. [PMID: 38197197 DOI: 10.1002/anie.202318166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
The size of support in heterogeneous catalysts can strongly affect the catalytic property but is rarely explored in light-driven catalysis. Herein, we demonstrate the size of TiO2 support governs the selectivity in photothermal CO2 hydrogenation by tuning the metal-support interactions (MSI). Small-size TiO2 loading nickel (Ni/TiO2 -25) with enhanced MSI promotes photo-induced electrons of TiO2 migrating to Ni nanoparticles, thus favoring the H2 cleavage and accelerating the CH4 formation (227.7 mmol g-1 h-1 ) under xenon light-induced temperature of 360 °C. Conversely, Ni/TiO2 -100 with large TiO2 prefers yielding CO (94.2 mmol g-1 h-1 ) due to weak MSI, inefficient charge separation, and inadequate supply of activated hydrogen. Under ambient solar irradiation, Ni/TiO2 -25 achieves the optimized CH4 rate (63.0 mmol g-1 h-1 ) with selectivity of 99.8 %, while Ni/TiO2 -100 exhibits the CO selectivity of 90.0 % with rate of 30.0 mmol g-1 h-1 . This work offers a novel approach to tailoring light-driven catalytic properties by support size effect.
Collapse
Affiliation(s)
- Qiang Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunqi Wang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiling Wang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Chen
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Chen
- Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Cai M, Li C, An X, Zhong B, Zhou Y, Feng K, Wang S, Zhang C, Xiao M, Wu Z, He J, Wu C, Shen J, Zhu Z, Feng K, Zhong J, He L. Supra-Photothermal CO 2 Methanation over Greenhouse-Like Plasmonic Superstructures of Ultrasmall Cobalt Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308859. [PMID: 37931240 DOI: 10.1002/adma.202308859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Improving the solar-to-thermal energy conversion efficiency of photothermal nanomaterials at no expense of other physicochemical properties, e.g., the catalytic reactivity of metal nanoparticles, is highly desired for diverse applications but remains a big challenge. Herein, a synergistic strategy is developed for enhanced photothermal conversion by a greenhouse-like plasmonic superstructure of 4 nm cobalt nanoparticles while maintaining their intrinsic catalytic reactivity. The silica shell plays a key role in retaining the plasmonic superstructures for efficient use of the full solar spectrum, and reducing the heat loss of cobalt nanoparticles via the nano-greenhouse effect. The optimized plasmonic superstructure catalyst exhibits supra-photothermal CO2 methanation performance with a record-high rate of 2.3 mol gCo -1 h-1 , close to 100% CH4 selectivity, and desirable catalytic stability. This work reveals the great potential of nanoscale greenhouse effect in enhancing photothermal conversions through the combination with conventional promoting strategies, shedding light on the design of efficient photothermal nanomaterials for demanding applications.
Collapse
Affiliation(s)
- Mujin Cai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biqing Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Yuxuan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Shenghua Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chengcheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Mengqi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyi Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Jiari He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chunpeng Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Jiahui Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
35
|
Robatjazi H, Battsengel T, Finzel J, Tieu P, Xu M, Hoffman AS, Qi J, Bare SR, Pan X, Chmelka BF, Halas NJ, Christopher P. Dynamic Behavior of Platinum Atoms and Clusters in the Native Oxide Layer of Aluminum Nanocrystals. ACS NANO 2024; 18:6638-6649. [PMID: 38350032 DOI: 10.1021/acsnano.3c12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Strong metal-support interactions (SMSIs) are well-known in the field of heterogeneous catalysis to induce the encapsulation of platinum (Pt) group metals by oxide supports through high temperature H2 reduction. However, demonstrations of SMSI overlayers have largely been limited to reducible oxides, such as TiO2 and Nb2O5. Here, we show that the amorphous native surface oxide of plasmonic aluminum nanocrystals (AlNCs) exhibits SMSI-induced encapsulation of Pt following reduction in H2 in a Pt structure dependent manner. Reductive treatment in H2 at 300 °C induces the formation of an AlOx SMSI overlayer on Pt clusters, leaving Pt single-atom sites (Ptiso) exposed available for catalysis. The remaining exposed Ptiso species possess a more uniform local coordination environment than has been observed on other forms of Al2O3, suggesting that the AlOx native oxide of AlNCs presents well-defined anchoring sites for individual Pt atoms. This observation extends our understanding of SMSIs by providing evidence that H2-induced encapsulation can occur for a wider variety of materials and should stimulate expanded studies of this effect to include nonreducible oxides with oxygen defects and the presence of disorder. It also suggests that the single-atom sites created in this manner, when combined with the plasmonic properties of the Al nanocrystal core, may allow for site-specific single-atom plasmonic photocatalysis, providing dynamic control over the light-driven reactivity in these systems.
