1
|
Su D, Wang Y, Sheng H, Yang Q, Pan D, Liu H, Zhang Q, Dai S, Tian Z, Lu Z, Chen L. Efficient amine-assisted CO 2 hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters. Nat Commun 2025; 16:590. [PMID: 39799180 PMCID: PMC11724949 DOI: 10.1038/s41467-025-55837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025] Open
Abstract
Amine-assisted two-step CO2 hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO2 (i.e., first step) and the subsequent amide hydrogenation (i.e., second step) are required to be optimized. Herein, a class of Al2O3-supported Ru catalysts, featuring multiple activated Ru species (i.e., metallic and oxidized Ru), are rationally fabricated. Density functional theory calculations suggest that metallic Ru forms are preferred for N-formylation step, whereas oxidized Ru species demonstrate enhanced amide hydrogenation activity. Thus, the optimal catalyst, containing unique Ru clusters with coexisting metallic and oxidized Ru species, efficiently synergize the conversion of CO2 into methanol with exceptional selectivity (>95%) in a one-pot two-step process. This work not only presents an advanced catalyst for CO2-based methanol production but also highlights the strategic design of catalysts with multiple active species for optimizing the catalytic performances of multistep reactions in the future.
Collapse
Affiliation(s)
- Desheng Su
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yinming Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Haoyun Sheng
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qihao Yang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Dianhui Pan
- Ningbo Hesheng New Materials Co., Ltd, Ningbo, Zhejiang, PR China
| | - Hao Liu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Qiuju Zhang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Sheng Dai
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Ziqi Tian
- University of Chinese Academy of Sciences, Beijing, PR China.
- Advanced Interdisciplinary Science Research Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
| | - Zhiyi Lu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Liang Chen
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Li Z, Ding B, Li J, Chen H, Zhang J, Tan J, Ma X, Han D, Ma P, Lin J. Multi-Enzyme Mimetic MoCu Dual-Atom Nanozyme Triggering Oxidative Stress Cascade Amplification for High-Efficiency Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202413661. [PMID: 39166420 DOI: 10.1002/anie.202413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.
Collapse
Affiliation(s)
- Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
He Z, Li K, Chen T, Feng Y, Villalobos-Portillo E, Marini C, Lo TWB, Yang F, Zhang L, Liu L. High-purity hydrogen production from dehydrogenation of methylcyclohexane catalyzed by zeolite-encapsulated subnanometer platinum-iron clusters. Nat Commun 2025; 16:92. [PMID: 39746992 PMCID: PMC11696464 DOI: 10.1038/s41467-024-55370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Liquid organic hydrogen carriers (LOHCs) are considered promising carriers for large-scale H2 storage and transportation, among which the toluene-methylcyclohexane cycle has attracted great attention from industry and academia because of the low cost and its compatibility with the current infrastructure facility for the transportation of chemicals. The large-scale deployment of the H2 storage/transportation plants based on the toluene-methylcyclohexane cycle relies on the use of high-performance catalysts, especially for the H2 release process through the dehydrogenation of methylcyclohexane. In this work, we have developed a highly efficient catalyst for MCH dehydrogenation reaction by incorporating subnanometer PtFe clusters with precisely controlled composition and location within a rigid zeolite matrix. The resultant zeolite-encapsulated PtFe clusters exhibit the up-to-date highest reaction rate for dehydrogenation of methylcyclohexane to toluene, very high chemoselectivity to toluene (enabling the production of H2 with purity >99.9%), remarkably high stability (>2000 h) and regenerability over consecutive reaction-regeneration cycles.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kailang Li
- Center for Combustion Energy, Tsinghua University, Beijing, China
- School of Vehicle and Mobility, Tsinghua University, Beijing, China
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China
| | - Yunchao Feng
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | | | - Carlo Marini
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| | - Fuyuan Yang
- School of Vehicle and Mobility, Tsinghua University, Beijing, China.
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing, China.
