1
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
2
|
Stankey PP, Kroll KT, Ainscough AJ, Reynolds DS, Elamine A, Fichtenkort BT, Uzel SGM, Lewis JA. Embedding Biomimetic Vascular Networks via Coaxial Sacrificial Writing into Functional Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401528. [PMID: 39092638 DOI: 10.1002/adma.202401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Printing human tissues and organs replete with biomimetic vascular networks is of growing interest. While it is possible to embed perfusable channels within acellular and densely cellular matrices, they do not currently possess the biomimetic architectures found in native vessels. Here, coaxial sacrificial writing into functional tissues (co-SWIFT) is developed, an embedded bioprinting method capable of generating hierarchically branching, multilayered vascular networks within both granular hydrogel and densely cellular matrices. Coaxial printheads are designed with an extended core-shell configuration to facilitate robust core-core and shell-shell interconnections between printed branching vessels during embedded bioprinting. Using optimized core-shell ink combinations, biomimetic vessels composed of a smooth muscle cell-laden shell that surrounds perfusable lumens are coaxially printed into granular matrices composed of: 1) transparent alginate microparticles, 2) sacrificial microparticle-laden collagen, or 3) cardiac spheroids derived from human induced pluripotent stem cells. Biomimetic blood vessels that exhibit good barrier function are produced by seeding these interconnected lumens with a confluent layer of endothelial cells. Importantly, it is found that co-SWIFT cardiac tissues mature under perfusion, beat synchronously, and exhibit a cardio-effective drug response in vitro. This advance opens new avenues for the scalable biomanufacturing of vascularized organ-specific tissues for drug testing, disease modeling, and therapeutic use.
Collapse
Affiliation(s)
- Paul P Stankey
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Katharina T Kroll
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander J Ainscough
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander Elamine
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ben T Fichtenkort
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Wang Z, Liu X, Shi X, Wang Y. Microvascular network based on the Hilbert curve for nutrient transport in thick tissue. Regen Biomater 2024; 11:rbae094. [PMID: 39350955 PMCID: PMC11441758 DOI: 10.1093/rb/rbae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 10/04/2024] Open
Abstract
To address the uneven nutrient distribution within three-dimensional (3D) tissue models and organoids currently used in medical research, this study introduces a microvascular network based on the Hilbert curve. Our aim was to develop innovative solutions for enhancing nutrient supply in thick tissue models in vitro. By using 3D bioprinting, we engineered microvascular networks of varying Hilbert orders and validated their efficacy in enhancing nutrient uniformity through numerical simulations and experiments. These networks facilitated broader and more uniform nutrient distribution throughout the thick tissue models, particularly the 2° Hilbert microvascular structure, which occupies less space and significantly reduces regions of cellular death. Furthermore, we explored the potential of assembling larger tissue constructs using the 2° Hilbert microvascular network, showcasing its applicability in constructing large-scale biological models. The findings suggest that the 2° Hilbert microvascular structure is particularly effective in ensuring adequate nutrient delivery, thus enhancing the viability and functionality of large-volume tissue models. These innovations hold significant promise for advancing the fields of tissue engineering and regenerative medicine by improving nutrient delivery to in vitro thick tissue block models. This provides a robust foundation for future in vitro research and clinical applications, potentially leading to more effective treatments and interventions in the medical field. The development of these microvascular networks represents a crucial step forward in overcoming the limitations of current 3D tissue models and organoids, paving the way for more sophisticated and reliable biomedical research tools.
Collapse
Affiliation(s)
- Zhenxing Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xuemin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
5
|
Lim J, Fang HW, Bupphathong S, Sung PC, Yeh CE, Huang W, Lin CH. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models. ACS Biomater Sci Eng 2024; 10:3548-3567. [PMID: 38712543 PMCID: PMC11167599 DOI: 10.1021/acsbiomaterials.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Wei Fang
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Po-Chan Sung
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Lim J, Bupphathong S, Huang W, Lin CH. Three-Dimensional Bioprinting of Biocompatible Photosensitive Polymers for Tissue Engineering Application. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:710-722. [PMID: 37335218 DOI: 10.1089/ten.teb.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Three-dimensional (3D) bioprinting, or additive manufacturing, is a rapid fabrication technique with the foremost objective of creating biomimetic tissue and organ replacements in hopes of restoring normal tissue function and structure. Generating the engineered organs with an infrastructure that is similar to that of the real organs can be beneficial to simulate the functional organs that work inside our bodies. Photopolymerization-based 3D bioprinting, or photocuring, has emerged as a promising method in engineering biomimetic tissues due to its simplicity, and noninvasive and spatially controllable approach. In this review, we investigated types of 3D printers, mainstream materials, photoinitiators, phototoxicity, and selected tissue engineering applications of 3D photopolymerization bioprinting.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Grosha J, Cho JH, Pasley S, Kilbride P, Zylberberg C, Rolle MW. Engineered Test Tissues: A Model for Quantifying the Effects of Cryopreservation Parameters. ACS Biomater Sci Eng 2023; 9:6198-6207. [PMID: 37802599 DOI: 10.1021/acsbiomaterials.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Engineered tissues are showing promise as implants to repair or replace damaged tissues in vivo or as in vitro tools to discover new therapies. A major challenge of the tissue engineering field is the sample preservation and storage until their transport and desired use. To successfully cryopreserve tissue, its viability, structure, and function must be retained post-thaw. The outcome of cryopreservation is impacted by several parameters, including the cryopreserving agent (CPA) utilized, the cooling rate, and the storage temperature. Although a number of CPAs are commercially available for cell cryopreservation, there are few CPAs designed specifically for tissue cryostorage and recovery. In this study, we present a flexible, relatively high-throughput method that utilizes engineered tissue rings as test tissues for screening the commercially available CPAs and cryopreservation parameters. Engineered test tissues can be fabricated with low batch-to-batch variability and characteristic morphology due to their endogenous extracellular matrix, and they have mechanical properties and a ring format suitable for testing with standard methods. The tissues were grown for 7 days in standard 48-well plates and cryopreserved in standard cryovials. The method allowed for the quantification of metabolic recovery, tissue apoptosis/necrosis, morphology, and mechanical properties. In addition to establishing the method, we tested different CPA formulations, freezing rates, and freezing points. Our proposed method enables timely preliminary screening of CPA formulations and cryopreservation parameters that may improve the storage of engineered tissues.