Collapse
Affiliation(s)
- Hossein Robatjazi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Syzygy Plasmonics Inc., Houston, Texas 77054, United States
| | - Tsatsral Battsengel
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jordan Finzel
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mingjie Xu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ji Qi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, Irvine, California 92697, United States
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
36
|
Wang K, Li Z, Gao X, Ma Q, Zhang J, Zhao TS, Tsubaki N. Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review. ENVIRONMENTAL RESEARCH 2024; 242:117715. [PMID: 37996000 DOI: 10.1016/j.envres.2023.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The thermocatalytic conversion of carbon dioxide (CO2) into high value-added chemicals provides a strategy to address the environmental problems caused by excessive carbon emissions and the sustainable production of chemicals. Significant progress has been made in the CO2 hydrogenation to long chain α-olefins, but controlling C-O activation and C-C coupling remains a great challenge. This review focuses on the recent advances in catalyst design concepts for the synthesis of long chain α-olefins from CO2 hydrogenation. We have systematically summarized and analyzed the ingenious design of catalysts, reaction mechanisms, the interaction between active sites and supports, structure-activity relationship, influence of reaction process parameters on catalyst performance, and catalyst stability, as well as the regeneration methods. Meanwhile, the challenges in the development of the long chain α-olefins synthesis from CO2 hydrogenation are proposed, and the future development opportunities are prospected. The aim of this review is to provide a comprehensive perspective on long chain α-olefins synthesis from CO2 hydrogenation to inspire the invention of novel catalysts and accelerate the development of this process.
Collapse
Affiliation(s)
- Kangzhou Wang
- School of Materials and New Energy, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ziqin Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jianli Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Tian-Sheng Zhao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
37
|
Yang J, Wang L, Wan J, El Gabaly F, Fernandes Cauduro AL, Mills BE, Chen JL, Hsu LC, Lee D, Zhao X, Zheng H, Salmeron M, Wang C, Dong Z, Lin H, Somorjai GA, Rosner F, Breunig H, Prendergast D, Jiang DE, Singh S, Su J. Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO 2 to ethylene and CO. Nat Commun 2024; 15:911. [PMID: 38291043 PMCID: PMC10828418 DOI: 10.1038/s41467-024-44918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Developing atomically synergistic bifunctional catalysts relies on the creation of colocalized active atoms to facilitate distinct elementary steps in catalytic cycles. Herein, we show that the atomically-synergistic binuclear-site catalyst (ABC) consisting of [Formula: see text]-O-Cr6+ on zeolite SSZ-13 displays unique catalytic properties for iso-stoichiometric co-conversion of ethane and CO2. Ethylene selectivity and utilization of converted CO2 can reach 100 % and 99.0% under 500 °C at ethane conversion of 9.6%, respectively. In-situ/ex-situ spectroscopic studies and DFT calculations reveal atomic synergies between acidic Zn and redox Cr sites. [Formula: see text] ([Formula: see text]) sites facilitate β-C-H bond cleavage in ethane and the formation of Zn-Hδ- hydride, thereby the enhanced basicity promotes CO2 adsorption/activation and prevents ethane C-C bond scission. The redox Cr site accelerates CO2 dissociation by replenishing lattice oxygen and facilitates H2O formation/desorption. This study presents the advantages of the ABC concept, paving the way for the rational design of novel advanced catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lu Wang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Jiawei Wan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park, Hsinchu, Taiwan
| | - Liang-Ching Hsu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Daewon Lee
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Caiqi Wang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Zhun Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hongfei Lin
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Gabor A Somorjai
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Fabian Rosner
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hanna Breunig
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Seema Singh
- Sandia National Laboratories, Livermore, CA, US.