- School of Vehicle and Mobility, Tsinghua University, Beijing, China.
| | - Lichen Liu
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Chen K, Li G, Gong X, Ren Q, Wang J, Zhao S, Liu L, Yan Y, Liu Q, Cao Y, Ren Y, Qin Q, Xin Q, Liu SL, Yao P, Zhang B, Yang J, Zhao R, Li Y, Luo R, Fu Y, Li Y, Long W, Zhang S, Dai H, Liu C, Zhang J, Chang J, Mu X, Zhang XD. Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes. Nat Commun 2024; 15:8346. [PMID: 39333142 PMCID: PMC11436958 DOI: 10.1038/s41467-024-52684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt1), several Pt atoms (Ptn) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (Kcat/Km) of 1.50 × 109 mM-1 min-1, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.
Collapse
Affiliation(s)
- Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Guo Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Qinjuan Ren
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Junying Wang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuang Zhao
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yang Cao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yaoyao Ren
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Qin
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Peiyu Yao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Bo Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingkai Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yuan Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Ran Luo
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Yikai Fu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine Chinese Academy of Medical, Sciences and Peking Union Medical College, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haitao Dai
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Chang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
7
|
Dou X, Li K, Zhang K, Zhu C, Meira DM, Song Y, He P, Zhang L, Liu L. Isolated Pt Atoms Stabilized by Ga 2O 3 Clusters Confined in ZSM-5 for Nonoxidative Activation of Ethane. JACS AU 2024; 4:3547-3557. [PMID: 39328764 PMCID: PMC11423304 DOI: 10.1021/jacsau.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Selective activation of light alkanes is an essential reaction in the petrochemical industry for producing commodity chemicals, such as light olefins and aromatics. Because of the much higher intrinsic activities of noble metals in comparison to non-noble metals, it is desirable to employ solid catalysts with low noble metal loadings to reduce the cost of catalysts. Herein, we report the introduction of a tiny amount of Pt (at levels of hundreds of ppm) as a promoter of the Ga2O3 clusters encapsulated in ZSM-5 zeolite, which leads to ∼20-fold improvement in the activity for ethane dehydrogenation reaction. A combination of experimental and theoretical studies shows that the isolated Pt atoms stabilized by small Ga2O3 clusters are the active sites for activating the inert C-H bonds in ethane. The synergy of atomically dispersed Pt and Ga2O3 clusters confined in the 10MR channels of ZSM-5 can serve as a bifunctional catalyst for the direct ethane-benzene coupling reaction for the production of ethylbenzene, surpassing the performances of the counterpart catalysts made with PtGa nanoclusters and nanoparticles.
Collapse
Affiliation(s)
- Xiaomeng Dou
- Engineering
Research Center of Advanced Rare-Earth Materials of Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kailang Li
- Center
for Combustion Energy, Tsinghua University, Beijing 100084, China
- School
of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Kun Zhang
- State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National
Energy R&D Center for Coal to Liquid Fuels, Synfuels China Technology Co., Ltd., Beijing 101407, P. R. China
| | - Chaofeng Zhu
- Engineering
Research Center of Advanced Rare-Earth Materials of Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Debora M. Meira
- CLS@APS Sector
20, Advanced Photon Source, Argonne National
Laboratory, 9700 S. Cass
Avenue, Argonne, Illinois 60439, United States
- Canadian
Light Source, Inc., 44
Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Yang Song
- Center
for Renewable Energy, Research Institute
of Petroleum Processing, Beijing 100083, China
| | - Peng He
- State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National
Energy R&D Center for Coal to Liquid Fuels, Synfuels China Technology Co., Ltd., Beijing 101407, P. R. China
| | - Liang Zhang
- Center
for Combustion Energy, Tsinghua University, Beijing 100084, China
- School
of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering
Research Center of Advanced Rare-Earth Materials of Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Liu H, Yang S, Mi J, Sun C, Chen J, Li J. 4d-2p-4f Gradient Orbital Coupling Enables Tandem Catalysis for Simultaneous Abatement of N 2O and CO on Atomically Dispersed Rh/CeO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39259756 DOI: 10.1021/acs.est.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
N2O and CO coexist in various industrial and mobile sources. The synergistic reaction of N2O and CO to generate N2 and CO2 has garnered significant research interest, but it remains extremely challenging. Herein, we constructed an atomically dispersed Rh-supported CeO2 catalyst with asymmetric Rh-O-Ce sites through gradient Rh 4d-O 2p-Ce 4f orbital coupling. This design effectively regulates the 4f electron states of Ce and promotes the electron filling of the O 3π* antibonding orbital to facilitate N-O bond cleavage. Near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) reveals that CO reacts with the surface-adsorbed O* generated by N2O decomposition through self-tandem catalysis, accelerating the rate-limiting step in N2O decomposition and activating the synergistic reaction of N2O and CO at temperatures as low as 115 °C. This work can guide the development of high-performance catalysts using the strategy of high-order orbital hybridization combined with the tandem concept to achieve versatile catalytic applications.