Collapse
Affiliation(s)
- Jonian Grosha
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Jun-Hung Cho
- Akron Biotech, Boca Raton, Florida 33487, United States
| | | | | | | | - Marsha W Rolle
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
- The Roux Institute, Northeastern University, Portland, Maine 04101, United States
| |
Collapse
|
9
|
Bui TVA, Kim JJ, Huang X, Pu A, Li X, Hong SB, Choi YJ, Kim HW, Yao X, Park HJ, Ban K. Core-Shell Droplet-Based Angiogenic Patches for the Treatment of Ischemic Diseases: Ultrafast Processability, Physical Tunability, and Controlled Delivery of an Angiogenic Cocktail. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50693-50707. [PMID: 37812574 DOI: 10.1021/acsami.3c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The patch-based delivery system has been a promising therapeutic approach for treating various vascular diseases. However, conventional methods face several challenges, including labor-intensive and time-consuming processes associated with patch fabrication or factor incorporation, inadequate physical properties, and uncontrolled release of factors. These limitations restrict the potential applications in clinical settings. To overcome these issues, we propose a novel core-shell-shaped droplet patch system called an angiogenic patch (AP). Our system offers several distinct advantages over conventional patches. It enables a rapid and straightforward fabrication process utilizing only two biodegradable ingredients [alginate and ε-poly(l-lysine)], ensuring minimal toxicity. Moreover, the AP exhibits excellent physical integrity to match and withstand physiological mechanics and allows for customizable patch dimensions tailored to individual patients' pathological conditions. Notably, the AP enables facile loading of angiogenic cytokines during patch fabrication, allowing sustained release at a controlled rate through tunable network cross-linking. Subsequently, the AP, delivering a precisely formulated cocktail of angiogenic cytokines (VEGF, bFGF, EGF, and IGF), demonstrated significant effects on endothelial cell functions (migration and tubule formation) and survival under pathological conditions simulating ischemic injury. Likewise, in in vivo experiments using a mouse model of hindlimb ischemia, the AP encapsulating the angiogenic cocktail effectively restored blood flow following an ischemic insult, promoting muscle regeneration and preventing limb loss. With its simplicity and rapid processability, user-friendly applicability, physical tunability, and the ability to efficiently load and control the delivery of angiogenic factors, the AP holds great promise as a therapeutic means for treating patients with ischemic diseases.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Jin-Ju Kim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Xin Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Aoyang Pu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Xin Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, Catholic University College of Medicine, Seoul 06591, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center and College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Xi Yao
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Hun-Jun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| |
Collapse
|
10
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
11
|
Lou X, Tang Y, Ye L, Pretorius D, Fast VG, Kahn-Krell AM, Zhang J, Zhang J, Qiao A, Qin G, Kamp T, Thomson JA, Zhang J. Cardiac muscle patches containing four types of cardiac cells derived from human pluripotent stem cells improve recovery from cardiac injury in mice. Cardiovasc Res 2023; 119:1062-1076. [PMID: 36647784 PMCID: PMC10153642 DOI: 10.1093/cvr/cvad004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. METHODS AND RESULTS hCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). CONCLUSION Collectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.
Collapse
Affiliation(s)
- Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Asher M Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jianhua Zhang
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Timothy Kamp
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Zhou J, Cui B, Wang X, Wang H, Zheng J, Guo F, Sun Y, Fan H, Shen J, Su J, Wang J, Zhao H, Tang Y, Gong T, Sun N, Liang P. Overexpression of KCNJ2 enhances maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:92. [PMID: 37061738 PMCID: PMC10105952 DOI: 10.1186/s13287-023-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/07/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Although human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising cell resource for cardiovascular research, these cells exhibit an immature phenotype that hampers their potential applications. The inwardly rectifying potassium channel Kir2.1, encoded by the KCNJ2 gene, has been thought as an important target for promoting electrical maturation of iPSC-CMs. However, a comprehensive characterization of morphological and functional changes in iPSC-CMs overexpressing KCNJ2 (KCNJ2 OE) is still lacking. METHODS iPSC-CMs were generated using a 2D in vitro monolayer differentiation protocol. Human KCNJ2 construct with green fluorescent protein (GFP) tag was created and overexpressed in iPSC-CMs via lentiviral transduction. The mixture of iPSC-CMs and mesenchymal cells was cocultured with decellularized natural heart matrix for generation of 3D human engineered heart tissues (EHTs). RESULTS We showed that mRNA expression level of KCNJ2 in iPSC-CMs was dramatically lower than that in human left ventricular tissues. KCNJ2 OE iPSC-CMs yielded significantly increased protein expression of Kir2.1 and current density of Kir2.1-encoded IK1. The larger IK1 linked to a quiescent phenotype that required pacing to elicit action potentials in KCNJ2 OE iPSC-CMs, which can be reversed by IK1 blocker BaCl2. KCNJ2 OE also led to significantly hyperpolarized maximal diastolic potential (MDP), shortened action potential duration (APD) and increased maximal upstroke velocity. The enhanced electrophysiological maturation in KCNJ2 OE iPSC-CMs was accompanied by improvements in Ca2+ signaling, mitochondrial energy metabolism and transcriptomic profile. Notably, KCNJ2 OE iPSC-CMs exhibited enlarged cell size and more elongated and stretched shape, indicating a morphological phenotype toward structural maturation. Drug testing using hERG blocker E-4031 revealed that a more stable MDP in KCNJ2 OE iPSC-CMs allowed for obtaining significant drug response of APD prolongation in a concentration-dependent manner. Moreover, KCNJ2 OE iPSC-CMs formed more mature human EHTs with better tissue structure and cell junction. CONCLUSIONS Overexpression of KCNJ2 can robustly enhance maturation of iPSC-CMs in electrophysiology, Ca2+ signaling, metabolism, transcriptomic profile, cardiomyocyte structure and tissue engineering, thus providing more accurate cellular model for elucidating cellular and molecular mechanisms of cardiovascular diseases, screening drug-induced cardiotoxicity, and developing personalized and precision cardiovascular medicine.
Collapse
Affiliation(s)
- Jingjun Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Hongkun Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Junnan Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Fengfeng Guo
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Hangping Fan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jiaxi Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jun Su
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jue Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Haige Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yiquan Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Tingyu Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214028, Jiangsu, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
13
|
Aziz R, Falanga M, Purenovic J, Mancini S, Lamberti P, Guida M. A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1374. [PMID: 37110959 PMCID: PMC10145986 DOI: 10.3390/nano13081374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As cardiac diseases, which mostly result in heart failure, are increasing rapidly worldwide, heart transplantation seems the only solution for saving lives. However, this practice is not always possible due to several reasons, such as scarcity of donors, rejection of organs from recipient bodies, or costly medical procedures. In the framework of nanotechnology, nanomaterials greatly contribute to the development of these cardiovascular scaffolds as they provide an easy regeneration of the tissues. Currently, functional nanofibers can be used in the production of stem cells and in the regeneration of cells and tissues. The small size of nanomaterials, however, leads to changes in their chemical and physical characteristics that could alter their interaction and exposure to stem cells with cells and tissues. This article aims to review the naturally occurring biodegradable nanomaterials that are used in cardiovascular tissue engineering for the development of cardiac patches, vessels, and tissues. Moreover, this article also provides an overview of cell sources used for cardiac tissue engineering, explains the anatomy and physiology of the human heart, and explores the regeneration of cardiac cells and the nanofabrication approaches used in cardiac tissue engineering as well as scaffolds.