| | - Ji Su
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
38
|
Yin J, Yao Z, Zhao Q, Cheng S, Wang X, Li Z. Low-temperature methanation of fermentation gas with Ni-based catalysts in a multicomponent system. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:12. [PMID: 38281968 PMCID: PMC10823717 DOI: 10.1186/s13068-023-02455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
A large amount of greenhouse gases, such as carbon dioxide and methane, are released during the production process of bioethanol and biogas. Converting CO2 into methane is a promising way of capturing CO2 and generating high-value gas. At present, CO2 methanation technology is still in the early stage. It requires high temperature (300-400 ℃) and pressure (> 1 MPa), leading to high cost and energy consumption. In this study, a new catalyst, Ni-Fe/Al-Ti, was developed. Compared with the activity of the common Ni/Al2O3 catalyst, that of the new catalyst was increased by 1/3, and its activation temperature was reduced by 100℃. The selectivity of methane was increased to 99%. In the experiment using simulated fermentation gas, the catalyst showed good catalytic activity and durability at a low temperature and atmospheric pressure. Based on the characterization of catalysts and the study of reaction mechanisms, this article innovatively proposed a Ni-Fe/Al-Ti quaternary catalytic system. Catalytic process was realized through the synergism of Al-Ti composite support and Ni-Fe promotion. The oxygen vacancies on the surface of the composite carrier and the higher activity metals and alloys promoted by Fe accelerate the capture and reduction of CO2. Compared with the existing catalysts, the new Ni-Fe/Al-Ti catalyst can significantly improve the methanation efficiency and has great practical application potential.
Collapse
Affiliation(s)
- Jie Yin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing, 100083, People's Republic of China
| | - Zihui Yao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing, 100083, People's Republic of China
| | - Qizhi Zhao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing, 100083, People's Republic of China
| | - Shikun Cheng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing, 100083, People's Republic of China.
| | - Xuemei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing, 100083, People's Republic of China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
39
|
Wang P, Zhang X, Shi R, Zhao J, Waterhouse GIN, Tang J, Zhang T. Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles. Nat Commun 2024; 15:789. [PMID: 38278813 PMCID: PMC10817976 DOI: 10.1038/s41467-024-45031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
The selective oxidative dehydrogenation of ethane (ODHE) is attracting increasing attention as a method for ethylene production. Typically, thermocatalysts operating at high temperatures are needed for C-H activation in ethane. In this study, we describe a low temperature ( < 140 °C) photocatalytic route for ODHE, using O2 as the oxidant. A photocatalyst containing PdZn intermetallic nanoparticles supported on ZnO is prepared, affording an ethylene production rate of 46.4 mmol g-1 h-1 with 92.6% ethylene selectivity under 365 nm irradiation. When we employ a simulated shale gas feed, the photocatalytic ODHE system achieves nearly 20% ethane conversion while maintaining an ethylene selectivity of about 87%. The robust interface between the PdZn intermetallic nanoparticles and ZnO support plays a crucial role in ethane activation through a photo-assisted Mars-van Krevelen mechanism, followed by a rapid lattice oxygen replenishment to complete the reaction cycle. Our findings demonstrate that photocatalytic ODHE is a promising method for alkane-to-alkene conversions under mild conditions.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Ye R, Ma L, Hong X, Reina TR, Luo W, Kang L, Feng G, Zhang R, Fan M, Zhang R, Liu J. Boosting Low-Temperature CO 2 Hydrogenation over Ni-based Catalysts by Tuning Strong Metal-Support Interactions. Angew Chem Int Ed Engl 2024; 63:e202317669. [PMID: 38032335 DOI: 10.1002/anie.202317669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Rational design of low-cost and efficient transition-metal catalysts for low-temperature CO2 activation is significant and poses great challenges. Herein, a strategy via regulating the local electron density of active sites is developed to boost CO2 methanation that normally requires >350 °C for commercial Ni catalysts. An