Collapse
Affiliation(s)
- Hao Liu
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- College of Geography and Environment, Shandong Normal University, Jinan 250014, P. R. China
| | - Shan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jinxing Mi
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianjun Chen
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Zhang S, Lu L, Jiang J, Liu N, Zhao B, Xu M, Cheng P, Shi W. Organizing Photosensitive and Photothermal Single-Sites Uniformly in a Trimetallic Metal-Organic Framework for Efficient Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403464. [PMID: 38574231 DOI: 10.1002/adma.202403464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Effective combination of the photosensitivity and photothermal property in photocatalyst is vital to achieve the maximum light utilization for superior photocatalytic efficiency. Herein, this work successfully organizes photosensitive Cd-NS single-sites and photothermal Ni-NS single-sites uniformly at a molecular level within a tailored trimetallic metal-organic framework. The optimized Ho6-Cd0.76Ni0.24-NS exhibits a superior photocatalytic hydrogen evolution rate of 40.06 mmol g-1 h-1 under visible-light irradiation and an apparent quantum efficiency of 29.37% at 420 nm without using cocatalysts or photosensitizers. A systematical mechanism study reveals that the uniformly organized photosensitive and photothermal single-sites have synergistic effect, which form ultrashort pathways for efficient transport of photoinduced electrons, suppress the recombination of photogenerated charge carriers, hence promote the hydrogen evolution activity. This work provides a promising approach for organizing dual-functional single-sites uniformly in photocatalyst for high-performance photocatalytic activity.
Collapse
Affiliation(s)
- Shiqi Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| | - Lele Lu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| | - Jialong Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| | - Ning Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| | - Mingming Xu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Huang J, Klahn M, Tian X, Bartling S, Zimina A, Radtke M, Rockstroh N, Naliwajko P, Steinfeldt N, Peppel T, Grunwaldt JD, Logsdail AJ, Jiao H, Strunk J. Fundamental Structural and Electronic Understanding of Palladium Catalysts on Nitride and Oxide Supports. Angew Chem Int Ed Engl 2024; 63:e202400174. [PMID: 38466808 DOI: 10.1002/anie.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
The nature of the support can fundamentally affect the function of a heterogeneous catalyst. For the novel type of isolated metal atom catalysts, sometimes referred to as single-atom catalysts, systematic correlations are still rare. Here, we report a general finding that Pd on nitride supports (non-metal and metal nitride) features a higher oxidation state compared to that on oxide supports (non-metal and metal oxide). Through thorough oxidation state investigations by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), CO-DRIFTS, and density functional theory (DFT) coupled with Bader charge analysis, it is found that Pd atoms prefer to interact with surface hydroxyl group to form a Pd(OH)x species on oxide supports, while on nitride supports, Pd atoms incorporate into the surface structure in the form of Pd-N bonds. Moreover, a correlation was built between the formal oxidation state and computational Bader charge, based on the periodic trend in electronegativity.
