1
|
Cheng H, Men Y, An Y, Yu J, Zhang G, Li J, Wang X, Sun G, Wu Y. Overexpression of endothelial S1pr2 promotes blood-brain barrier disruption via JNK/c-Jun/MMP-9 pathway after traumatic brain injury in both in vivo and in vitro models. Front Pharmacol 2024; 15:1448570. [PMID: 39679379 PMCID: PMC11637860 DOI: 10.3389/fphar.2024.1448570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024] Open
Abstract
Objectives The disruption of blood-brain barrier (BBB) is associated with poor outcomes of TBI patients. Sphingosine-1-phosphate receptor 2 (S1pr2), a member of the G protein-coupled receptor family, is involved in endothelial activation and the regulation of vascular integrity. We hypothesized that the inhibition of S1pr2 may alleviate BBB disruption and explored potential underlying molecular mechanisms. Methods Lesion volumes were assessed utilizing Nissl staining; neurological outcomes were evaluated through a battery of neurobehavioral assessments; phenotype-associated proteins were scrutinized via Western blot analysis; levels of reactive oxygen species (ROS), neuronal apoptosis, and S1pr2 expression were determined using immunofluorescence staining. The impact of S1pr2 inhibition after TBI and its underlying mechanism were elucidated using the selective S1pr2 inhibitor JTE-013, the JNK phosphorylation inhibitor SP600125, and cellular models. Chip-qPCR was employed to further elucidate the binding sites of the transcription factor c-Jun. Results The expression of S1pr2 significantly increased following TBI in mice. Pharmacological inhibition of S1pr2 alleviated secondary injury with reduced lesion volume, ROS generation, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was also mitigated, accompanied by reduced degradation of tight junction proteins and decreased induction of matrix metalloproteinases-9 (MMP-9) post-TBI. Mechanistically, TBI induces an increase in S1pr2 specifically in endothelial cells, leading to the promotion of MMP-9 transactivation by enhancing JNK/c-Jun signaling. This results in the degradation of tight junction proteins and increased BBB permeability. Through in vitro and in vivo Chip-qPCR experiments, we verified that AP-1a and AP-1b of MMP-9 promoter function as binding sites for phosphorylated c-Jun. Conclusion Our findings identify a previously undisclosed role of S1pr2 in the pathophysiology of TBI. The S1pr2 inhibition presents a novel approach to alleviate BBB disruption after TBI through regulating the JNK/c-Jun/MMP-9 pathway.
Collapse
Affiliation(s)
- Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijiao Men
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqing An
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaming Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
3
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
4
|
Orellana-Guerrero D, Uribe-Salazar JM, El-Sheikh Ali H, Scoggin KE, Ball B, Daels P, Finno CJ, Dini P. Dynamics of the Equine Placental DNA Methylome and Transcriptome from Mid- to Late Gestation. Int J Mol Sci 2023; 24:ijms24087084. [PMID: 37108254 PMCID: PMC10139181 DOI: 10.3390/ijms24087084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The placenta is a temporary organ that is essential for the survival of the fetus, with a lifelong effect on the health of both the offspring and the dam. The functions of the placenta are controlled by its dynamic gene expression during gestation. In this study, we aimed to investigate the equine placental DNA methylome as one of the fundamental mechanisms that controls the gene expression dynamic. Chorioallantois samples from four (4M), six (6M), and ten (10M) months of gestation were used to map the methylation pattern of the placenta. Globally, methylation levels increased toward the end of gestation. We identified 921 differentially methylated regions (DMRs) between 4M and 6M, 1225 DMRs between 4M and 10M, and 1026 DMRs between 6M and 10M. A total of 817 genes carried DMRs comparing 4M and 6M, 978 comparing 4M and 10M, and 804 comparing 6M and 10M. We compared the transcriptomes between the samples and found 1381 differentially expressed genes (DEGs) when comparing 4M and 6M, 1428 DEGs between 4M and 10M, and 741 DEGs between 6M and 10M. Finally, we overlapped the DEGs and genes carrying DMRs (DMRs-DEGs). Genes exhibiting (a) higher expression, low methylation and (b) low expression, high methylation at different time points were identified. The majority of these DMRs-DEGs were located in introns (48.4%), promoters (25.8%), and exons (17.7%) and were involved in changes in the extracellular matrix; regulation of epithelial cell migration; vascularization; and regulation of minerals, glucose, and metabolites, among other factors. Overall, this is the first report highlighting the dynamics in the equine placenta methylome during normal pregnancy. The findings presented serve as a foundation for future studies on the impact of abnormal methylation on the outcomes of equine pregnancies.