optimal Ni/ZrO2 catalyst affords an excellent low-temperature performance hitherto, with a CO2 conversion of 84.0 %, CH4 selectivity of 98.6 % even at 230 °C and GHSV of 12,000 mL g-1 h-1 for 106 h, reflecting one of the best CO2 methanation performance to date on Ni-based catalysts. Combined a series of in situ spectroscopic characterization studies reveal that re-constructing monoclinic-ZrO2 supported Ni species with abundant oxygen vacancies can facilitate CO2 activation, owing to the enhanced local electron density of Ni induced by the strong metal-support interactions. These findings might be of great aid for construction of robust catalysts with an enhanced performance for CO2 emission abatement and beyond.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lixuan Ma
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Xiaoling Hong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Tomas Ramirez Reina
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, University of Seville-CSIC, 41092, Seville, Spain
| | - Wenhao Luo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Liqun Kang
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gang Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Maohong Fan
- College of Engineering and Physical Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
41
|
Liang J, Liu J, Guo L, Wang W, Wang C, Gao W, Guo X, He Y, Yang G, Yasuda S, Liang B, Tsubaki N. CO 2 hydrogenation over Fe-Co bimetallic catalysts with tunable selectivity through a graphene fencing approach. Nat Commun 2024; 15:512. [PMID: 38218949 PMCID: PMC10787759 DOI: 10.1038/s41467-024-44763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
Tuning CO2 hydrogenation product distribution to obtain high-selectivity target products is of great significance. However, due to the imprecise regulation of chain propagation and hydrogenation reactions, the oriented synthesis of a single product is challenging. Herein, we report an approach to controlling multiple sites with graphene fence engineering that enables direct conversion of CO2/H2 mixtures into different types of hydrocarbons. Fe-Co active sites on the graphene fence surface present 50.1% light olefin selectivity, while the spatial Fe-Co nanoparticles separated by graphene fences achieve liquefied petroleum gas of 43.6%. With the assistance of graphene fences, iron carbides and metallic cobalt can efficiently regulate C-C coupling and olefin secondary hydrogenation reactions to achieve product-selective switching between light olefins and liquefied petroleum gas. Furthermore, it also creates a precedent for CO2 direct hydrogenation to liquefied petroleum gas via a Fischer-Tropsch pathway with the highest space-time yields compared to other reported composite catalysts.
Collapse
Affiliation(s)
- Jiaming Liang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Jiangtao Liu
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Lisheng Guo
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Wenhang Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Chengwei Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Weizhe Gao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Xiaoyu Guo
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Yingluo He
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Shuhei Yasuda
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Bing Liang
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
42
|
Yu J, Qin X, Yang Y, Lv M, Yin P, Wang L, Ren Z, Song B, Li Q, Zheng L, Hong S, Xing X, Ma D, Wei M, Duan X. Highly Stable Pt/CeO 2 Catalyst with Embedding Structure toward Water-Gas Shift Reaction. J Am Chem Soc 2024; 146:1071-1080. [PMID: 38157430 DOI: 10.1021/jacs.3c12061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Strong metal-support interaction (SMSI) has been extensively studied in heterogeneous catalysis because of its significance in stabilizing active metals and tuning catalytic performance, but the origin of SMSI is not fully revealed. Herein, by using Pt/CeO2 as a model catalyst, we report an embedding structure at the interface between Pt and (110) plane of CeO2, where Pt clusters (∼1.6 nm) are embedded into the lattice of ceria within 3-4 atomic layers. In contrast, this phenomenon is absent in the CeO2(100) support. This unique geometric structure, as an effective motivator, triggers more significant electron transfer from Pt clusters to CeO2(110) support accompanied by the formation of interfacial structure (Ptδ+-Ov-Ce3+), which