Collapse
Affiliation(s)
- Rabia Aziz
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Consiglio Nazionale Delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Area Science Park Basovizza S.S. 14-Km. 163, 5-34149 Trieste, Italy
| | - Mariarosaria Falanga
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Jelena Purenovic
- Department of Physics and Materials, Faculty of Sciences at Cacak, University of Kragujevac, 32000 Cacak, Serbia;
| | - Simona Mancini
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Patrizia Lamberti
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
- Interdepartmental Research Centre for Nanomaterials and Nanotechnology at the University of Salerno (NanoMates), Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Michele Guida
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
| |
Collapse
|
14
|
Mao M, Qu X, Zhang Y, Gu B, Li C, Liu R, Li X, Zhu H, He J, Li D. Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissue-like functionalities. Nat Commun 2023; 14:2077. [PMID: 37045852 PMCID: PMC10097867 DOI: 10.1038/s41467-023-37716-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Recapitulating the complex structural, mechanical, and electrophysiological properties of native myocardium is crucial to engineering functional cardiac tissues. Here, we report a leaf-venation-directed strategy that enables the compaction and remodeling of cell-hydrogel hybrids into highly aligned and densely packed organizations in predetermined patterns. This strategy contributes to interconnected tubular structures with cell alignment along the hierarchical channels. Compared to randomly-distributed cells, the engineered leaf-venation-directed-cardiac tissues from neonatal rat cardiomyocytes manifest advanced maturation and functionality as evidenced by detectable electrophysiological activity, macroscopically synchronous contractions, and upregulated maturation genes. As a demonstration, human induced pluripotent stem cell-derived leaf-venation-directed-cardiac tissues are engineered with evident structural and functional improvement over time. With the elastic scaffolds, leaf-venation-directed tissues are assembled into 3D centimeter-scale cardiac constructs with programmed mechanical properties, which can be delivered through tubing without affecting cell viability. The present strategy may generate cardiac constructs with multifaceted functionalities to meet clinical demands.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Bingsong Gu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Rongzhi Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, PR China
| |
Collapse
|
15
|
You S, Xiang Y, Hwang HH, Berry DB, Kiratitanaporn W, Guan J, Yao E, Tang M, Zhong Z, Ma X, Wangpraseurt D, Sun Y, Lu TY, Chen S. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. SCIENCE ADVANCES 2023; 9:eade7923. [PMID: 36812321 PMCID: PMC9946358 DOI: 10.1126/sciadv.ade7923] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) bioprinting techniques have emerged as the most popular methods to fabricate 3D-engineered tissues; however, there are challenges in simultaneously satisfying the requirements of high cell density (HCD), high cell viability, and fine fabrication resolution. In particular, bioprinting resolution of digital light processing-based 3D bioprinting suffers with increasing bioink cell density due to light scattering. We developed a novel approach to mitigate this scattering-induced deterioration of bioprinting resolution. The inclusion of iodixanol in the bioink enables a 10-fold reduction in light scattering and a substantial improvement in fabrication resolution for bioinks with an HCD. Fifty-micrometer fabrication resolution was achieved for a bioink with 0.1 billion per milliliter cell density. To showcase the potential application in tissue/organ 3D bioprinting, HCD thick tissues with fine vascular networks were fabricated. The tissues were viable in a perfusion culture system, with endothelialization and angiogenesis observed after 14 days of culture.
Collapse
Affiliation(s)
- Shangting You
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Henry H. Hwang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David B. Berry
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zheng Zhong
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Ma
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting-yu Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Biological Scaffolds for Congenital Heart Disease. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010057. [PMID: 36671629 PMCID: PMC9854830 DOI: 10.3390/bioengineering10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Congenital heart disease (CHD) is the most predominant birth defect and can require several invasive surgeries throughout childhood. The absence of materials with growth and remodelling potential is a limitation of currently used prosthetics in cardiovascular surgery, as well as their susceptibility to calcification. The field of tissue engineering has emerged as a regenerative medicine approach aiming to develop durable scaffolds possessing the ability to grow and remodel upon implantation into the defective hearts of babies and children with CHD. Though tissue engineering has produced several synthetic scaffolds, most of them failed to be successfully translated in this life-endangering clinical scenario, and currently, biological scaffolds are the most extensively used. This review aims to thoroughly summarise the existing biological scaffolds for the treatment of paediatric CHD, categorised as homografts and xenografts, and present the preclinical and clinical studies. Fixation as well as techniques of decellularisation will be reported, highlighting the importance of these approaches for the successful implantation of biological scaffolds that avoid prosthetic rejection. Additionally, cardiac scaffolds for paediatric CHD can be implanted as acellular prostheses, or recellularised before implantation, and cellularisation techniques will be extensively discussed.
Collapse
|
17
|
Ho DLL, Lee S, Du J, Weiss JD, Tam T, Sinha S, Klinger D, Devine S, Hamfeldt A, Leng HT, Herrmann JE, He M, Fradkin LG, Tan TK, Standish D, Tomasello P, Traul D, Dianat N, Ladi R, Vicard Q, Katikireddy K, Skylar‐Scott MA. Large-Scale Production of Wholly Cellular Bioinks via the Optimization of Human Induced Pluripotent Stem Cell Aggregate Culture in Automated Bioreactors. Adv Healthc Mater 2022; 11:e2201138. [PMID: 36314397 PMCID: PMC10234214 DOI: 10.1002/adhm.202201138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/10/2022] [Indexed: 01/28/2023]
Abstract
Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6- to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.
Collapse
Affiliation(s)
- Debbie L. L. Ho
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Stacey Lee
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Jianyi Du
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | | | - Tony Tam
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Soham Sinha
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Danielle Klinger
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Sean Devine
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Art Hamfeldt
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Hope T. Leng
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Jessica E. Herrmann
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- School of MedicineStanford UniversityStanfordCA94305USA
| | - Mengdi He
- Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Lee G. Fradkin
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Tze Kai Tan
- Institute of Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCA94305USA
- Department of GeneticsStanford University School of MedicineStanfordCA94305USA
- Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | - David Standish
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Peter Tomasello
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Donald Traul
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Noushin Dianat
- Sartorius Stedim France S.A.SZone Industrielle les PaludsAvenue de Jouques CS 71058Aubagne Cedex13781France
| | - Rukmini Ladi
- Sartorius Stedim North America Inc565 Johnson AvenueBohemiaNY11716USA
| | - Quentin Vicard
- Sartorius Stedim France S.A.SZone Industrielle les PaludsAvenue de Jouques CS 71058Aubagne Cedex13781France
| | | | - Mark A. Skylar‐Scott
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- Basic Science and Engineering InitiativeChildren's Heart CenterStanford UniversityStanfordCA94305USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
18
|
Prodan N, Ershad F, Reyes-Alcaraz A, Li L, Mistretta B, Gonzalez L, Rao Z, Yu C, Gunaratne PH, Li N, Schwartz RJ, McConnell BK. Direct reprogramming of cardiomyocytes into cardiac Purkinje-like cells. iScience 2022; 25:105402. [PMID: 36388958 PMCID: PMC9646947 DOI: 10.1016/j.isci.2022.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Currently, there are no treatments that ameliorate cardiac cell death, the underlying basis of cardiovascular disease. An unexplored cell type in cardiac regeneration is cardiac Purkinje cells; specialized cells from the cardiac conduction system (CCS) responsible for propagating electrical signals. Purkinje cells have tremendous potential as a regenerative treatment because they may intrinsically integrate with the CCS of a recipient myocardium, resulting in more efficient electrical conduction in diseased hearts. This study is the first to demonstrate an effective protocol for the direct reprogramming of human cardiomyocytes into cardiac Purkinje-like cells using small molecules. The cells generated were genetically and functionally similar to native cardiac Purkinje cells, where expression of key cardiac Purkinje genes such as CNTN2, ETV1, PCP4, IRX3, SCN5a, HCN2 and the conduction of electrical signals with increased velocity was observed. This study may help to advance the quest to finding an optimized cell therapy for heart regeneration.