Collapse
Affiliation(s)
- Daniela Orellana-Guerrero
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
- College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Peter Daels
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Davies EM, Gurung R, Le KQ, Roan KT, Harvey RP, Mitchell GM, Schwarz Q, Mitchell CA. PI(4,5)P 2-dependent regulation of endothelial tip cell specification contributes to angiogenesis. SCIENCE ADVANCES 2023; 9:eadd6911. [PMID: 37000875 PMCID: PMC10065449 DOI: 10.1126/sciadv.add6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing β-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored β-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic β-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for β-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Kai Qin Le
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Katherine T. T. Roan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Clinical Medicine and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Geraldine M. Mitchell
- O’Brien Institute Department of St Vincent’s Institute and University of Melbourne, Department of Surgery, St. Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Health Sciences Faculty, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5001, Australia
| | - Christina A. Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
6
|
Park H, Seok J, You JH, Kim JY, Lim JY, Kim GJ. Increased phosphatase regenerating liver-1 trigger vascular remodeling in injured ovary via platelet-derived growth factor signaling pathway. Stem Cell Res Ther 2022; 13:95. [PMID: 35255961 PMCID: PMC8900363 DOI: 10.1186/s13287-022-02772-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Vascular abnormalities in the ovary cause infertility accompanied by ovarian insufficiency due to a microenvironment of barren ovarian tissues. Placenta-derived mesenchymal stem cells (PD-MSCs, Naïve) treatment in ovarian dysfunction shows angiogenic effect, however, the therapeutic mechanism between ovarian function and vascular remodeling still unclear. Therefore, we examined whether by phosphatase regenerating liver-1 (PRL-1), which is correlated with angiogenesis in reproductive systems, overexpressed PD-MSCs could maximize the angiogenic effects in an ovarian tissues injured of rat model with partial ovariectomy and their therapeutic mechanism by enhanced vascular function via PDGF signaling.
Methods PD-MSCsPRL-1 (PRL-1) were generated by nonviral AMAXA gene delivery system and analyzed the vascular remodeling and follicular development in ovary. One week after Sprague–Dawley (SD) rats ovariectomy, Naïve and PRL-1 was transplanted. The animals were sacrificed at 1, 3 and 5 weeks after transplantation and vascular remodeling and follicular development were analyzed. Also, human umbilical vein endothelial cells (HUVECs) and ovarian explantation culture were performed to prove the specific effects and mechanism of PRL-1.
Results Vascular structures in ovarian tissues (e.g., number of vessels, thickness and lumen area) showed changes in the Naïve and PRL-1-overexpressed PD-MSC (PRL-1) transplantation (Tx) groups compared to the nontransplantation (NTx) group. Especially, PRL-1 induce to increase the expression of platelet-derived growth factor (PDGF), which plays a role in vascular remodeling as well as follicular development, compared to the NTx. Also, the expression of genes related to pericyte and vascular permeability in arteries was significantly enhanced in the PRL-1 compared to the NTx (p < 0.05). PRL-1 enhanced the vascular formation and permeability of human umbilical vein endothelial cells (HUVECs) via activated the PDGF signaling pathway. Conclusions Our results show that PRL-1 restored ovarian function by enhanced vascular function via PDGF signaling pathway. These findings offer new insight into the effects of functionally enhanced stem cell therapy for reproductive systems and should provide new avenues to develop more efficient therapies in degenerative medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02772-9.
Collapse
Affiliation(s)
- Hyeri Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun Hyeong You
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ja-Yun Lim
- Department of Health and Environmental Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02481, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea. .,Research Institute of Placenta Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
7
|
Battistella R, Kritsilis M, Matuskova H, Haswell D, Cheng AX, Meissner A, Nedergaard M, Lundgaard I. Not All Lectins Are Equally Suitable for Labeling Rodent Vasculature. Int J Mol Sci 2021; 22:ijms222111554. [PMID: 34768985 PMCID: PMC8584019 DOI: 10.3390/ijms222111554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The vascular system is vital for all tissues and the interest in its visualization spans many fields. A number of different plant-derived lectins are used for detection of vasculature; however, studies performing direct comparison of the labeling efficacy of different lectins and techniques are lacking. In this study, we compared the labeling efficacy of three lectins: Griffonia simplicifolia isolectin B4 (IB4); wheat germ agglutinin (WGA), and Lycopersicon esculentum agglutinin (LEA). The LEA lectin was identified as being far superior to the IB4 and WGA lectins in histological labeling of blood vessels in brain sections. A similar signal-to-noise ratio was achieved with high concentrations of the WGA lectin injected during intracardial perfusion. Lectins were also suitable for labeling vasculature in other tissues, including spinal cord, dura mater, heart, skeletal muscle, kidney, and liver tissues. In uninjured tissues, the LEA lectin was as accurate as the Tie2–eGFP reporter mice and GLUT-1 immunohistochemistry for labeling the cerebral vasculature, validating its specificity and sensitivity. However, in pathological situations, e.g., in stroke, the sensitivity of the LEA lectin decreases dramatically, limiting its applicability in such studies. This work can be used for selecting the type of lectin and labeling method for various tissues.
