1
|
Rocha B, Pinho P, Giordani P, Concostrina-Zubiri L, Vieira G, Pina P, Branquinho C, Matos P. Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic. Curr Biol 2024; 34:4884-4893.e4. [PMID: 39357515 DOI: 10.1016/j.cub.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Maritime Antarctica's harsh abiotic conditions forged simple terrestrial ecosystems, mostly constituted of bryophytes, lichens, and vascular plants. Though biotic interactions are, together with abiotic factors, thought to help shape this ecosystem, influencing species' distribution and, indirectly, mediating their response to climate, the importance of these interactions is still fairly unknown. We modeled current and future abundance patterns of bryophytes, lichens, and vascular plants, accounting for biotic interactions and abiotic drivers, along a climatic gradient in maritime Antarctica. The influence of regional climate and other drivers was modeled using structural equation models, with and without biotic interactions. Models with biotic interactions performed better; the one offering higher ecological support was used to estimate current and future spatial distributions of vegetation. Results suggest that plants are confined to lower elevations, negatively impacting bryophytes and lichens, whereas at higher elevations both climate and other drivers influence bryophytes and lichens. Our findings strongly support the use of biotic interactions to predict the spatial distribution of Antarctic vegetation.
Collapse
Affiliation(s)
- Bernardo Rocha
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro Pinho
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | | | - Laura Concostrina-Zubiri
- Instituto de Hidráulica Ambiental de la Universidad de Cantabria "IHCantabria" Parque Científi co y Tecnológico de Cantabria Isabel Torres, 15, 39011 Santander, Spain
| | - Gonçalo Vieira
- Centro de Estudos Geográficos, Laboratório Associado TERRA, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, 1600-276 Lisboa, Portugal; POLAR2E - Colégio de Ciências Polares e Ambientes Extremos, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Pedro Pina
- Departamento de Ciências da Terra, Universidade de Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Branquinho
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paula Matos
- Centro de Estudos Geográficos, Laboratório Associado TERRA, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, 1600-276 Lisboa, Portugal
| |
Collapse
|
2
|
Matos P, Rocha B, Pinho P, Miranda V, Pina P, Goyanes G, Vieira G. Microscale is key to model current and future Maritime Antarctic vegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174171. [PMID: 38917897 DOI: 10.1016/j.scitotenv.2024.174171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Despite being one of the most pristine regions in the world, Antarctica is currently also one of the most vulnerable to climate change. Antarctic vegetation comprises mostly lichens and bryophytes, complemented in some milder regions of Maritime Antarctica by two vascular plant species. Shifts in the spatial patterns of these three main vegetation groups have already been observed in response to climate change, highlighting the urgent need for the development of comprehensive large-scale ecological models of the effects of climate change. Besides climate, Antarctic terrestrial vegetation is also strongly influenced by non-climatic microscale conditions related to abiotic and biotic factors. Nevertheless, the quantification of their importance in determining vegetation patterns remains unclear. The objective of this work was to quantify the importance of abiotic and biotic microscale conditions in determining the spatial cover patterns of the major functional types, lichens, vascular plants and bryophytes, explicitly determining the likely confinement of each functional type to the microscale conditions, i.e., their ecological niche. Microscale explained >60 % of the spatial variation of lichens and bryophytes and 30 % of vascular plants, with the niche analysis suggesting that each of the three functional types may be likely confined to specific microscale conditions in the studied gradient. Models indicate that the main microscale ecological filters are abiotic but show the potential benefits of including biotic variables and point to the need for further clarification of vegetation biotic interactions' role in these ecosystems. Altogether, these results point to the need for the inclusion of microscale drivers in ecological models to track and forecast climate change effects, as they are crucial to explain present vegetation patterns in response to climate, and for the interpretation of ecological model results under a climate change perspective.
Collapse
Affiliation(s)
- Paula Matos
- Centro de Estudos Geográficos, Laboratório Associado TERRA, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, 1600-276 Lisboa, Portugal.