Collapse
Affiliation(s)
- Junhao Huang
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Marcus Klahn
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, China
| | - Stephan Bartling
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Anna Zimina
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Radtke
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Pawel Naliwajko
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Norbert Steinfeldt
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Tim Peppel
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andrew J Logsdail
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Haijun Jiao
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Jennifer Strunk
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Industrial Chemistry and Heterogeneous Catalysis, Technical University of Munich, Lichtenbergstrße 4, 85748, Garching, Germany
| |
Collapse
|
11
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
13
|
Wang S, Wang M, Zhang Y, Wang H, Fei H, Liu R, Kong H, Gao R, Zhao S, Liu T, Wang Y, Ni M, Ciucci F, Wang J. Metal Oxide-Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. SMALL METHODS 2023:e2201714. [PMID: 37029582 DOI: 10.1002/smtd.202201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) with complex multielectron transfer steps significantly limits the large-scale application of electrochemical energy devices, including metal-air batteries and fuel cells. Recent years witnessed the development of metal oxide-supported metal catalysts (MOSMCs), covering single atoms, clusters, and nanoparticles. As alternatives to conventional carbon-dispersed metal catalysts, MOSMCs are gaining increasing interest due to their unique electronic configuration and potentially high corrosion resistance. By engineering the metal oxide substrate, supported metal, and their interactions, MOSMCs can be facilely modulated. Significant progress has been made in advancing MOSMCs for ORR, and their further development warrants advanced characterization methods to better understand MOSMCs and precise modulation strategies to boost their functionalities. In this regard, a comprehensive review of MOSMCs for ORR is still lacking despite this fast-developing field. To eliminate this gap, advanced characterization methods are introduced for clarifying MOSMCs experimentally and theoretically, discuss critical methods of boosting their intrinsic activities and number of active sites, and systematically overview the status of MOSMCs based on different metal oxide substrates for ORR. By conveying methods, research status, critical challenges, and perspectives, this review will rationally promote the design of MOSMCs for electrochemical energy devices.
Collapse
Affiliation(s)
- Siyuan Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Miao Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunze Zhang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hongsheng Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hao Fei
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Ruoqi Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hui Kong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Siyuan Zhao
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518048, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
14
|
Xia Z, Yin Y, Li J, Xiao H. Single-atom catalysis enabled by high-energy metastable structures. Chem Sci 2023; 14:2631-2639. [PMID: 36908952 PMCID: PMC9993862 DOI: 10.1039/d2sc06962h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Owing to limited degrees of freedom, the active sites of stable single-atom catalyst (SAC) often have one structure that is energetically much lower than other local-minimum structures. Thus, the SAC adopts one lowest-energy structure (LES) with an overwhelmingly larger proportion than any other high-energy metastable structure (HEMS), and the LES is commonly assumed to be solely responsible for the catalytic performance of an SAC. Herein, we demonstrate with SACs anchored on CeO2 that the HEMS of an SAC, even though its proportion remains several orders of magnitude lower than the LES throughout the catalytic reaction, can dictate catalysis with extraordinary activity arising from its unique coordination environment and oxidation state. Thus, we unravel the key role of HEMS-enabled catalysis in single-atom catalysis, which shakes the common assumption in the studies of SACs and urges new developments in both experiment and theory to identify and exploit catalysis via HEMSs.
Collapse
Affiliation(s)
- Zhaoming Xia
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Yue Yin
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Efficient Epoxidation of Olefins by Silica Supported Dioxidomolybdenum(VI) Coordination Compounds. Catal Letters 2023. [DOI: 10.1007/s10562-023-04300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
16
|
Chen JJ, Liu QY, Wang SD, Li XN, He SG. Catalytic NO Reduction by NO Pre-Adsorbed RhCeO 2 NO - Clusters. Chemphyschem 2023; 24:e202200743. [PMID: 36308426 DOI: 10.1002/cphc.202200743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/11/2022]
Abstract
A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 - can create a Ce3+ ion in product RhCeO2 NO- that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2 O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2 , one of the most efficient components in three-way catalysts for NOx removal.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, South China University of Technology Tianhe District, Guangzhou, 510641, China.,Beijing, 100049, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
17
|
Shen X, Wu D, Zhang H, Liu X, Cao L, Yao T. Application of Time-Resolved Synchrotron X-ray Absorption Spectroscopy in an Energy Conversion Reaction. J Phys Chem Lett 2023; 14:645-652. [PMID: 36637141 DOI: 10.1021/acs.jpclett.2c03433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The rational design of high-efficiency catalysts is hindered by the knowledge of active sites, which always experience dynamic transformations within different time scales. In this regard, tracking these time-dependent processes is essential to building the correlation between the active site and catalytic performance. Achieving this goal requires powerful characterization techniques to overcome the obstacle induced by the time mismatch. By virtue of the local structure sensitivity, synchrotron X-ray absorption spectroscopy (XAS) comprising step-scanning XAS, quick-scanning XAS, and energy-dispersive XAS has been widely applied to record structural evolution events. In this Perspective, we highlight the substantial accomplishments achieved by these time-resolved XAS techniques. Their principles, advantages, and limitations involved in monitoring energy-involving electrocatalysis were also introduced. Meanwhile, the key challenges that we are encountering and the further directions of time-resolved XAS are also provided. We sincerely hope that these insights could offer a reliable guideline for other researchers to design more efficient in situ experiments.
