1
|
Tran HC, Schmitt V, Lama S, Wang C, Launay-Avon A, Bernfur K, Sultan K, Khan K, Brunaud V, Liehrmann A, Castandet B, Levander F, Rasmusson AG, Mireau H, Delannoy E, Van Aken O. An mTRAN-mRNA interaction mediates mitochondrial translation initiation in plants. Science 2023; 381:eadg0995. [PMID: 37651534 DOI: 10.1126/science.adg0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.
Collapse
Affiliation(s)
| | | | - Sbatie Lama
- Department of Biology, Lund University, Lund, Sweden
| | - Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Katja Bernfur
- Department of Chemistry, Lund University, Lund, Sweden
| | - Kristin Sultan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Arnaud Liehrmann
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université Paris-Saclay, CNRS, Université d'Évry, Laboratoire de Mathématiques et Modélisation d'Évry, 91037 Évry-Courcouronnes, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | | | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | |
Collapse
|
2
|
Bhatia H, Srivastava G, Mehrotra R. Legumes from the Paleocene sediments of India and their ecological significance. PLANT DIVERSITY 2023; 45:199-210. [PMID: 37069925 PMCID: PMC10105134 DOI: 10.1016/j.pld.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/17/2023]
Abstract
During the early Paleogene, greenhouse gases created warm global climates. These warm climates redistributed the habitat of marine and terrestrial biota globally. Understanding the ecology of biotas under extremely warm climates is important to decipher their behavior in future climate warming. Here we report two new legume fossils (Leguminocarpum meghalayensis Bhatia, Srivastava et Mehrotra sp. nov., and Parvileguminophyllum damalgiriensis Bhatia, Srivastava et Mehrotra sp. nov.) from the late Paleocene sediments of Tura Formation of Meghalaya, northeast India. Globally, the Paleocene legume fossil records indicate that legumes most likely immigrated to India from Africa via the Ladakh-Kohistan Arc during the early Paleogene. Moreover, previously reconstructed climate data from the Tura Formation indicate that legumes were well adapted to a warm seasonal climate with monsoon rains.
Collapse
Affiliation(s)
- Harshita Bhatia
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Srivastava
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - R.C. Mehrotra
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India
| |
Collapse
|
3
|
Liu B, Zhang D, Pan X. Nodules of wild legumes as unique natural hotspots of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156036. [PMID: 35597353 DOI: 10.1016/j.scitotenv.2022.156036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Root nodules (RN) of legumes have distinct microenvironment from their symbiotic roots and surrounding soils. The rhizobia can withstand the host-produced phytoalexins and antimicrobial compounds. We thus hypothesize that the wild legume RN may develop unique natural resistome and be antibiotic resistance gene (ARG) hotspots. In this study, in comparison with rhizosphere soil (RS) and bulk soil (BS), we characterized the feature of antibiotic resistance in the RN of two wild legumes, Medicago polymorpha and Astragalus sinicus, by metagenomics. It was shown that the total relative abundance of ARGs followed the order of RN > RS > BS for both legumes. ARGs encoding antibiotic efflux pump predominated in all samples with increased proportion from BS to RN samples for both legumes. Totally 275 ARG subtypes were detected, and diversity of ARGs in RN was significantly lower than in BS samples for both legumes. 32 and 25 unique ARGs subtypes were detected in RN of both legumes. Bacterial community played a key role in shaping nodule-associated resistome because both ARG profiles and bacterial community differed greatly among BS, RS and RN. Rhizobia potentially hosted 10 and 15 ARGs subtypes for both legumes. The number and proportion of plasmid- and ARG-carrying contigs (ACCs) were higher in RN than in BS. Host tracking analysis of plasmid-ACCs suggests that proportion of rhizobial bacteria identified as their hosts decreased from BS to RN samples. No plasmid-ACCs with multiple ARGs were observed in BS samples, whereas they were detected in RN samples of both legumes. Our study showed that even wild legume nodules are unique natural ARG hotspots and enough attention should be paid to the dissemination risk of ARGs posed by globally produced legume crops.
Collapse
Affiliation(s)
- Bingshen Liu
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Hughes CE, Ringelberg JJ, Luckow M, Jiménez JLC. Mezcala - a new segregate genus of mimosoid legume (Leguminosae, Caesalpinioideae, mimosoid clade) narrowly endemic to the Balsas Depression in Mexico. PHYTOKEYS 2022; 205:191-201. [PMID: 36762018 PMCID: PMC9849040 DOI: 10.3897/phytokeys.205.78297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 05/21/2023]
Abstract
Recent results have demonstrated that the genus Desmanthus is non-monophyletic because the genus Kanaloa is nested within it, with a single species, Desmanthusbalsensis placed as sister to the clade comprising Kanaloa plus the remaining species of Desmanthus. Here we transfer D.balsensis to a new segregate genus Mezcala, discuss the morphological features supporting this new genus, present a key to distinguish Mezcala from closely related genera in the Leucaena subclade, and provide a distribution map of M.balsensis.