| | - Bernardo Rocha
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pinho
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vasco Miranda
- CERENA-Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Pedro Pina
- Departamento de Ciências da Terra, IDL - Instituto Dom Luiz, Universidade de Coimbra, 3030-790 Coimbra, Portugal
| | - Gabriel Goyanes
- CERENA-Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Gonçalo Vieira
- Centro de Estudos Geográficos, Laboratório Associado TERRA, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, 1600-276 Lisboa, Portugal
| |
Collapse
|
3
|
Islam W, Zeng F, Almoallim HS, Ansari MJ. Unveiling soil animal community dynamics beneath dominant shrub species in natural desert environment: Implications for ecosystem management and conservation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121697. [PMID: 38976951 DOI: 10.1016/j.jenvman.2024.121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The Taklimakan Desert, known for extreme aridity and unique ecological challenges, maintains a delicate life balance beneath its harsh surface. This study investigates intricate dynamics of soil animal communities within this desert ecosystem, with a particular focus on vertical profile variations beneath four dominant shrub species (AS-Alhagi sparsifolia, KC-Karelinia caspia, TR- Tamarix ramosissima, CC- Calligonum caput-medusae). Utilizing comprehensive soil sampling and metagenomics techniques, we reveal the diversity and distribution patterns of soil animal communities from the soil surface down to deeper layers (0-100 cm). Our research outcomes have unveiled that Nematoda and Arthropoda emerge as the most predominant classes of soil animals across all studied shrubs. Specifically, Nematoda exhibited notably high abundance in the KC area, while Arthropoda thrived predominantly in the TR region. We also observed a linear decrease in Nematoda populations as soil depth increased, consistent among all shrub species. Moreover, the highest Shannon diversity within soil animal communities was recorded in the KC area, underscoring a trend of declining alpha diversity in the AS region and an increase in other shrub areas as soil depth increased. Notably, the zones dominated by CC and TR displayed the highest levels of beta diversity. Our correlation analysis of soil animals and environmental factors has pinpointed soil water content, available phosphorus, and available potassium as the most influential drivers of variations in the top-classified soil animal communities. This study provides insights into soil animals in deserts, supporting future research to preserve these fragile deserts and enhance our understanding of life below the surface in challenging ecosystems.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| |
Collapse
|
4
|
Niu X, Wang P, Xie Z, Gao M, Qian S, Saifutdinov R, Aspe NM, Wu D, Guan P. Soil nematode metacommunities in different land covers: Assessment at the local and regional scales. Ecol Evol 2024; 14:e11468. [PMID: 38799394 PMCID: PMC11116945 DOI: 10.1002/ece3.11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The metacommunity theory enhances our understanding of how ecological processes regulate community structure. Yet, unraveling the complexities of soil nematode metacommunity structures across various spatial scales and determining the factors influencing these patterns remains challenging. Therefore, we conducted an investigation on soil nematode metacommunities spanning from north to south in the Northeastern China. Our aim was to test whether nematode metacommunities were structured by different drivers under three land covers (i.e., farmland, grassland and woodland) at the local and regional scales. The results revealed that the Clementsian, Gleasonian and their quasi-structures of soil nematodes collectively accounted for 93% of the variation across the three land covers at the local and regional scales. These structures suggest that the soil nematode metacommunities in the Northeast China responded to fluctuations in environmental gradients. At the local scale, metacommunities were primarily shaped by biological interactions. At the regional scale, environmental heterogeneity, dispersal limitation and biological interactions all contributed to nematode metacommunities. Meanwhile, biological interactions under three land covers were represented within different trophic groups, with plant parasites predominant in farmlands and bacterivores in grasslands and woodlands. In conclusion, the metacommunity structures of soil nematodes remain stable at different spatial scales and land covers. Biological interactions are widespread among nematodes regardless of changes in spatial scales and land covers. This study reveals the importance of nematode sensitivity to the environment and biological interactions in shaping the nematode metacommunities, potentially enhancing our understanding of the spatial patterns of nematode metacommunities.
Collapse
Affiliation(s)
- Ximei Niu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Ping Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
| | - Zhijing Xie
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
| | - Meixiang Gao
- Department of Geography and Spatial Information TechniquesNingbo UniversityNingboChina
| | - Siru Qian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Ruslan Saifutdinov
- Laboratory for Soil Ecological FunctionsA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Nonillon M. Aspe
- College of Marine and Allied SciencesMindanao State University at NaawanNaawanPhilippines
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Pingting Guan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, Ministry of EducationNortheast Normal UniversityChangchunChina
| |
Collapse
|
5
|
Jackson AC, Jorna J, Chaston JM, Adams BJ. Glacial Legacies: Microbial Communities of Antarctic Refugia. BIOLOGY 2022; 11:biology11101440. [PMID: 36290344 PMCID: PMC9598129 DOI: 10.3390/biology11101440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
In the cold deserts of the McMurdo Dry Valleys (MDV) the suitability of soil for microbial life is determined by both contemporary processes and legacy effects. Climatic changes and accompanying glacial activity have caused local extinctions and lasting geochemical changes to parts of these soil ecosystems over several million years, while areas of refugia may have escaped these disturbances and existed under relatively stable conditions. This study describes the impact of historical glacial and lacustrine disturbance events on microbial communities across the MDV to investigate how this divergent disturbance history influenced the structuring of microbial communities across this otherwise very stable ecosystem. Soil bacterial communities from 17 sites representing either putative refugia or sites disturbed during the Last Glacial Maximum (LGM) (22-17 kya) were characterized using 16 S metabarcoding. Regardless of geographic distance, several putative refugia sites at elevations above 600 m displayed highly similar microbial communities. At a regional scale, community composition was found to be influenced by elevation and geographic proximity more so than soil geochemical properties. These results suggest that despite the extreme conditions, diverse microbial communities exist in these putative refugia that have presumably remained undisturbed at least through the LGM. We suggest that similarities in microbial communities can be interpreted as evidence for historical climate legacies on an ecosystem-wide scale.