plays a crucial role in stabilizing Pt nanoclusters. A comprehensive investigation based on experimental studies and theoretical calculations substantiates that the interfacial sites serve as the intrinsic active center toward water-gas shift reaction (WGSR), featuring a moderate strength CO activation adsorption and largely decreased energy barrier of H2O dissociation, accounting for the prominent catalytic activity of Pt/CeO2(110) (a reaction rate of 15.76 molCO gPt-1 h-1 and a turnover frequency value of 2.19 s-1 at 250 °C). In addition, the Pt/CeO2(110) catalyst shows a prominent durability within a 120 h time-on-stream test, far outperforming the Pt/CeO2(100) one, which demonstrates the advantages of this embedding structure for improving catalyst stability.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xuetao Qin
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Mingxin Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Boyu Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Song Hong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| |
Collapse
|
43
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
44
|
Srichaisiriwech W, Tepamatr P. Monometallic and Bimetallic Catalysts Supported on Praseodymium-Doped Ceria for the Water-Gas Shift Reaction. Molecules 2023; 28:8146. [PMID: 38138634 PMCID: PMC10745666 DOI: 10.3390/molecules28248146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The water-gas shift (WGS) performance was investigated over 5%Ni/CeO2, 5%Ni/Ce0.95Pr0.05O1.975, and 1%Re4%Ni/Ce0.95Pr0.05O1.975 catalysts to decrease the CO amount and generate extra H2. CeO2 and Pr-doped CeO2 mixed oxides were synthesized using a combustion method. After that, Ni and Re were loaded onto the ceria support via an impregnation method. The structural and redox characteristics of monometallic Ni and bimetallic NiRe materials, which affect their water-gas shift performance, were investigated. The results show that the Pr addition into Ni/ceria increases the specific surface area, decreases the ceria crystallite size, and improves the dispersion of Ni on the CeO2 surface. Furthermore, Re addition results in the enhancement of the WGS performance of the Ni/Ce0.95Pr0.05O1.975 catalyst. Among the studied catalysts, the ReNi/Ce0.95Pr0.05O1.975 catalyst showed the highest catalytic activity, reaching 96% of CO conversion at 330°. It was established that the occurrence of more oxygen vacancies accelerates the redox process at the ceria surface. In addition, an increase in the Ni dispersion, Ni surface area, and surface acidity has a positive effect on hydrogen generation during the water-gas shift reaction due to favored CO adsorption.
Collapse
Affiliation(s)
| | - Pannipa Tepamatr
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand;
| |
Collapse
|
45
|
Hong W, Jiang X, An C, Huang H, Zhu T, Sun Y, Wang H, Shen F, Li X. Engineering the Crystal Facet of Monoclinic NiO for Efficient Catalytic Ozonation of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20053-20063. [PMID: 37936384 DOI: 10.1021/acs.est.3c06194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Modulating oxygen vacancies of catalysts through crystal facet engineering is an innovative strategy for boosting the activity for ozonation of catalytic volatile organic compounds (VOCs). In this work, three kinds of facet-engineered monoclinic NiO catalysts were successfully prepared and utilized for catalytic toluene ozonation (CTO). Density functional theory calculations revealed that Ni vacancies were more likely to form preferentially than O vacancies on the (110), (100), and (111) facets of monoclinic NiO due to the stronger Ni-vacancy formation ability, further affecting O-vacancy formation. Extensive characterizations demonstrated that Ni vacancies significantly promoted the formation of O vacancies and thus reactive oxygen species in the (111) facet of monoclinic NiO, among the three facets. The performance evaluation showed that the monoclinic NiO catalyst with a dominant (111) facet exhibits excellent performance for CTO, achieving a toluene conversion of ∼100% at 30 °C after reaction for 120 min under 30 ppm toluene, 210 ppm ozone, 45% relative humidity, and a space velocity of 120 000 h-1. This outperformed the previously reported noble/non-noble metal oxide catalysts used for CTO at room temperature. This study provided novel insight into the development of highly efficient facet-engineered catalysts for the elimination of catalytic VOCs.