Collapse
Affiliation(s)
- Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
18
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
19
|
He W, Zhang X, Zheng K, Wu C, Pan Y, Li H, Xu L, Xu R, Chen W, Liu Y, Wang C, Sun Z, Wei S. Structural Evolution of Anatase-Supported Platinum Nanoclusters into a Platinum-Titanium Intermetallic Containing Platinum Single Atoms for Enhanced Catalytic CO Oxidation. Angew Chem Int Ed Engl 2023; 62:e202213365. [PMID: 36396598 DOI: 10.1002/anie.202213365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Strong metal-support interactions characteristic of the encapsulation of metal particles by oxide overlayers have been widely observed on large metal nanoparticles, but scarcely occur on small nanoclusters (<2 nm) for which the metal-support interactions remain elusive. Herein, we study the structural evolution of Pt nanoclusters (1.5 nm) supported on anatase TiO2 upon high-temperature H2 reduction. The Pt nanoclusters start to partially evolve into a CsCl-type PtTi intermetallic compound when the reduction temperature reaches 400 °C. Upon 700 °C reduction, the PtTi nanoparticles are exclusively formed and grow epitaxially along the TiO2 (101) crystal faces. The thermodynamics of the formation of PtTi via migration of reduced Ti atoms into Pt cluster is unraveled by theoretical calculations. The thermally stable PtTi intermetallic compound, with single-atom Pt isolated by Ti, exhibits enhanced catalytic activity and promoted catalytic durability for CO oxidation.
Collapse
Affiliation(s)
- Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xu Zhang
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Kun Zheng
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Chuanqiang Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ya Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hongmei Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Liuxin Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Ruichao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
20
|
He Y, Sheng J, Ren Q, Sun Y, Hao W, Dong F. Operando Identification of Dynamic Photoexcited Oxygen Vacancies as True Catalytic Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye He
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qin Ren
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weichang Hao
- School of Physics and BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, China
| | - Fan Dong
- School of Resources and Environment & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
21
|
Wan H, Gong N, Liu L. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Ma Y, Ge H, Yi S, Yang M, Feng D, Ren Y, Gao J, Qin Y. Understanding the intrinsic synergistic mechanism between Pt—O—Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Liang X, Fu N, Yao S, Li Z, Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J Am Chem Soc 2022; 144:18155-18174. [PMID: 36175359 DOI: 10.1021/jacs.1c12642] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom-site catalysts (SASCs) featuring maximized atom utilization and isolated active sites have progressed tremendously in recent years as a highly prosperous branch of catalysis research. Varieties of SASCs have been developed that show excellent performance in many catalytic applications. The major goal of SASC research is to establish feasible synthetic strategies for the preparation of high-performance catalysts, to achieve an in-depth understanding of the active-site structures and catalytic mechanisms, and to develop practical catalysts with industrial value. This Perspective describes the up-to-date development of SASCs and related catalysts, such as dual-atom-site catalysts (DASCs) and nano-single-atom-site catalysts (NSASCs), analyzes the current challenges encountered by these catalysts for industrial applications, and proposes their possible future development path.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shuangchao Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.,Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
24
|
Shu C, Gan Z, Zhou J, Wang Z, Tang W. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Choi H, Kim DH, Han MH, Oh HS, Heo J, Lim HK, Choi CH. Prediction of the catalytic site of single-atom Ni catalyst using the hydrogen evolution reaction as a model platform. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
27
|
Wei W, Wei Z, Li R, Li Z, Shi R, Ouyang S, Qi Y, Philips DL, Yuan H. Subsurface oxygen defects electronically interacting with active sites on In 2O 3 for enhanced photothermocatalytic CO 2 reduction. Nat Commun 2022; 13:3199. [PMID: 35680908 PMCID: PMC9184511 DOI: 10.1038/s41467-022-30958-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Oxygen defects play an important role in many catalytic reactions. Increasing surface oxygen defects can be done through reduction treatment. However, excessive reduction blocks electron channels and deactivates the catalyst surface due to electron-trapped effects by subsurface oxygen defects. How to effectively extract electrons from subsurface oxygen defects which cannot directly interact with reactants is challenging and remains elusive. Here, we report a metallic In-embedded In2O3 nanoflake catalyst over which the turnover frequency of CO2 reduction into CO increases by a factor of 866 (7615 h-1) and 376 (2990 h-1) at the same light intensity and reaction temperature, respectively, compared to In2O3. Under electron-delocalization effect of O-In-(O)Vo-In-In structural units at the interface, the electrons in the subsurface oxygen defects are extracted and gather at surface active sites. This improves the electronic coupling with CO2 and stabilizes intermediate. The study opens up new insights for exquisite electronic manipulation of oxygen defects.