Collapse
Affiliation(s)
- Abigail C. Jackson
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- Correspondence: (A.C.J.); (J.J.)
| | - Jesse Jorna
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- Correspondence: (A.C.J.); (J.J.)
| | - John M. Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Byron J. Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- Monte L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
6
|
Beet CR, Hogg ID, Cary SC, McDonald IR, Sinclair BJ. The Resilience of Polar Collembola (Springtails) in a Changing Climate. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100046. [PMID: 36683955 PMCID: PMC9846479 DOI: 10.1016/j.cris.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.
Collapse
Affiliation(s)
- Clare R. Beet
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian D. Hogg
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - S. Craig Cary
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Almela P, Velázquez D, Rico E, Justel A, Quesada A. Marine Vertebrates Impact the Bacterial Community Composition and Food Webs of Antarctic Microbial Mats. Front Microbiol 2022; 13:841175. [PMID: 35464973 PMCID: PMC9023888 DOI: 10.3389/fmicb.2022.841175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 01/04/2023] Open
Abstract
The biological activity of marine vertebrates represents an input of nutrients for Antarctic terrestrial biota, with relevant consequences for the entire ecosystem. Even though microbial mats assemble most of the biological diversity of the non-marine Antarctica, the effects of the local macrofauna on these microecosystems remain understudied. Using 16S rRNA gene sequencing, 13C and 15N stable isotopes, and by characterizing the P and N-derived nutrient levels, we evaluated the effects of penguins and other marine vertebrates on four microbial mats located along the Antarctic Peninsula. Our results show that P concentrations, C/N and N/P ratios, and δ15N values of "penguin-impacted" microbial mats were significantly higher than values obtained for "macrofauna-free" sample. Nutrients derived from penguin colonies and other marine vertebrates altered the trophic interactions of communities within microbial mats, as well as the relative abundance and trophic position of meiofaunal groups. Twenty-nine bacterial families from eight different phyla significantly changed with the presence of penguins, with inorganic nitrogen (NH4 + and NO3 -) and δ15N appearing as key factors in driving bacterial community composition. An apparent change in richness, diversity, and dominance of prokaryotes was also related to penguin-derived nutrients, affecting N utilization strategies of microbial mats and relating oligotrophic systems to communities with a higher metabolic versatility. The interdisciplinary approach of this study makes these results advance our understanding of interactions and composition of communities inhabiting microbial mats from Antarctica, revealing how they are deeply associated with marine animals.
Collapse
Affiliation(s)
- Pablo Almela
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Velázquez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eugenio Rico
- Department of Ecology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Justel
- UC3M-Santander Big Data Institute (IBiDat), Universidad Carlos III de Madrid, Madrid, Spain
- Department of Mathematics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Kozeretska I, Serga S, Kovalenko P, Gorobchyshyn V, Convey P. Belgica antarctica (Diptera: Chironomidae): A natural model organism for extreme environments. INSECT SCIENCE 2022; 29:2-20. [PMID: 33913258 DOI: 10.1111/1744-7917.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Belgica antarctica (Diptera: Chironomidae), a brachypterous midge endemic to the maritime Antarctic, was first described in 1900. Over more than a century of study, a vast amount of information has been compiled on the species (3 750 000 Google search results as of January 10, 2021), encompassing its ecology and biology, life cycle and reproduction, polytene chromosomes, physiology, biochemistry and, increasingly, omics. In 2014, B. antarctica's genome was sequenced, further boosting research. Certain developmental stages can be cultured successfully in the laboratory. Taken together, this wealth of information allows the species to be viewed as a natural model organism for studies of adaptation and function in extreme environments.