Collapse
Affiliation(s)
- Wei Hong
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Chenguang An
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haining Wang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
46
|
Fu XP, Wu CP, Wang WW, Jin Z, Liu JC, Ma C, Jia CJ. Boosting reactivity of water-gas shift reaction by synergistic function over CeO 2-x/CoO 1-x/Co dual interfacial structures. Nat Commun 2023; 14:6851. [PMID: 37891176 PMCID: PMC10611738 DOI: 10.1038/s41467-023-42577-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.
Collapse
Affiliation(s)
- Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Cui-Ping Wu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Zhao Jin
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China.
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China.
| |
Collapse
|
47
|
Han J, Yang J, Zhang Z, Jiang X, Liu W, Qiao B, Mu J, Wang F. Strong Metal-Support Interaction Facilitated Multicomponent Alloy Formation on Metal Oxide Support. J Am Chem Soc 2023; 145:22671-22684. [PMID: 37814206 DOI: 10.1021/jacs.3c07915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Multicomponent alloy (MA) contains a nearly infinite number of unprecedented active sites through entropy stabilization, which is a desired platform for exploring high-performance catalysts. However, MA catalysts are usually synthesized under severe conditions, which induce support structure collapse and further deteriorate the synergy between MA and support. We propose that a strong metal-support interaction (SMSI) could facilitate the formation of MA by establishing a tunnel of oxygen vacancy for metal atom transport under low reduction temperature (400-600 °C), which exemplifies the holistic design of MA catalysts without deactivating supports. PtPdCoFe MA is readily synthesized on anatase TiO2 with the help of SMSI, which exhibits good catalytic activity and stability for methane combustion. This strategy demonstrates excellent universality on various supports and multicomponent alloy compositions. Our work not only reports a holistic synthesis strategy for MA synthesis by synergizing unique properties of reducible oxides and the mixing entropy of alloy but also offers a new insight that SMSI plays a vigorous role in the formation of alloy NPs on reducible oxides.
Collapse
Affiliation(s)
- Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116000, P. R. China
| |
Collapse
|
48
|
Qi H, Li Y, Zhou Z, Cao Y, Liu F, Guan W, Zhang L, Liu X, Li L, Su Y, Junge K, Duan X, Beller M, Wang A, Zhang T. Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru 1Co NP catalyst. Nat Commun 2023; 14:6329. [PMID: 37816717 PMCID: PMC10564752 DOI: 10.1038/s41467-023-42043-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The sustainable production of value-added N-heterocycles from available biomass allows to reduce the reliance on fossil resources and creates possibilities for economically and ecologically improved synthesis of fine and bulk chemicals. Herein, we present a unique Ru1CoNP/HAP surface single-atom alloy (SSAA) catalyst, which enables a new type of transformation from the bio-based platform chemical furfural to give N-heterocyclic piperidine. In the presence of NH3 and H2, the desired product is formed under mild conditions with a yield up to 93%. Kinetic studies show that the formation of piperidine proceeds via a series of reaction steps. Initially, in this cascade process, furfural amination to furfurylamine takes place, followed by hydrogenation to tetrahydrofurfurylamine (THFAM) and then ring rearrangement to piperidine. DFT calculations suggest that the Ru1CoNP SSAA structure facilitates the direct ring opening of THFAM resulting in 5-amino-1-pentanol which is quickly converted to piperidine. The value of the presented catalytic strategy is highlighted by the synthesis of an actual drug, alkylated piperidines, and pyridine.
Collapse
Affiliation(s)
- Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock, 18059, Germany
| | - Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhitong Zhou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weixiang Guan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Leilei Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock, 18059, Germany
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock, 18059, Germany.