Collapse
Affiliation(s)
- Nicole Prodan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Faheem Ershad
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Lei Gonzalez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Zhoulyu Rao
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Cunjiang Yu
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
19
|
Jiang Y, Wang H, Wang X, Li Q. Surface modification with hydrophilic and heparin-loaded coating for endothelialization and anticoagulation promotion of vascular scaffold. Int J Biol Macromol 2022; 219:1146-1154. [DOI: 10.1016/j.ijbiomac.2022.08.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
|
20
|
Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods 2022; 19:1064-1071. [PMID: 36064773 DOI: 10.1038/s41592-022-01591-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Engineered cardiac tissues derived from human induced pluripotent stem cells offer unique opportunities for patient-specific disease modeling, drug discovery and cardiac repair. Since the first engineered hearts were introduced over two decades ago, human induced pluripotent stem cell-based three-dimensional cardiac organoids and heart-on-a-chip systems have now become mainstays in basic cardiovascular research as valuable platforms for investigating fundamental human pathophysiology and development. However, major obstacles remain to be addressed before the field can truly advance toward commercial and clinical translation. Here we provide a snapshot of the state-of-the-art methods in cardiac tissue engineering, with a focus on in vitro models of the human heart. Looking ahead, we discuss major challenges and opportunities in the field and suggest strategies for enabling broad acceptance of engineered cardiac tissues as models of cardiac pathophysiology and testbeds for the development of therapies.
Collapse
|
21
|
Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial Scaffolds in Cardiac Tissue Engineering. Life (Basel) 2022; 12:1117. [PMID: 35892919 PMCID: PMC9331725 DOI: 10.3390/life12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. Current treatments directed at heart repair have several disadvantages, such as a lack of donors for heart transplantation or non-bioactive inert materials for replacing damaged tissue. Because of the natural lack of regeneration of cardiomyocytes, new treatment strategies involve stimulating heart tissue regeneration. The basic three elements of cardiac tissue engineering (cells, growth factors, and scaffolds) are described in this review, with a highlight on the role of artificial scaffolds. Scaffolds for cardiac tissue engineering are tridimensional porous structures that imitate the extracellular heart matrix, with the ability to promote cell adhesion, migration, differentiation, and proliferation. In the heart, there is an important requirement to provide scaffold cellular attachment, but scaffolds also need to permit mechanical contractility and electrical conductivity. For researchers working in cardiac tissue engineering, there is an important need to choose an adequate artificial scaffold biofabrication technique, as well as the ideal biocompatible biodegradable biomaterial for scaffold construction. Finally, there are many suitable options for researchers to obtain scaffolds that promote cell-electrical interactions and tissue repair, reaching the goal of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Nidia K. Moncada-Saucedo
- Servicio de Hematología, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Pablo A. Carriquiry-Chequer
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Laura E. Valencia-Gómez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Elizabeth Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| |
Collapse
|
22
|
Suh T, Twiddy J, Mahmood N, Ali KM, Lubna MM, Bradford PD, Daniele MA, Gluck JM. Electrospun Carbon Nanotube-Based Scaffolds Exhibit High Conductivity and Cytocompatibility for Tissue Engineering Applications. ACS OMEGA 2022; 7:20006-20019. [PMID: 35721944 PMCID: PMC9202252 DOI: 10.1021/acsomega.2c01807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 06/01/2023]
Abstract
Carbon nanotubes (CNTs) are known for their excellent conductive properties. Here, we present two novel methods, "sandwich" (sCNT) and dual deposition (DD CNT), for incorporating CNTs into electrospun polycaprolactone (PCL) and gelatin scaffolds to increase their conductance. Based on CNT percentage, the DD CNT scaffolds contain significantly higher quantities of CNTs than the sCNT scaffolds. The inclusion of CNTs increased the electrical conductance of scaffolds from 0.0 ± 0.00 kS (non-CNT) to 0.54 ± 0.10 kS (sCNT) and 5.22 ± 0.49 kS (DD CNT) when measured parallel to CNT arrays and to 0.25 ± 0.003 kS (sCNT) and 2.85 ± 1.12 (DD CNT) when measured orthogonally to CNT arrays. The inclusion of CNTs increased fiber diameter and pore size, promoting cellular migration into the scaffolds. CNT inclusion also decreased the degradation rate and increased hydrophobicity of scaffolds. Additionally, CNT inclusion increased Young's modulus and failure load of scaffolds, increasing their mechanical robustness. Murine fibroblasts were maintained on the scaffolds for 30 days, demonstrating high cytocompatibility. The increased conductivity and high cytocompatibility of the CNT-incorporated scaffolds make them appropriate candidates for future use in cardiac and neural tissue engineering.
Collapse
Affiliation(s)
- Taylor
C. Suh
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jack Twiddy
- Joint
Department of Biomedical Engineering, North
Carolina State University and The University of North Carolina at
Chapel Hill, Raleigh, North Carolina 27606, United States
| | - Nasif Mahmood
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kiran M. Ali
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Mostakima M. Lubna
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Philip D. Bradford
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Michael A. Daniele
- Joint
Department of Biomedical Engineering, North
Carolina State University and The University of North Carolina at
Chapel Hill, Raleigh, North Carolina 27606, United States
- Department
of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jessica M. Gluck
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
23
|
Gomes MR, Castelo Ferreira F, Sanjuan-Alberte P. Electrospun piezoelectric scaffolds for cardiac tissue engineering. BIOMATERIALS ADVANCES 2022; 137:212808. [PMID: 35929248 DOI: 10.1016/j.bioadv.2022.212808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The use of smart materials in tissue engineering is becoming increasingly appealing to provide additional functionalities and control over cell fate. The stages of tissue development and regeneration often require various electrical and electromechanical cues supported by the extracellular matrix, which is often neglected in most tissue engineering approaches. Particularly, in cardiac cells, electrical signals modulate cell activity and are responsible for the maintenance of the excitation-contraction coupling. Addition of electroconductive and topographical cues improves the biomimicry of cardiac tissues and plays an important role in driving cells towards the desired phenotype. Current platforms used to apply electrical stimulation to cells in vitro often require large external equipment and wires and electrodes immersed in the culture media, limiting the scalability and applicability of this process. Piezoelectric materials represent a shift in paradigm in materials and methods aimed at providing electrical stimulation to cardiac cells since they can produce and deliver electrical signals to cells and tissues by mechanoelectrical transduction. Despite the ability of piezoelectric materials to mimic the mechanoelectrical transduction of the heart, the use of these materials is limited in cardiac tissue engineering and methods to characterise piezoelectricity are often built in-house, which poses an additional difficulty when comparing results from the literature. In this work, we aim at providing an overview of the main challenges in cardiac tissue engineering and how piezoelectric materials could offer a solution to them. A revision on the existing literature in electrospun piezoelectric materials applied to cardiac tissue engineering is performed for the first time, as electrospinning plays an important role in the manufacturing of scaffolds with enhanced piezoelectricity and extracellular matrix native-like morphology. Finally, an overview of the current techniques used to evaluate piezoelectricity and their limitations is provided.