Collapse
Affiliation(s)
- Iryna Kozeretska
- National Antarctic Scientific Center of Ukraine, 01601, Taras Shevchenko blv., 16, Kyiv, Ukraine
| | - Svitlana Serga
- National Antarctic Scientific Center of Ukraine, 01601, Taras Shevchenko blv., 16, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Department General and Medical Genetics, 01601, Volodymyrska str., 64/13, Kyiv, Ukraine
| | - Pavlo Kovalenko
- State Institution «Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine», Department of Population Dynamics, 03143, Lebedeva str., 37, Kyiv, Ukraine
| | - Volodymyr Gorobchyshyn
- State Institution «Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine», Department of Population Dynamics, 03143, Lebedeva str., 37, Kyiv, Ukraine
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| |
Collapse
|
9
|
Franco ALC, Adams BJ, Diaz MA, Lemoine NP, Dragone NB, Fierer N, Lyons WB, Hogg I, Wall DH. Response of Antarctic soil fauna to climate-driven changes since the Last Glacial Maximum. GLOBAL CHANGE BIOLOGY 2022; 28:644-653. [PMID: 34657350 DOI: 10.1111/gcb.15940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Understanding how terrestrial biotic communities have responded to glacial recession since the Last Glacial Maximum (LGM) can inform present and future responses of biota to climate change. In Antarctica, the Transantarctic Mountains (TAM) have experienced massive environmental changes associated with glacial retreat since the LGM, yet we have few clues as to how its soil invertebrate-dominated animal communities have responded. Here, we surveyed soil invertebrate fauna from above and below proposed LGM elevations along transects located at 12 features across the Shackleton Glacier region. Our transects captured gradients of surface ages possibly up to 4.5 million years and the soils have been free from human disturbance for their entire history. Our data support the hypothesis that soils exposed during the LGM are now less suitable habitats for invertebrates than those that have been exposed by deglaciation following the LGM. Our results show that faunal abundance, community composition, and diversity were all strongly affected by climate-driven changes since the LGM. Soils more recently exposed by the glacial recession (as indicated by distances from present ice surfaces) had higher faunal abundances and species richness than older exposed soils. Higher abundances of the dominant nematode Scottnema were found in older exposed soils, while Eudorylaimus, Plectus, tardigrades, and rotifers preferentially occurred in more recently exposed soils. Approximately 30% of the soils from which invertebrates could be extracted had only Scottnema, and these single-taxon communities occurred more frequently in soils exposed for longer periods of time. Our structural equation modeling of abiotic drivers highlighted soil salinity as a key mediator of Scottnema responses to soil exposure age. These changes in soil habitat suitability and biotic communities since the LGM indicate that Antarctic terrestrial biodiversity throughout the TAM will be highly altered by climate warming.
Collapse
Affiliation(s)
- André L C Franco
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Byron J Adams
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum Provo, Brigham Young University, Provo, Utah, USA
| | - Melisa A Diaz
- School of Earth Sciences, Byrd Polar and Climate Research Center Columbus, The Ohio State University, Columbus, Ohio, USA
| | - Nathan P Lemoine
- Department of Biological Sciences Milwaukee, Marquette University, Milwaukee, Wisconsin, USA
- Milwaukee Public Museum Department of Zoology Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas B Dragone
- Department of Ecology and Evolutionary Biology, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - W Berry Lyons
- School of Earth Sciences, Byrd Polar and Climate Research Center Columbus, The Ohio State University, Columbus, Ohio, USA
| | - Ian Hogg
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Diana H Wall
- Department of Biology & School of Global Environmental Sustainability, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
10
|
Phagotrophic protists (protozoa) in Antarctic terrestrial ecosystems: diversity, distribution, ecology, and best research practices. Polar Biol 2021. [DOI: 10.1007/s00300-021-02896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractPhagotrophic protists (formerly protozoa) are a highly diverse, polyphyletic grouping of generally unicellular, heterotrophic eukaryotes that are key regulators of the soil microbiome. The biodiversity and ecology of soil phagotrophic protists are still largely uncharacterized, especially in the Antarctic, which possesses some of the harshest terrestrial environments known and potentially many physiologically unique and scientifically interesting species. Antarctic soil systems are also highly limited in terms of moisture, temperature, and carbon, and the resulting reduced biological complexity can facilitate fine-tuned investigation of the drivers and functioning of microbial communities. To facilitate and encourage future research into protist biodiversity and ecology, especially in context of the broader functioning of Antarctic terrestrial communities, I review the biodiversity, distribution, and ecology of Antarctic soil phagotrophic protists. Biodiversity appears to be highly structured by region and taxonomic group, with the Antarctic Peninsula having the highest taxonomic diversity and ciliates (Ciliophora) being the most diverse taxonomic group. However, richness estimates are likely skewed by disproportionate sampling (over half of the studies are from the peninsula), habitat type bias (predominately moss-associated soils), investigator bias (toward ciliates and the testate amoeba morphogroup), and methodological approach (toward cultivation and morphological identification). To remedy these biases, a standardized methodology using both morphological and molecular identification and increased emphasis on microflagellate and naked amoeba morphogroups is needed. Additionally, future research should transition away from biodiversity survey studies to dedicated ecological studies that emphasize the function, ecophysiology, endemicity, dispersal, and impact of abiotic drivers beyond moisture and temperature.