Collapse
Affiliation(s)
- Roberta Battistella
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
| | - Marios Kritsilis
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
- Department of Neurology, Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Douglas Haswell
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
| | - Anne Xiaoan Cheng
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
| | - Anja Meissner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, Neurology Department, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iben Lundgaard
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- Correspondence:
| |
Collapse
|
8
|
Zeng A, Wang SR, He YX, Yan Y, Zhang Y. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell 2021; 73:101626. [PMID: 34479073 DOI: 10.1016/j.tice.2021.101626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
Vascular sprouting is a key process of angiogenesis and mainly related to the formation of stalk and tip cells. Many studies have found that angiogenesis has a great clinical significance in promoting the functional repair of impaired tissues and anti-angiogenesis is a key to treatment of many tumors. Therefore, how the pathways regulate angiogenesis by regulating the formation of stalk and tip cells is an urgent problem for researchers. This review mainly summarizes the research progress of pathways affecting the formation of stalk and tip cells during angiogenesis in recent years, including the main signaling pathways (such as VEGF-VEGFR-Dll4-Notch signaling pathway, ALK-Smad signaling pathway,CCN1-YAP/YAZ signaling pathway and other signaling pathways) and cellular actions (such as cellular metabolisms, intercellular tension and other actions), aiming to further give the readers an insight into the mechanism of regulating the formation of stalk and tip cells during angiogenesis and provide more targets for anti-angiogenic drugs.
Collapse
Affiliation(s)
- Ao Zeng
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Shu-Rong Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yu-Xi He
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yu Yan
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yan Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
9
|
Palou-Márquez G, Subirana I, Nonell L, Fernández-Sanlés A, Elosua R. DNA methylation and gene expression integration in cardiovascular disease. Clin Epigenetics 2021; 13:75. [PMID: 33836805 PMCID: PMC8034168 DOI: 10.1186/s13148-021-01064-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The integration of different layers of omics information is an opportunity to tackle the complexity of cardiovascular diseases (CVD) and to identify new predictive biomarkers and potential therapeutic targets. Our aim was to integrate DNA methylation and gene expression data in an effort to identify biomarkers related to cardiovascular disease risk in a community-based population. We accessed data from the Framingham Offspring Study, a cohort study with data on DNA methylation (Infinium HumanMethylation450 BeadChip; Illumina) and gene expression (Human Exon 1.0 ST Array; Affymetrix). Using the MOFA2 R package, we integrated these data to identify biomarkers related to the risk of presenting a cardiovascular event. RESULTS Four independent latent factors (9, 19, 21-only in women-and 27), driven by DNA methylation, were associated with cardiovascular disease independently of classical risk factors and cell-type counts. In a sensitivity analysis, we also identified factor 21 as associated with CVD in women. Factors 9, 21 and 27 were also associated with coronary heart disease risk. Moreover, in a replication effort in an independent study three of the genes included in factor 27 were also present in a factor identified to be associated with myocardial infarction (CDC42BPB, MAN2A2 and RPTOR). Factor 9 was related to age and cell-type proportions; factor 19 was related to age and B cells count; factor 21 pointed to human immunodeficiency virus infection-related pathways and inflammation; and factor 27 was related to lifestyle factors such as alcohol consumption, smoking and body mass index. Inclusion of factor 21 (only in women) improved the discriminative and reclassification capacity of the Framingham classical risk function and factor 27 improved its discrimination. CONCLUSIONS Unsupervised multi-omics data integration methods have the potential to provide insights into the pathogenesis of cardiovascular diseases. We identified four independent factors (one only in women) pointing to inflammation, endothelium homeostasis, visceral fat, cardiac remodeling and lifestyles as key players in the determination of cardiovascular risk. Moreover, two of these factors improved the predictive capacity of a classical risk function.
Collapse
Affiliation(s)
- Guillermo Palou-Márquez
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Lara Nonell
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain.
- CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Spain.
- Medicine Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|