Collapse
Affiliation(s)
- Mariana Ramalho Gomes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
24
|
Recent Advances in Development of Natural Cellulosic Non-Woven Scaffolds for Tissue Engineering. Polymers (Basel) 2022; 14:polym14081531. [PMID: 35458282 PMCID: PMC9030052 DOI: 10.3390/polym14081531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, tissue engineering researchers have exploited a variety of biomaterials that can potentially mimic the extracellular matrix (ECM) for tissue regeneration. Natural cellulose, mainly obtained from bacterial (BC) and plant-based (PC) sources, can serve as a high-potential scaffold material for different regenerative purposes. Natural cellulose has drawn the attention of researchers due to its advantages over synthetic cellulose including its availability, cost effectiveness, perfusability, biocompatibility, negligible toxicity, mild immune response, and imitation of native tissues. In this article, we review recent in vivo and in vitro studies which aimed to assess the potential of natural cellulose for the purpose of soft (skin, heart, vein, nerve, etc.) and hard (bone and tooth) tissue engineering. Based on the current research progress report, it is sensible to conclude that this emerging field of study is yet to satisfy the clinical translation criteria, though reaching that level of application does not seem far-fetched.
Collapse
|
25
|
Fassina D, Costa CM, Longobardi S, Karabelas E, Plank G, Harding SE, Niederer SA. Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium to aid non-arrhythmic engineered heart tissue design. PLoS Comput Biol 2022; 18:e1010030. [PMID: 35363778 PMCID: PMC9007348 DOI: 10.1371/journal.pcbi.1010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Application of epicardial patches constructed from human-induced pluripotent stem cell- derived cardiomyocytes (hiPSC-CMs) has been proposed as a long-term therapy to treat scarred hearts post myocardial infarction (MI). Understanding electrical interaction between engineered heart tissue patches (EHT) and host myocardium represents a key step toward a successful patch engraftment. EHT retain different electrical properties with respect to the host heart tissue due to the hiPSC-CMs immature phenotype, which may lead to increased arrhythmia risk. We developed a modelling framework to examine the influence of patch design on electrical activation at the engraftment site. We performed an in silico investigation of different patch design approaches to restore pre-MI activation properties and evaluated the associated arrhythmic risk. We developed an in silico cardiac electrophysiology model of a transmural cross section of host myocardium. The model featured an infarct region, an epicardial patch spanning the infarct region and a bath region. The patch is modelled as a layer of hiPSC-CM, combined with a layer of conductive polymer (CP). Tissue and patch geometrical dimensions and conductivities were incorporated through 10 modifiable model parameters. We validated our model against 4 independent experimental studies and showed that it can qualitatively reproduce their findings. We performed a global sensitivity analysis (GSA) to isolate the most important parameters, showing that the stimulus propagation is mainly governed by the scar depth, radius and conductivity when the scar is not transmural, and by the EHT patch conductivity when the scar is transmural. We assessed the relevance of small animal studies to humans by comparing simulations of rat, rabbit and human myocardium. We found that stimulus propagation paths and GSA sensitivity indices are consistent across species. We explored which EHT design variables have the potential to restore physiological propagation. Simulations predict that increasing EHT conductivity from 0.28 to 1-1.1 S/m recovered physiological activation in rat, rabbit and human. Finally, we assessed arrhythmia risk related to increasing EHT conductivity and tested increasing the EHT Na+ channel density as an alternative strategy to match healthy activation. Our results revealed a greater arrhythmia risk linked to increased EHT conductivity compared to increased Na+ channel density. We demonstrated that our modeling framework could capture the interaction between host and EHT patches observed in in vitro experiments. We showed that large (patch and tissue dimensions) and small (cardiac myocyte electrophysiology) scale differences between small animals and humans do not alter EHT patch effect on infarcted tissue. Our model revealed that only when the scar is transmural do EHT properties impact activation times and isolated the EHT conductivity as the main parameter influencing propagation. We predicted that restoring physiological activation by tuning EHT conductivity is possible but may promote arrhythmic behavior. Finally, our model suggests that acting on hiPSC-CMs low action potential upstroke velocity and lack of IK1 may restore pre-MI activation while not promoting arrhythmia.
Collapse
Affiliation(s)
- Damiano Fassina
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Caroline M. Costa
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Stefano Longobardi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Elias Karabelas
- Institute of Mathematics & Scientific Computing, University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division Biophysics, Medical University of Graz, Graz, Austria
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
26
|
Gokce C, Gurcan C, Delogu LG, Yilmazer A. 2D Materials for Cardiac Tissue Repair and Regeneration. Front Cardiovasc Med 2022; 9:802551. [PMID: 35224044 PMCID: PMC8873146 DOI: 10.3389/fcvm.2022.802551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) have a massive impact on human health. Due to the limited regeneration capacity of adult heart tissue, CVDs are the leading cause of death and disability worldwide. Even though there are surgical and pharmacological treatments for CVDs, regenerative strategies are the most promising approaches and have the potential to benefit millions of people. As in any other tissue engineering approach, the repair and regeneration of damaged cardiac tissues generally involve scaffolds made up of biodegradable and biocompatible materials, cellular components such as stem cells, and growth factors. This review provides an overview of biomaterial-based tissue engineering approaches for CVDs with a specific focus on the potential of 2D materials. It is essential to consider both physicochemical and immunomodulatory properties for evaluating the applicability of 2D materials in cardiac tissue repair and regeneration. As new members of the 2D materials will be explored, they will quickly become part of cardiac tissue engineering technologies.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
- *Correspondence: Acelya Yilmazer
| |
Collapse
|
27
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
28
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
29
|
Liu X, Wang X, Zhang L, Sun L, Wang H, Zhao H, Zhang Z, Liu W, Huang Y, Ji S, Zhang J, Li K, Song B, Li C, Zhang H, Li S, Wang S, Zheng X, Gu Q. 3D Liver Tissue Model with Branched Vascular Networks by Multimaterial Bioprinting. Adv Healthc Mater 2021; 10:e2101405. [PMID: 34634194 DOI: 10.1002/adhm.202101405] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Indexed: 12/21/2022]
Abstract
Complicated vessels pervade almost all body tissues and influence the pathophysiology of the human body significantly. However, current fabrication strategies have limited success at multiscale vascular biofabrication. This study reports a methodology to fabricate soft vascularized tissue at centimeter scale using multimaterial bioprinting by a customized multistage-temperature-control printer. The printed constructs can be perfused via the branched endothelialized vasculatures to support the well-formed 3D capillary networks, which ensure cellular activities with sufficient nutrient supply and then mimic a mature and functional liver tissue in terms of synthesis of liver-specific proteins. Moreover, an inner and external pressure-bearing layer is printed to support the direct surgical anastomosis of the carotid artery to the jugular vein. In summary, a versatile platform to recapitulate the vasculature network is presented, in which case sustaining the optimal cellularization in engineered tissues is achievable.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing 100101 P. R. China
- Savaid Medical School University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinhuan Wang
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing 100101 P. R. China
| | - Liming Zhang
- Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110169 P. R. China
| | - Lulu Sun
- Center for Excellence in Molecular Cell Science University of Chinese Academy of Sciences Shanghai 200031 P. R. China
| | - Heran Wang
- Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110169 P. R. China
| | - Hao Zhao
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhengtao Zhang
- Center for Excellence in Molecular Cell Science University of Chinese Academy of Sciences Shanghai 200031 P. R. China
| | - Wenli Liu
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing 100101 P. R. China
| | - Yiming Huang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shen Ji
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing 100101 P. R. China
| | - Jingjinqiu Zhang
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing 100101 P. R. China
| | - Kai Li
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing 100101 P. R. China
| | - Biaobiao Song
- Department of Life Sciences and Medicine, University of Science and Technology of China Hefei 230026 P. R. China
| | - Chun Li
- Center for Excellence in Molecular Cell Science University of Chinese Academy of Sciences Shanghai 200031 P. R. China
| | - Hui Zhang
- Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110169 P. R. China
| | - Song Li
- Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110169 P. R. China
| | - Shu Wang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiongfei Zheng
- Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110169 P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing 100101 P. R. China
- Savaid Medical School University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing Institute for Stem Cell and Regenerative Medicine Beijing 100101 P. R. China
| |
Collapse
|
30
|
Silver SE, Barrs RW, Mei Y. Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative Therapy. Front Cardiovasc Med 2021; 8:707890. [PMID: 34820426 PMCID: PMC8606657 DOI: 10.3389/fcvm.2021.707890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and bears an immense economic burden. Late-stage heart failure often requires total heart transplantation; however, due to donor shortages and lifelong immunosuppression, alternative cardiac regenerative therapies are in high demand. Human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells, have emerged as a viable source of human cardiomyocytes for transplantation. Recent developments in several mammalian models of cardiac injury have provided strong evidence of the therapeutic potential of hPSC-derived cardiomyocytes (hPSC-CM), showing their ability to electromechanically integrate with host cardiac tissue and promote functional recovery. In this review, we will discuss recent developments in hPSC-CM differentiation and transplantation strategies for delivery to the heart. We will highlight the mechanisms through which hPSC-CMs contribute to heart repair, review major challenges in successful transplantation of hPSC-CMs, and present solutions that are being explored to address these limitations. We end with a discussion of the clinical use of hPSC-CMs, including hurdles to clinical translation, current clinical trials, and future perspectives on hPSC-CM transplantation.
Collapse
Affiliation(s)
- Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
31
|
Chen S, Gil CJ, Ning L, Jin L, Perez L, Kabboul G, Tomov ML, Serpooshan V. Adhesive Tissue Engineered Scaffolds: Mechanisms and Applications. Front Bioeng Biotechnol 2021; 9:683079. [PMID: 34354985 PMCID: PMC8329531 DOI: 10.3389/fbioe.2021.683079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
A variety of suture and bioglue techniques are conventionally used to secure engineered scaffold systems onto the target tissues. These techniques, however, confront several obstacles including secondary damages, cytotoxicity, insufficient adhesion strength, improper degradation rate, and possible allergic reactions. Adhesive tissue engineering scaffolds (ATESs) can circumvent these limitations by introducing their intrinsic tissue adhesion ability. This article highlights the significance of ATESs, reviews their key characteristics and requirements, and explores various mechanisms of action to secure the scaffold onto the tissue. We discuss the current applications of advanced ATES products in various fields of tissue engineering, together with some of the key challenges for each specific field. Strategies for qualitative and quantitative assessment of adhesive properties of scaffolds are presented. Furthermore, we highlight the future prospective in the development of advanced ATES systems for regenerative medicine therapies.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Carmen J. Gil
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Lilanni Perez
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Gabriella Kabboul
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
32
|
Nanomaterials for bioprinting: functionalization of tissue-specific bioinks. Essays Biochem 2021; 65:429-439. [PMID: 34223619 DOI: 10.1042/ebc20200095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) bioprinting is rapidly evolving, offering great potential for manufacturing functional tissue analogs for use in diverse biomedical applications, including regenerative medicine, drug delivery, and disease modeling. Biomaterials used as bioinks in printing processes must meet strict physiochemical and biomechanical requirements to ensure adequate printing fidelity, while closely mimicking the characteristics of the native tissue. To achieve this goal, nanomaterials are increasingly being investigated as a robust tool to functionalize bioink materials. In this review, we discuss the growing role of different nano-biomaterials in engineering functional bioinks for a variety of tissue engineering applications. The development and commercialization of these nanomaterial solutions for 3D bioprinting would be a significant step towards clinical translation of biofabrication.
Collapse
|
33
|
Sung K, Patel NR, Ashammakhi N, Nguyen KL. 3-Dimensional Bioprinting of Cardiovascular Tissues: Emerging Technology. JACC Basic Transl Sci 2021; 6:467-482. [PMID: 34095635 PMCID: PMC8165127 DOI: 10.1016/j.jacbts.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) bioprinting may overcome challenges in tissue engineering. Unlike conventional tissue engineering approaches, 3D bioprinting has a proven ability to support vascularization of larger scale constructs and has been used for several cardiovascular applications. An overview of 3D bioprinting techniques, in vivo translation, and challenges are described.
Collapse
Affiliation(s)
- Kevin Sung
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nisha R. Patel
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine Graduate Program, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
34
|
Rheault-Henry M, White I, Grover D, Atoui R. Stem cell therapy for heart failure: Medical breakthrough, or dead end? World J Stem Cells 2021; 13:236-259. [PMID: 33959217 PMCID: PMC8080540 DOI: 10.4252/wjsc.v13.i4.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure continues to be one of the leading causes of morbidity and mortality worldwide. Myocardial infarction is the primary causative agent of chronic heart failure resulting in cardiomyocyte necrosis and the subsequent formation of fibrotic scar tissue. Current pharmacological and non-pharmacological therapies focus on managing symptoms of heart failure yet remain unable to reverse the underlying pathology. Heart transplantation usually cannot be relied on, as there is a major discrepancy between the availability of donors and recipients. As a result, heart failure carries a poor prognosis and high mortality rate. As the heart lacks significant endogenous regeneration potential, novel therapeutic approaches have incorporated the use of stem cells as a vehicle to treat heart failure as they possess the ability to self-renew and differentiate into multiple cell lineages and tissues. This review will discuss past, present, and future clinical trials, factors that influence stem cell therapy outcomes as well as ethical and safety considerations. Preclinical and clinical studies have shown a wide spectrum of outcomes when applying stem cells to improve cardiac function. This may reflect the infancy of clinical trials and the limited knowledge on the optimal cell type, dosing, route of administration, patient parameters and other important variables that contribute to successful stem cell therapy. Nonetheless, the field of stem cell therapeutics continues to advance at an unprecedented pace. We remain cautiously optimistic that stem cells will play a role in heart failure management in years to come.