Collapse
|
11
|
Severgnini M, Canini F, Consolandi C, Camboni T, Paolo D'Acqui L, Mascalchi C, Ventura S, Zucconi L. Highly differentiated soil bacterial communities in Victoria Land macro-areas (Antarctica). FEMS Microbiol Ecol 2021; 97:6307020. [PMID: 34151349 DOI: 10.1093/femsec/fiab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ice-free areas of Victoria Land, in Antarctica, are characterized by different terrestrial ecosystems, that are dominated by microorganisms supporting highly adapted communities. Despite the unique conditions of these ecosystems, reports on their bacterial diversity are still fragmentary. From this perspective, 60 samples from 14 localities were analyzed. These localities were distributed in coastal sites with differently developed biological soil crusts, inner sites in the McMurdo Dry Valleys with soils lacking of plant coverage, and a site called Icarus Camp, with a crust developed on a thin locally weathered substrate of the underlying parent granitic-rock. Bacterial diversity was studied through 16S rRNA metabarcoding sequencing. Communities diversity, composition and the abundance and composition of different taxonomic groups were correlated to soil physicochemical characteristics. Firmicutes, Bacteroidetes, Cyanobacteria and Proteobacteria dominated these communities. Most phyla were mainly driven by soil granulometry, an often disregarded parameter and other abiotic parameters. Bacterial composition differed greatly among the three macrohabitats, each having a distinct bacterial profile. Communities within the two main habitats (coastal and inner ones) were well differentiated from each other as well, therefore depending on site-specific physicochemical characteristics. A core community of the whole samples was observed, mainly represented by Firmicutes and Bacteroidetes.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Luigi Paolo D'Acqui
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cristina Mascalchi
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Stefano Ventura
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,The Italian Embassy in Israel, Trade Tower, 25 Hamered Street, 68125, Tel Aviv, Israel
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
12
|
Thompson AR, Roth-Monzón AJ, Aanderud ZT, Adams BJ. Phagotrophic Protists and Their Associates: Evidence for Preferential Grazing in an Abiotically Driven Soil Ecosystem. Microorganisms 2021; 9:1555. [PMID: 34442632 PMCID: PMC8398437 DOI: 10.3390/microorganisms9081555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targeted molecular and culture-based approaches.
Collapse
Affiliation(s)
- Andrew R. Thompson
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.J.R.-M.); (B.J.A.)
| | - Andrea J. Roth-Monzón
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.J.R.-M.); (B.J.A.)
- Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, CT 06269, USA
| | - Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Byron J. Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.J.R.-M.); (B.J.A.)
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
13
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
14
|
Potts LJ, Gantz JD, Kawarasaki Y, Philip BN, Gonthier DJ, Law AD, Moe L, Unrine JM, McCulley RL, Lee RE, Denlinger DL, Teets NM. Environmental factors influencing fine-scale distribution of Antarctica's only endemic insect. Oecologia 2020; 194:529-539. [PMID: 32725300 PMCID: PMC7683470 DOI: 10.1007/s00442-020-04714-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/16/2020] [Indexed: 10/28/2022]
Abstract
Species distributions are dependent on interactions with abiotic and biotic factors in the environment. Abiotic factors like temperature, moisture, and soil nutrients, along with biotic interactions within and between species, can all have strong influences on spatial distributions of plants and animals. Terrestrial Antarctic habitats are relatively simple and thus good systems to study ecological factors that drive species distributions and abundance. However, these environments are also sensitive to perturbation, and thus understanding the ecological drivers of species distribution is critical for predicting responses to environmental change. The Antarctic midge, Belgica antarctica, is the only endemic insect on the continent and has a patchy distribution along the Antarctic Peninsula. While its life history and physiology are well studied, factors that underlie variation in population density within its range are unknown. Previous work on Antarctic microfauna indicates that distribution over broad scales is primarily regulated by soil moisture, nitrogen content, and the presence of suitable plant life, but whether these patterns are true over smaller spatial scales has not been investigated. Here we sampled midges across five islands on the Antarctic Peninsula and tested a series of hypotheses to determine the relative influences of abiotic and biotic factors on midge abundance. While historical literature suggests that Antarctic organisms are limited by the abiotic environment, our best-supported hypothesis indicated that abundance is predicted by a combination of abiotic and biotic conditions. Our results are consistent with a growing body of literature that biotic interactions are more important in Antarctic ecosystems than historically appreciated.