Collapse
Affiliation(s)
- Weiqin Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhen Wei
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ruizhe Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shuxin Ouyang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Yuhang Qi
- Chemical Engineering Institute, Hebei University of Technology, 300131, Tianjin, China
| | - David Lee Philips
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
28
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
29
|
Ishikawa R, Ueno Y, Ikuhara Y, Shibata N. Direct Observation of Atomistic Reaction Process between Pt Nanoparticles and TiO 2 (110). NANO LETTERS 2022; 22:4161-4167. [PMID: 35533402 DOI: 10.1021/acs.nanolett.2c00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The catalytic activity and selectivity of heterogeneous catalysts are governed by atomic and electronic structures at the heterointerface between noble metal nanoparticles (NPs) and oxide substrates. In specific chemical reactions, it is well-known that the catalytic activity is strongly suppressed by annealing in a reducing atmosphere, so-called strong metal-support interaction (SMSI). However, it is still unclear the formation process and atomistic origin of the SMSI. By preparing well-defined platinum (Pt) NPs supported on atomically flat TiO2 (110) substrate, we directly show the formation of chemically ordered Pt-Ti intermetallic NPs and impregnation of NPs into TiO2 substrate at high temperatures by using atomic-resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Furthermore, we observed negative charge transfer from the Pt-Ti intermetallic NPs to the TiO2 surface, which would strongly affect the catalytic activities.
Collapse
Affiliation(s)
- Ryo Ishikawa
- Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yujiro Ueno
- Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, Aichi 456-8587, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, Aichi 456-8587, Japan
| |
Collapse
|
30
|
Zhang F, Zhang X, Jia Z, Liu W. Precise Drift Tracking for In Situ Transmission Electron Microscopy via a Thon-Ring Based Sample Position Measurement. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-7. [PMID: 35599605 DOI: 10.1017/s1431927622000691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualizing how a catalyst behaves during chemical reactions using in situ transmission electron microscopy (TEM) is crucial for understanding the activity origin and guiding performance optimization. However, the sample drifts as temperature changes during in situ reaction, which weakens the resolution and stability of TEM imaging, blocks insights into the dynamic details of catalytic reaction. Herein, a Thon-ring based sample position measurement (TSPM) was developed to track the sample height variation during in situ TEM observation. Drifting characteristics for three commercially available nanochips were studied, showing large biases in aspects of shifting modes, expansion heights, as well as the thermal conduction hysteresis during rapid heating. Particularly, utilizing the TSPM method, for the first time, the gas layer thickness inside a gas-cell nanoreactor was precisely determined, which varies with reaction temperature and gas pressure in a linear manner with coefficients of ~8 nm/°C and ~50 nm/mbar, respectively. Following drift prediction of TSPM, fast oxidation kinetics of a Ni particle was tracked in real time for 12 s at 500°C. This TSPM method is expected to facilitate the functionality of automatic target tracing for in situ microscopy applications when feedback to hardware control of the microscope.