Collapse
Affiliation(s)
| | - Ian White
- Northern Ontario School of Medicine, Sudbury P3E 2C6, Ontario, Canada
| | - Diya Grover
- Ross University School of Medicine, St. Michael BB11093, Barbados
| | - Rony Atoui
- Division of Cardiac Surgery, Health Sciences North, Northern Ontario School of Medicine, Sudbury P3E 3Y9, Ontario, Canada
| |
Collapse
|
35
|
Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021; 157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Mark A Skylar-Scott
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Betty Irene Moore Children's Heart Center, Stanford Children's Health, Stanford, CA 94025, USA
| | - Sarah C Heilshorn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA.
| |
Collapse
|
36
|
Chan AHP, Huang NF. Engineering Cardiovascular Tissue Chips for Disease Modeling and Drug Screening Applications. Front Bioeng Biotechnol 2021; 9:673212. [PMID: 33959600 PMCID: PMC8093512 DOI: 10.3389/fbioe.2021.673212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
In recent years, the cost of drug discovery and development have been progressively increasing, but the number of drugs approved for treatment of cardiovascular diseases (CVDs) has been limited. Current in vitro models for drug development do not sufficiently ensure safety and efficacy, owing to their lack of physiological relevance. On the other hand, preclinical animal models are extremely costly and present problems of inaccuracy due to species differences. To address these limitations, tissue chips offer the opportunity to emulate physiological and pathological tissue processes in a biomimetic in vitro platform. Tissue chips enable in vitro modeling of CVDs to give mechanistic insights, and they can also be a powerful approach for drug screening applications. Here, we review recent advances in CVD modeling using tissue chips and their applications in drug screening.
Collapse
Affiliation(s)
- Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
37
|
Chang YC, Mirhaidari G, Kelly J, Breuer C. Current Challenges and Solutions to Tissue Engineering of Large-scale Cardiac Constructs. Curr Cardiol Rep 2021; 23:47. [PMID: 33733317 DOI: 10.1007/s11886-021-01474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Large-scale tissue engineering of cardiac constructs is a rapidly advancing field; however, there are several barriers still associated with the creation and clinical application of large-scale engineered cardiac tissues. We provide an overview of the current challenges and recently (within the last 5 years) described promising solutions to overcoming said challenges. RECENT FINDINGS The five major criteria yet to be met for clinical application of engineered cardiac tissues are successful electrochemical/mechanical cell coupling, efficient maturation of cardiomyocytes, functional vascularization of large tissues, balancing appropriate immune response, and large-scale generation of constructs. Promising solutions include the use of carbon/graphene in conjunction with existing scaffold designs, utilization of biological hormones, 3D bioprinting, and gene editing. While some of the described barriers to generation of large-scale cardiac tissue have seen encouraging advancements, there is no solution that yet achieves all 5 described criteria. It is vital then to consider a combination of techniques to achieve the optimal construct. Critically, following the demonstration of a viable construct, there remain important considerations to address associated with good manufacturing practices and establishing a standard for clinical trials.
Collapse
Affiliation(s)
- Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
38
|
Sedlakova V, McTiernan C, Cortes D, Suuronen EJ, Alarcon EI. 3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation. Cells Tissues Organs 2021; 211:406-419. [PMID: 33677445 DOI: 10.1159/000512792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.
Collapse
Affiliation(s)
- Veronika Sedlakova
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Christopher McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David Cortes
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada, .,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada,
| |
Collapse
|
39
|
Morrissey J, Mesquita FCP, Hochman-Mendez C, Taylor DA. Whole Heart Engineering: Advances and Challenges. Cells Tissues Organs 2021; 211:395-405. [PMID: 33640893 DOI: 10.1159/000511382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Bioengineering a solid organ for organ replacement is a growing endeavor in regenerative medicine. Our approach - recellularization of a decellularized cadaveric organ scaffold with human cells - is currently the most promising approach to building a complex solid vascularized organ to be utilized in vivo, which remains the major unmet need and a key challenge. The 2008 publication of perfusion-based decellularization and partial recellularization of a rat heart revolutionized the tissue engineering field by showing that it was feasible to rebuild an organ using a decellularized extracellular matrix scaffold. Toward the goal of clinical translation of bioengineered tissues and organs, there is increasing recognition of the underlying need to better integrate basic science domains and industry. From the perspective of a research group focusing on whole heart engineering, we discuss the current approaches and advances in whole organ engineering research as they relate to this multidisciplinary field's 3 major pillars: organ scaffolds, large numbers of cells, and biomimetic bioreactor systems. The success of whole organ engineering will require optimization of protocols to produce biologically-active scaffolds for multiple organ systems, and further technological innovation both to produce the massive quantities of high-quality cells needed for recellularization and to engineer a bioreactor with physiologic stimuli to recapitulate organ function. Also discussed are the challenges to building an implantable vascularized solid organ.
Collapse
Affiliation(s)
- Jacquelynn Morrissey
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | - Fernanda C P Mesquita
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | - Camila Hochman-Mendez
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | | |
Collapse
|
40
|
Montazeri L, Kowsari-Esfahan R, Pahlavan S, Sobat M, Rabbani S, Ansari H, Varzideh F, Barekat M, Rajabi S, Navaee F, Bonakdar S, Renaud P, Braun T, Baharvand H. Oxygen-rich Environment Ameliorates Cell Therapy Outcomes of Cardiac Progenitor Cells for Myocardial Infarction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111836. [PMID: 33579474 DOI: 10.1016/j.msec.2020.111836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
To some extent, cell therapy for myocardial infarction (MI) has supported the idea of cardiac repair; however, further optimizations are inevitable. Combined approaches that comprise suitable cell sources and supporting molecules considerably improved its effect. Here, we devised a strategy of simultaneous transplantation of human cardiac progenitor cells (CPCs) and an optimized oxygen generating microparticles (MPs) embedded in fibrin hydrogel, which was injected into a left anterior descending artery (LAD) ligating-based rat model of acute myocardial infarction (AMI). Functional parameters of the heart, particularly left ventricular systolic function, markedly improved and reached pre-AMI levels. This functional restoration was well correlated with substantially lower fibrotic tissue formation and greater vascular density in the infarct area. Our novel approach promoted CPCs retention and differentiation into cardiovascular lineages. We propose this novel co-transplantation strategy for more efficient cell therapy of AMI which may function by providing an oxygen-rich microenvironment, and thus regulate cell survival and differentiation.