Collapse
Affiliation(s)
- Leslie J Potts
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA.
| | - J D Gantz
- Department of Biology, Hendrix College, Conway, AR, USA
| | - Yuta Kawarasaki
- Department of Biology, Adolphus College Gustavus, Saint Peter, MN, USA
| | | | - David J Gonthier
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA
| | - Audrey D Law
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USA
| | - Luke Moe
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USA
| | - Jason M Unrine
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USA
| | - Rebecca L McCulley
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | | | - Nicholas M Teets
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA
| |
Collapse
|
15
|
Bottos EM, Laughlin DC, Herbold CW, Lee CK, McDonald IR, Cary SC. Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol Ecol 2020; 96:5815075. [PMID: 32239205 DOI: 10.1093/femsec/fiaa042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
The Dry Valleys of Antarctica are a unique ecosystem of simple trophic structure, where the abiotic factors that influence soil bacterial communities can be resolved in the absence of extensive biotic interactions. This study evaluated the degree to which aspects of topographic, physicochemical and spatial variation explain patterns of bacterial richness and community composition in 471 soil samples collected across a 220 square kilometer landscape in Southern Victoria Land. Richness was most strongly influenced by physicochemical soil properties, particularly soil conductivity, though significant trends with several topographic and spatial variables were also observed. Structural equation modeling (SEM) supported a final model in which variation in community composition was best explained by physicochemical variables, particularly soil water content, and where the effects of topographic variation were largely mediated through their influence on physicochemical variables. Community dissimilarity increased with distance between samples, and though most of this variation was explained by topographic and physicochemical variation, a small but significant relationship remained after controlling for this environmental variation. As the largest survey of terrestrial bacterial communities of Antarctica completed to date, this work provides fundamental knowledge of the Dry Valleys ecosystem, and has implications globally for understanding environmental factors that influence bacterial distributions.
Collapse
Affiliation(s)
- Eric M Bottos
- School of Science, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.,The International Centre for Terrestrial Antarctic Research, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Daniel C Laughlin
- School of Science, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Craig W Herbold
- School of Science, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.,The International Centre for Terrestrial Antarctic Research, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Charles K Lee
- School of Science, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.,The International Centre for Terrestrial Antarctic Research, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Ian R McDonald
- School of Science, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.,The International Centre for Terrestrial Antarctic Research, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - S Craig Cary
- School of Science, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.,The International Centre for Terrestrial Antarctic Research, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| |
Collapse
|
16
|
Bergami E, Rota E, Caruso T, Birarda G, Vaccari L, Corsi I. Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biol Lett 2020; 16:20200093. [PMID: 32574531 DOI: 10.1098/rsbl.2020.0093] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is evidence and serious concern that microplastics have reached the most remote regions of the planet, but how far have they travelled in terrestrial ecosystems? This study presents the first field-based evidence of plastic ingestion by a common and central component of Antarctic terrestrial food webs, the collembolan Cryptopygus antarcticus. A large piece of polystyrene (PS) foam (34 × 31 × 5 cm) covered by microalgae, moss, lichens and microfauna was found in a fellfield along the shores of the Fildes Peninsula (King George Island). The application of an improved enzymatic digestion coupled with Fourier transform infrared microscopy (µ-FTIR), unequivocally detected traces of PS (less than 100 µm) in the gut of the collembolans associated with the PS foam and documented their ability to ingest plastic. Plastics are thus entering the short Antarctic terrestrial food webs and represent a new potential stressor to polar ecosystems already facing climate change and increasing human activities. Future research should explore the effects of plastics on the composition, structure and functions of polar terrestrial biota.
Collapse
Affiliation(s)
- Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy
| | - Emilia Rota
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy
| | - Tancredi Caruso
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Giovanni Birarda
- SISSI-Chemical and Life Science branch, Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Lisa Vaccari
- SISSI-Chemical and Life Science branch, Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy
| |
Collapse
|
17
|
Bezuidt OKI, Lebre PH, Pierneef R, León-Sobrino C, Adriaenssens EM, Cowan DA, Van de Peer Y, Makhalanyane TP. Phages Actively Challenge Niche Communities in Antarctic Soils. mSystems 2020; 5:e00234-20. [PMID: 32371471 PMCID: PMC7205518 DOI: 10.1128/msystems.00234-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
By modulating the structure, diversity, and trophic outputs of microbial communities, phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of katabatic winds, constrained nutrients, and low water availability are known to limit microbial activity. Although phages may substantially govern trophic interactions in cold deserts, relatively little is known regarding the precise ecological mechanisms. Here, we provide the first evidence of widespread antiphage innate immunity in Antarctic environments using metagenomic sequence data from hypolith communities as model systems. In particular, immunity systems such as DISARM and BREX are shown to be dominant systems in these communities. Additionally, we show a direct correlation between the CRISPR-Cas adaptive immunity and the metavirome of hypolith communities, suggesting the existence of dynamic host-phage interactions. In addition to providing the first exploration of immune systems in cold deserts, our results suggest that phages actively challenge niche communities in Antarctic polar deserts. We provide evidence suggesting that the regulatory role played by phages in this system is an important determinant of bacterial host interactions in this environment.IMPORTANCE In Antarctic environments, the combination of both abiotic and biotic stressors results in simple trophic levels dominated by microbiomes. Although the past two decades have revealed substantial insights regarding the diversity and structure of microbiomes, we lack mechanistic insights regarding community interactions and how phages may affect these. By providing the first evidence of widespread antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche communities. Our analyses reveal several antiphage defense systems, including DISARM and BREX, which appear to dominate in cold desert niche communities. In contrast, our analyses revealed that genes which encode antiphage adaptive immunity were underrepresented in these communities, suggesting lower infection frequencies in cold edaphic environments. We propose that by actively challenging niche communities, phages play crucial roles in the diversification of Antarctic communities.