Collapse
Affiliation(s)
- Fan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhenghao Jia
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
31
|
Zeolite-confined subnanometric PtSn mimicking mortise-and-tenon joinery for catalytic propane dehydrogenation. Nat Commun 2022; 13:2716. [PMID: 35581210 PMCID: PMC9114386 DOI: 10.1038/s41467-022-30522-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Heterogeneous catalysts are often composite materials synthesized via several steps of chemical transformation, and thus the atomic structure in composite is a black-box. Herein with machine-learning-based atomic simulation we explore millions of structures for MFI zeolite encapsulated PtSn catalyst, demonstrating that the machine-learning enhanced large-scale potential energy surface scan offers a unique route to connect the thermodynamics and kinetics within catalysts' preparation procedure. The functionalities of the two stages in catalyst preparation are now clarified, namely, the oxidative clustering and the reductive transformation, which form separated Sn4O4 and PtSn alloy clusters in MFI. These confined clusters have high thermal stability at the intersection voids of MFI because of the formation of "Mortise-and-tenon Joinery". Among, the PtSn clusters with high Pt:Sn ratios (>1:1) are active for propane dehydrogenation to propene, ∼103 in turnover-of-frequency greater than conventional Pt3Sn metal. Key recipes to optimize zeolite-confined metal catalysts are predicted.
Collapse
|
32
|
Ma S, Liu ZP. Machine learning potential era of zeolite simulation. Chem Sci 2022; 13:5055-5068. [PMID: 35655579 PMCID: PMC9093109 DOI: 10.1039/d2sc01225a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Zeolites, owing to their great variety and complexity in structure and wide applications in chemistry, have long been the hot topic in chemical research. This perspective first presents a short retrospect of theoretical investigations on zeolites using the tools from classical force fields to quantum mechanics calculations and to the latest machine learning (ML) potential simulations. ML potentials as the next-generation technique for atomic simulation open new avenues to simulate and interpret zeolite systems and thus hold great promise for finally predicting the structure-functionality relation of zeolites. Recent advances using ML potentials are then summarized from two main aspects: the origin of zeolite stability and the mechanism of zeolite-related catalytic reactions. We also discussed the possible scenarios of ML potential application aiming to provide instantaneous and easy access of zeolite properties. These advanced applications could now be accomplished by combining cloud-computing-based techniques with ML potential-based atomic simulations. The future development of ML potentials for zeolites in the respects of improving the calculation accuracy, expanding the application scope and constructing the zeolite-related datasets is finally outlooked.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhi-Pan Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
| |
Collapse
|
33
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Zhang J, Wang M, Gao Z, Qin X, Xu Y, Wang Z, Zhou W, Ma D. Importance of Species Heterogeneity in Supported Metal Catalysts. J Am Chem Soc 2022; 144:5108-5115. [PMID: 35230843 DOI: 10.1021/jacs.2c00202] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The structural heterogeneity of surface metal species, which is represented by the distribution in size, morphology, and local coordination environment of the active metal component, is almost inevitable in practical supported metal catalysts. This is often regarded as a major hindrance to the full utilization of metal loading and the high mass-specific catalytic activity. In this work, by quantitative evaluation of the individual reaction steps of a probe reaction, cyclohexanol dehydrogenation (an important reaction for hydrogen storage and transportation as well as high valued chemical production), we demonstrate that the inherent heterogeneity of supported Rhodium catalysts prepared by conventional synthesis has unique advantages in a complex heterogeneous catalytic reaction. The isolated Rh species (Rh1) is extremely active for the first step of dehydrogenation, the transformation of cyclohexanol to cyclohexanone, while the Rh ensemble sites (Rhe, including Rh clusters, Rhn, and Rh nanoparticles, Rhp) are highly efficient for the successive reaction step, cyclohexanone to phenol, for which the Rh1 sites are almost inactive. Only with the coexistence of both active structures could the optimal reaction performance be achieved, which ambiguously demonstrates the importance of species heterogeneity in some multistep catalytic reactions. Our study provides a new view of the benefits from structural heterogeneity in practical catalysts and sheds light on the catalyst design strategy for complex catalytic reactions.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yao Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wu Zhou
- School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
35
|