Collapse
Affiliation(s)
- Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Reza Kowsari-Esfahan
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Motahareh Sobat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Medical Sciences University of Tehran, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Varzideh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Navaee
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL-STIIMT- LMIS4, Station 17, Lausanne, 1015, Switzerland
| | | | - Philippe Renaud
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL-STIIMT- LMIS4, Station 17, Lausanne, 1015, Switzerland
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
41
|
Yao Y, Marra AN, Yelon D. Pathways Regulating Establishment and Maintenance of Cardiac Chamber Identity in Zebrafish. J Cardiovasc Dev Dis 2021; 8:13. [PMID: 33572830 PMCID: PMC7912383 DOI: 10.3390/jcdd8020013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate heart is comprised of two types of chambers-ventricles and atria-that have unique morphological and physiological properties. Effective cardiac function depends upon the distinct characteristics of ventricular and atrial cardiomyocytes, raising interest in the genetic pathways that regulate chamber-specific traits. Chamber identity seems to be specified in the early embryo by signals that establish ventricular and atrial progenitor populations and trigger distinct differentiation pathways. Intriguingly, chamber-specific features appear to require active reinforcement, even after myocardial differentiation is underway, suggesting plasticity of chamber identity within the developing heart. Here, we review the utility of the zebrafish as a model organism for studying the mechanisms that establish and maintain cardiac chamber identity. By combining genetic and embryological approaches, work in zebrafish has revealed multiple players with potent influences on chamber fate specification and commitment. Going forward, analysis of cardiomyocyte identity at the single-cell level is likely to yield a high-resolution understanding of the pathways that link the relevant players together, and these insights will have the potential to inform future strategies in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; (Y.Y.); (A.N.M.)
| |
Collapse
|
42
|
Kook YM, Hwang S, Kim H, Rhee KJ, Lee K, Koh WG. Cardiovascular tissue regeneration system based on multiscale scaffolds comprising double-layered hydrogels and fibers. Sci Rep 2020; 10:20321. [PMID: 33230134 PMCID: PMC7683622 DOI: 10.1038/s41598-020-77187-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
We report a technique to reconstruct cardiovascular tissue using multiscale scaffolds incorporating polycaprolactone fibers with double-layered hydrogels comprising fibrin hydrogel surrounded by secondary alginate hydrogel. The scaffolds compartmentalized cells into the core region of cardiac tissue and the peripheral region of blood vessels to construct cardiovascular tissue, which was accomplished by a triple culture system of adipose-derived mesenchymal stem cells (ADSCs) with C2C12 myoblasts on polycaprolactone (PCL) fibers along with human umbilical vein endothelial cells (HUVECs) in fibrin hydrogel. The secondary alginate hydrogel prevented encapsulated cells from migrating outside scaffold and maintained the scaffold structure without distortion after subcutaneous implantation. According to in vitro studies, resultant scaffolds promoted new blood vessel formation as well as cardiomyogenic phenotype expression of ADSCs. Cardiac muscle-specific genes were expressed from stem cells and peripheral blood vessels from HUVECs were also successfully developed in subcutaneously implanted cell-laden multiscale scaffolds. Furthermore, the encapsulated stem cells modulated the immune response of scaffolds by secreting anti-inflammatory cytokines for successful tissue construction. Our study reveals that multiscale scaffolds can be promising for the remodeling and transplantation of cardiovascular tissue.
Collapse
Affiliation(s)
- Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, 220-710, Republic of Korea.,Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, 220-710, Republic of Korea
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea. .,Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do, Republic of Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
43
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
44
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
45
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
46
|
Theus AS, Ning L, Hwang B, Gil C, Chen S, Wombwell A, Mehta R, Serpooshan V. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers (Basel) 2020; 12:E2262. [PMID: 33019639 PMCID: PMC7599870 DOI: 10.3390/polym12102262] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an additive manufacturing process that utilizes various biomaterials that either contain or interact with living cells and biological systems with the goal of fabricating functional tissue or organ mimics, which will be referred to as bioinks. These bioinks are typically hydrogel-based hybrid systems with many specific features and requirements. The characterizing and fine tuning of bioink properties before, during, and after printing are therefore essential in developing reproducible and stable bioprinted constructs. To date, myriad computational methods, mechanical testing, and rheological evaluations have been used to predict, measure, and optimize bioinks properties and their printability, but none are properly standardized. There is a lack of robust universal guidelines in the field for the evaluation and quantification of bioprintability. In this review, we introduced the concept of bioprintability and discussed the significant roles of various physiomechanical and biological processes in bioprinting fidelity. Furthermore, different quantitative and qualitative methodologies used to assess bioprintability will be reviewed, with a focus on the processes related to pre, during, and post printing. Establishing fully characterized, functional bioink solutions would be a big step towards the effective clinical applications of bioprinted products.
Collapse
Affiliation(s)
- Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Carmen Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Shuai Chen
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Allison Wombwell
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
47
|
Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev 2020; 72:320-342. [PMID: 31871214 PMCID: PMC6934989 DOI: 10.1124/pr.116.013003] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient.
Collapse
Affiliation(s)
- David T Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| |
Collapse
|
48
|
Suh TC, Amanah AY, Gluck JM. Electrospun Scaffolds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. Bioengineering (Basel) 2020; 7:E105. [PMID: 32899986 PMCID: PMC7552723 DOI: 10.3390/bioengineering7030105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Tissue engineering (TE) combines cells, scaffolds, and growth factors to assemble functional tissues for repair or replacement of tissues and organs. Cardiac TE is focused on developing cardiac cells, tissues, and structures-most notably the heart. This review presents the requirements, challenges, and research surrounding electrospun scaffolds and induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) towards applications to TE hearts. Electrospinning is an attractive fabrication method for cardiac TE scaffolds because it produces fibers that demonstrate the optimal potential for mimicking the complex structure of the cardiac extracellular matrix (ECM). iPSCs theoretically offer the capacity to generate limitless numbers of CMs for use in TE hearts, however these iPSC-CMs are electrophysiologically, morphologically, mechanically, and metabolically immature compared to adult CMs. This presents a functional limitation to their use in cardiac TE, and research aiming to address this limitation is presented in this review.
Collapse
Affiliation(s)
- Taylor Cook Suh
- Textile Engineering, Chemistry and Science Department, Wilson College of Textiles, NC State University, Raleigh, NC 27695, USA
| | - Alaowei Y Amanah
- Textile Engineering, Chemistry and Science Department, Wilson College of Textiles, NC State University, Raleigh, NC 27695, USA
| | - Jessica M Gluck
- Textile Engineering, Chemistry and Science Department, Wilson College of Textiles, NC State University, Raleigh, NC 27695, USA
| |
Collapse
|
49
|
Roche CD, Brereton RJL, Ashton AW, Jackson C, Gentile C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg 2020; 58:500-510. [PMID: 32391914 PMCID: PMC8456486 DOI: 10.1093/ejcts/ezaa093] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Previous attempts in cardiac bioengineering have failed to provide tissues for cardiac regeneration. Recent advances in 3-dimensional bioprinting technology using prevascularized myocardial microtissues as 'bioink' have provided a promising way forward. This review guides the reader to understand why myocardial tissue engineering is difficult to achieve and how revascularization and contractile function could be restored in 3-dimensional bioprinted heart tissue using patient-derived stem cells.
Collapse
Affiliation(s)
- Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Russell J L Brereton
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Anthony W Ashton
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher Jackson
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
50
|
Abstract
Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.
Collapse
Affiliation(s)
- Alex Hp Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|