Collapse
Affiliation(s)
- Colin E Hughes
- Department of Systematic & Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland University of Zürich Zurich Switzerland
| | - Jens J Ringelberg
- Department of Systematic & Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland University of Zürich Zurich Switzerland
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USA Cornell University Ithaca United States of America
| | - José Luis Contreras Jiménez
- Facultad de Arquitectura, Benemérita Universidad Autónoma de Puebla, 4 Sur 104, Col. Centro, CP 72000, Puebla, Mexico Benemérita Universidad Autónoma de Puebla Puebla Mexico
| |
Collapse
|
5
|
Herendeen PS, Cardoso DBOS, Herrera F, Wing SL. Fossil papilionoids of the Bowdichia clade (Leguminosae) from the Paleogene of North America. AMERICAN JOURNAL OF BOTANY 2022; 109:130-150. [PMID: 35014023 PMCID: PMC9306462 DOI: 10.1002/ajb2.1808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 05/29/2023]
Abstract
PREMISE Understanding the evolutionary history of flowering plants has been enriched by the integration of molecular phylogenies and evidence from the fossil record. Fossil fruits and leaves from the late Paleocene and Eocene of Wyoming and Eocene of Kentucky and Tennessee are described as extinct genera in the tropical American Bowdichia clade of the legume subfamily Papilionoideae. Recent phylogenetic study and taxonomic revision of the Bowdichia clade have facilitated understanding of relationships of the fossil taxa and their evolutionary implications and paleoenvironmental significance. METHODS The fossils were studied using standard methods of specimen preparation and light microscopy and compared to fruits and leaves from extant legume taxa using herbarium collections. Phylogenetic relationships of the fossil taxa were assessed using morphology and DNA sequence data. RESULTS Two new fossil genera are described and their phylogenetic relationships are established. Paleobowdichia lamarensis is placed as sister to the extant genus Bowdichia and Tobya claibornensis is placed with the extant genera Guianodendron and Staminodianthus. CONCLUSIONS These fossils demonstrate that the tropical American Bowdichia clade was present in North America during a period when tropical or subtropical conditions prevailed in the northern Rocky Mountains during the late Paleocene and the Mississippi Embayment during the middle Eocene. These fossils also document that the Bowdichia clade had diversified by the late Paleocene when the fossil record of the family is relatively sparse. This result suggests that future work on early fossil legumes should focus on tropical and subtropical climatic zones, wherever they may occur latitudinally.
Collapse
Affiliation(s)
- Patrick S. Herendeen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook RoadGlencoeIL60022USA
| | - Domingos B. O. S. Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., OndinaSalvadorBahia40170‐115Brazil
| | - Fabiany Herrera
- Earth Sciences, Negaunee Integrative Research Center, Field Museum of Natural History1400 S Lake Shore DrChicagoIL60605USA
| | - Scott L. Wing
- Department of PaleobiologyNational Museum of Natural History, Smithsonian InstitutionWashingtonD.C.20560USA
| |
Collapse
|
6
|
Krause DW, Hoffmann S, Lyson TR, Dougan LG, Petermann H, Tecza A, Chester SGB, Miller IM. New Skull Material of Taeniolabis taoensis (Multituberculata, Taeniolabididae) from the Early Paleocene (Danian) of the Denver Basin, Colorado. J MAMM EVOL 2021; 28:1083-1143. [PMID: 34924738 PMCID: PMC8667543 DOI: 10.1007/s10914-021-09584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
Taeniolabis taoensis is an iconic multituberculate mammal of early Paleocene (Puercan 3) age from the Western Interior of North America. Here we report the discovery of significant new skull material (one nearly complete cranium, two partial crania, one nearly complete dentary) of T. taoensis in phosphatic concretions from the Corral Bluffs study area, Denver Formation (Danian portion), Denver Basin, Colorado. The new skull material provides the first record of the species from the Denver Basin, where the lowest in situ specimen occurs in river channel deposits ~730,000 years after the Cretaceous-Paleogene boundary, roughly coincident with the first appearance of legumes in the basin. The new material, in combination with several previously described and undescribed specimens from the Nacimiento Formation of the San Juan Basin, New Mexico, is the subject of detailed anatomical study, aided by micro-computed tomography. Our analyses reveal many previously unknown aspects of skull anatomy. Several regions (e.g., anterior portions of premaxilla, orbit, cranial roof, occiput) preserved in the Corral Bluffs specimens allow considerable revision of previous reconstructions of the external cranial morphology of T. taoensis. Similarly, anatomical details of the ascending process of the dentary are altered in light of the new material. Although details of internal cranial anatomy (e.g., nasal and endocranial cavities) are difficult to discern in the available specimens, we provide, based on UCMP 98083 and DMNH.EPV 95284, the best evidence to date for inner ear structure in a taeniolabidoid multituberculate. The cochlear canal of T. taoensis is elongate and gently curved and the vestibule is enlarged, although to a lesser degree than in Lambdopsalis.
Collapse
Affiliation(s)
- David W. Krause
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081 USA
| | - Simone Hoffmann
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568 USA
| | - Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Lindsay G. Dougan
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Holger Petermann
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Adrienne Tecza
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
| | - Stephen G. B. Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210 USA
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 USA
- New York Consortium in Evolutionary Primatology, 200 Central Park West, New York, NY 10024 USA
| | - Ian M. Miller
- Department of Earth Sciences, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO 80205 USA
- National Geographic Society, 1145 17th Street NW, Washington, DC 20036 USA
| |
Collapse
|