Facile MOF-derived one-pot synthetic approach toward Ru single atoms, nanoclusters, and nanoparticles dispersed on CeO2 supports for enhanced ammonia synthesis. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Heydari N, Bikas R, Shaterian M, Lis T. Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten(vi) coordination compound. RSC Adv 2022; 12:4813-4827. [PMID: 35425511 PMCID: PMC8981271 DOI: 10.1039/d1ra09217k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
A new mononuclear tungsten coordination compound, [WO2L(CH3OH)] (1), was synthesized by the reaction of WCl6 and H2L (H2L = (E)-4-amino-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide) in methanol. Both the H2L and compound 1 were characterized by elemental analysis and UV-Vis, FT-IR and NMR spectroscopic methods. The molecular structure of compound 1 was also determined by single crystal X-ray analysis which confirmed the compound is a mononuclear coordination compound of cis-dioxidotungsten(vi) containing a free amine functionality on the ligand. Compound 1 was supported on propionyl chloride-functionalized silica gel by amidification reaction to obtain a heterogeneous catalyst. The obtained heterogeneous catalyst was characterized by FT-IR spectroscopy, thermal gravimetric analysis (TGA), diffuse-reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) and its catalytic activity was investigated in the epoxidation of olefins with hydrogen peroxide under solvent free conditions. The catalyst was successfully recovered several times and the recovered catalyst was also characterized by various methods including FT-IR, DRS, TGA, SEM and EDX analyses. The results indicated this heterogeneous catalytic system is an effective and selective catalyst for epoxidation of olefins and can be reused several times without significant change in its catalytic activity.
Collapse
Affiliation(s)
- Neda Heydari
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University 34148-96818 Qazvin Iran
| | - Maryam Shaterian
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw Joliot-Curie 14 Wroclaw 50-383 Poland
| |
Collapse
|
37
|
Maurer F, Beck A, Jelic J, Wang W, Mangold S, Stehle M, Wang D, Dolcet P, Gänzler AM, Kübel C, Studt F, Casapu M, Grunwaldt JD. Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Arik Beck
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Jelena Jelic
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wu Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Mangold
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Stehle
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Di Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Andreas M. Gänzler
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
38
|
Zaman S, Su Y, Dong C, Qi R, Huang L, Qin Y, Huang Y, Li F, You B, Guo W, Li Q, Ding S, Yu Xia B. Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shahid Zaman
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Ya‐Qiong Su
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiao Tong University Xi An Shi, Xi'an 710049 China
| | - Chung‐Li Dong
- Department of Physics Tamkang University New Taipei City Taiwan
| | - Ruijuan Qi
- Department of Information Science and Technology East China Normal University 500 Dongchuan Road Shanghai 200240 China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Yanyang Qin
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiao Tong University Xi An Shi, Xi'an 710049 China
| | - Yu‐Cheng Huang
- Department of Physics Tamkang University New Taipei City Taiwan
| | - Fu‐Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Shujiang Ding
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiao Tong University Xi An Shi, Xi'an 710049 China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| |
Collapse
|
39
|
Zaman S, Su YQ, Dong CL, Qi R, Huang L, Qin Y, Huang YC, Li FM, You B, Guo W, Li Q, Ding S, Yu Xia B. Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal-Nitrogen-Graphene for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021; 61:e202115835. [PMID: 34894036 DOI: 10.1002/anie.202115835] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 01/02/2023]
Abstract
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt -1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
Collapse
Affiliation(s)
- Shahid Zaman
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Ya-Qiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, Taiwan
| | - Ruijuan Qi
- Department of Information Science and Technology, East China Normal University, 500 Dongchuan Road, Shanghai, 200240, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanyang Qin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, New Taipei City, Taiwan
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
40
|
Sattler A, Paccagnini M, Liu L, Gomez E, Klutse H, Burton AW, Corma A. Assessment of metal-metal interactions and catalytic behavior in platinum-tin bimetallic subnanometric clusters by using reactive characterizations. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Affiliation(s)
- Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education School of Public Health Guizhou Medical University Guiyang 550025 P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| |
Collapse
|