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Pedro Humberto Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Caruso T, Melecis V, Kagainis U, Bolger T. Population asynchrony alone does not explain stability in species-rich soil animal assemblages: The stabilizing role of forest age on oribatid mite communities. J Anim Ecol 2020; 89:1520-1531. [PMID: 32153026 DOI: 10.1111/1365-2656.13203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
The importance of microbial and plant communities in the control of the diversity and structure of soil animal communities has been clarified over the last decade. Previous research focused on abiotic factors, niche separation and spatial patterns. Significant gaps still exist in our knowledge of the factors that control the stability of these communities over time. We analysed a 9-year dataset from the national Long-term Ecological Research Network of Latvia. We focused on 117 oribatid species from three Scots pine forests of different age (<40, 65 and >150 years) and structure. For each forest type, 100 samples were collected each year, providing very high replication and long time series for a soil community. We assessed different aspects of stability: we used a dynamic null model, parameterized on observed growth rates, to test the hypothesis that asynchrony in species populations stabilizes total community size; we also analysed alpha and beta diversity over time to test the hypothesis that temporal variation in species composition and relative abundances is controlled by forest attributes. Real communities can be more stable than their stochastic counterparts if species are asynchronous, confirming for the first time the role of asynchrony in stabilizing soil communities. Yet, while some real communities were more stable and had higher abundance and growth rates than others, they were not necessarily more asynchronous than the less stable communities. Species composition and relative abundances were also less variable in the more stable communities. Species asynchrony generally stabilizes species-rich communities but is not sufficient to explain the different levels of stability between forests. Forest age is a key factor explaining the different levels of overyielding and so stability. Data suggest that both asynchrony and high diversity of microhabitat structure of Scots pine forests promote the stability of soil animal communities.
Collapse
Affiliation(s)
- Tancredi Caruso
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Ugis Kagainis
- Institute of Biology, University of Latvia, Salaspils, Latvia
| | - Tom Bolger
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Macheriotou L, Rigaux A, Derycke S, Vanreusel A. Phylogenetic clustering and rarity imply risk of local species extinction in prospective deep-sea mining areas of the Clarion-Clipperton Fracture Zone. Proc Biol Sci 2020; 287:20192666. [PMID: 32228410 PMCID: PMC7209057 DOI: 10.1098/rspb.2019.2666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An understanding of the forces controlling community structure in the deep sea is essential at a time when its pristineness is threatened by polymetallic nodule mining. Because abiotically defined communities are more sensitive to environmental change, we applied occurrence- and phylogeny-based metrics to determine the importance of biotic versus abiotic structuring processes in nematodes, the most abundant invertebrate taxon of the Clarion–Clipperton Fracture Zone (CCFZ), an area targeted for mining. We investigated the prevalence of rarity and the explanatory power of environmental parameters with respect to phylogenetic diversity (PD). We found evidence for aggregation and phylogenetic clustering in nematode amplicon sequence variants (ASVs) and the dominant genus Acantholaimus, indicating the influence of environmental filtering, sympatric speciation, affinity for overlapping habitats and facilitation for community structure. PD was associated with abiotic variables such as total organic carbon, chloroplastic pigments equivalents and/or mud content, explaining up to 57% of the observed variability and providing further support of the prominence of environmental structuring forces. Rarity was high throughout, ranging from 64 to 75% unique ASVs. Communities defined by environmental filtering with a prevalence of rarity in the CCFZ suggest taxa of these nodule-bearing abyssal plains will be especially vulnerable to the risk of extinction brought about by the efforts to extract them.
Collapse
Affiliation(s)
- Lara Macheriotou
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Annelien Rigaux
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| | - Sofie Derycke
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium.,Aquatic Environment and Quality, Institute for Agricultural and Fisheries Research (ILVO), Ankerstraat 1, 8400 Oostende, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Beng KC, Corlett RT. Identifying the mechanisms that shape fungal community and metacommunity patterns in Yunnan, China. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Convey P, Peck LS. Antarctic environmental change and biological responses. SCIENCE ADVANCES 2019; 5:eaaz0888. [PMID: 31807713 PMCID: PMC6881164 DOI: 10.1126/sciadv.aaz0888] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
Antarctica and the surrounding Southern Ocean are facing complex environmental change. Their native biota has adapted to the region's extreme conditions over many millions of years. This unique biota is now challenged by environmental change and the direct impacts of human activity. The terrestrial biota is characterized by considerable physiological and ecological flexibility and is expected to show increases in productivity, population sizes and ranges of individual species, and community complexity. However, the establishment of non-native organisms in both terrestrial and marine ecosystems may present an even greater threat than climate change itself. In the marine environment, much more limited response flexibility means that even small levels of warming are threatening. Changing sea ice has large impacts on ecosystem processes, while ocean acidification and coastal freshening are expected to have major impacts.