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
49
|
Rao Z, Wang K, Cao Y, Feng Y, Huang Z, Chen Y, Wei S, Liu L, Gong Z, Cui Y, Li L, Tu X, Ma D, Zhou Y. Light-Reinforced Key Intermediate for Anticoking To Boost Highly Durable Methane Dry Reforming over Single Atom Ni Active Sites on CeO 2. J Am Chem Soc 2023. [PMID: 37792912 DOI: 10.1021/jacs.3c07077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Dry reforming of methane (DRM) has been investigated for more than a century; the paramount stumbling block in its industrial application is the inevitable sintering of catalysts and excessive carbon emissions at high temperatures. However, the low-temperature DRM process still suffered from poor reactivity and severe catalyst deactivation from coking. Herein, we proposed a concept that highly durable DRM could be achieved at low temperatures via fabricating the active site integration with light irradiation. The active sites with Ni-O coordination (NiSA/CeO2) and Ni-Ni coordination (NiNP/CeO2) on CeO2, respectively, were successfully constructed to obtain two targeted reaction paths that produced the key intermediate (CH3O*) for anticoking during DRM. In particular, the operando diffuse reflectance infrared Fourier transform spectroscopy coupling with steady-state isotopic transient kinetic analysis (operando DRIFTS-SSITKA) was utilized and successfully tracked the anticoking paths during the DRM process. It was found that the path from CH3* to CH3O* over NiSA/CeO2 was the key path for anticoking. Furthermore, the targeted reaction path from CH3* to CH3O* was reinforced by light irradiation during the DRM process. Hence, the NiSA/CeO2 catalyst exhibits excellent stability with negligible carbon deposition for 230 h under thermo-photo catalytic DRM at a low temperature of 472 °C, while NiNP/CeO2 shows apparent coke deposition behavior after 0.5 h in solely thermal-driven DRM. The findings are vital as they provide critical insights into the simultaneous achievement of low-temperature and anticoking DRM process through distinguishing and directionally regulating the key intermediate species.
Collapse
Affiliation(s)
- Zhiqiang Rao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People's Republic of China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Kaiwen Wang
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100020, People's Republic of China
| | - Yuehan Cao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Yibo Feng
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100020, People's Republic of China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Yaolin Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Shiqian Wei
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, People's Republic of China
| | - Luyu Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Zhongmiao Gong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 610500, People's Republic of China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 610500, People's Republic of China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People's Republic of China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| |
Collapse
|
50
|
Wang D, Ma Z, Gou F, Hu B. Synergistic effect of coordinating interface and promoter for enhancing ammonia synthesis activity of Ru@N-C catalyst. RSC Adv 2023; 13:28736-28742. [PMID: 37790091 PMCID: PMC10543646 DOI: 10.1039/d3ra04824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Triruthenium dodecacarbonyl (Ru3(CO)12) was applied to prepare the Ru-based ammonia synthesis catalysts. The catalyst obtained from this precursor exhibited higher activity than the other Ru salts owing to its unique atomic reorganization under mild temperatures. Herein, Ru3(CO)12 as a guest metal source incorporated into the pore of ZIF-8 formed the Ru@N-C catalysts. The results indicated that the Ru nanoparticle (1.7 nm) was dispersed in the confined N coordination environment, which can increase the electron density of the Ru nanoparticles to promote N[triple bond, length as m-dash]N bond cleavage. The promoters donate the basic sites for transferring the electrons to Ru nanoparticles, further enhancing ammonia synthesis activity. Ammonia synthesis investigations revealed that the obtained Ru@N-C catalysts exhibited obvious catalytic activity compared with the Ru/AC catalyst. After introducing the Ba promoter, the 2Ba-Ru@N-C(450) catalyst exhibited the highest ammonia synthesis activity among the catalysts. At 360 °C and 1 MPa, the activity of the 2Ba-Ru@N-C(450) is 16 817.3 µmol h-1 gRu-1, which is 1.1, 1.6, and 2 times higher than those of 2Cs-Ru@N-C(450) (14 925.4 µmol h-1 gRu-1), 2K-Ru@N-C(450) (10 736.7 µmol h-1 gRu-1), and Ru@N-C(450) (8604.2 µmol h-1 gRu-1), respectively. A series of characterizations were carried out to explore the 2Ba-Ru@N-C(450) catalysts, such as H2-TPR, XPS, and NH3-TPD. These results suggest that the Ba promoter played the role of an electronic and structural promoter; moreover, it can promote the NH3 desorption from the Ru nanoparticles.
Collapse
Affiliation(s)
- Dongwei Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhanwei Ma
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Farong Gou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| | - Bin Hu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|