Collapse
|
22
|
Magilton M, Maraun M, Emmerson M, Caruso T. Oribatid mites reveal that competition for resources and trophic structure combine to regulate the assembly of diverse soil animal communities. Ecol Evol 2019; 9:8320-8330. [PMID: 31380092 PMCID: PMC6662270 DOI: 10.1002/ece3.5409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023] Open
Abstract
The role of niche partitioning in structuring species-rich soil animal communities has been debated for decades and generated the "enigma of soil animal diversity." More recently, resource-based niche partitioning has been hypothesized to play a very limited role in the assembly of soil animal communities. To test this hypothesis, we applied a novel combination of stable isotopes and null models of species co-occurrence to quantify the extent of resource niche partitioning on a diverse oribatid mite community sampled from mature oak woodland.We asked whether species aggregate or segregate spatially and how these patterns correlated with the abundance of estimated trophic guilds. We also estimated the effects of environmental variables on community structure.All measured environmental variables accounted for 12% of variance in community structure, including 8% of pure spatial structure unrelated to measured environmental factors and 2% of pure environmental variance unrelated to spatial variation. Co-occurrence analysis revealed 10 pairs of species that aggregated and six pairs of species that were spatially segregated. Values of δ15N indicated that five out of the 10 pairs of aggregated species occupied the same trophic guild, while values of δ13C indicated that species in these five pairs consumed resources of different quality, supporting a significant role of resource-based niche partitioning. Also, one of the five pairs of segregated species occupied the same trophic guild but had overlapping δ13C values suggesting that these species do not co-occur locally and thus minimize competition for shared resources.Partitioning of resources plays an underestimated role in soil microarthropod communities and different local communities consisted of the same trophic guilds with species identity changing from place to place. The sum of resource partitioning, multi-trophic interactions, and microscale environmental variability in the environment is a viable solution to the enigma of soil animal diversity.
Collapse
Affiliation(s)
- Matthew Magilton
- School of Biological Sciences and Institute for Global Food SecurityQueen's University of BelfastBelfastUK
| | - Mark Maraun
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Mark Emmerson
- School of Biological Sciences and Institute for Global Food SecurityQueen's University of BelfastBelfastUK
| | - Tancredi Caruso
- School of Biological Sciences and Institute for Global Food SecurityQueen's University of BelfastBelfastUK
| |
Collapse
|
23
|
Almela P, Velázquez D, Rico E, Justel A, Quesada A. Carbon Pathways Through the Food Web of a Microbial Mat From Byers Peninsula, Antarctica. Front Microbiol 2019; 10:628. [PMID: 30984148 PMCID: PMC6447660 DOI: 10.3389/fmicb.2019.00628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Microbial mats are complex communities that represent a large biomass fraction in non-marine Antarctic ecosystems. They confer structure to soils and constitute, by themselves, intricate microecosystems, where a great variety of microorganisms and microfauna contributes to the ecosystem functions. Although in recent years Antarctic microbial mats have been thoroughly investigated, trophic relationships within the communities remain unresolved. We therefore conducted a study of the trophic relationships of a microbial mat from Byers Peninsula, Antarctica, using DNA analysis and stable isotopes as trophic tracers. Our results suggested, based on a Bayesian mixing model, that at least four trophic levels are present within this microecosystem: primary producers (cyanobacteria and diatoms), primary consumers (rotifers and tardigrades), secondary consumers (nematodes) and decomposers (fungi). Nematodes would play a key role as top consumers of the community, connecting the two carbon inputs described into the system, as omnivores at the secondary trophic level. In addition, carbon pathways from primary trophic level to consumers take place quickly during the first 24 h after its incorporation in the primary producers, dispersing across all the trophic levels and reaching secondary consumers in less than 11 days. This suggests that, given the changing physical conditions and presumably short periods of activity, there is a fine temporal coupling among the organisms in the community, minimizing the redundancy in function performance among trophic levels.
Collapse
Affiliation(s)
- Pablo Almela
- Biology Department, Autonomous University of Madrid, Madrid, Spain
| | - David Velázquez
- Biology Department, Autonomous University of Madrid, Madrid, Spain
| | - Eugenio Rico
- Ecology Department, Autonomous University of Madrid, Madrid, Spain
| | - Ana Justel
- Mathematics Department, Autonomous University of Madrid, Madrid, Spain
| | - Antonio Quesada
- Biology Department, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|