1
|
Perera ND, Wischnewski M, Alekseichuk I, Shirinpour S, Opitz A. State-Dependent Motor Cortex Stimulation Reveals Distinct Mechanisms for Corticospinal Excitability and Cortical Responses. eNeuro 2024; 11:ENEURO.0450-24.2024. [PMID: 39542735 PMCID: PMC11595597 DOI: 10.1523/eneuro.0450-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that modulates brain activity by inducing electric fields in the brain. Real-time, state-dependent stimulation with TMS has shown that neural oscillation phase modulates corticospinal excitability. However, such motor evoked potentials (MEPs) only indirectly reflect motor cortex activation and are unavailable at other brain regions of interest. The direct and secondary cortical effects of phase-dependent brain stimulation remain an open question. In this study, we recorded the cortical responses during single-pulse TMS using electroencephalography (EEG) concurrently with the MEP measurements in 20 healthy human volunteers (11 female). TMS was delivered at peak, rising, trough, and falling phases of mu (8-13 Hz) and beta (14-30 Hz) oscillations in the motor cortex. The cortical responses were quantified through TMS evoked potential components N15, P50, and N100 as peak-to-peak amplitudes (P50-N15 and P50-N100). We further analyzed whether the prestimulus frequency band power was predictive of the cortical responses. We demonstrated that phase-specific targeting modulates cortical responses. The phase relationship between cortical responses was different for early and late responses. In addition, pre-TMS mu oscillatory power and phase significantly predicted both early and late cortical EEG responses in mu-specific targeting, indicating the independent causal effects of phase and power. However, only pre-TMS beta power significantly predicted the early and late TEP components during beta-specific targeting. Further analyses indicated distinct roles of mu and beta power on cortical responses. These findings provide insight to mechanistic understanding of neural oscillation states in cortical and corticospinal activation in humans.
Collapse
Affiliation(s)
- Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
2
|
Li J, Li X, Chen F, Li W, Chen J, Zhang B. Studying the Alzheimer's disease continuum using EEG and fMRI in single-modality and multi-modality settings. Rev Neurosci 2024; 35:373-386. [PMID: 38157429 DOI: 10.1515/revneuro-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is a biological, clinical continuum that covers the preclinical, prodromal, and clinical phases of the disease. Early diagnosis and identification of the stages of Alzheimer's disease (AD) are crucial in clinical practice. Ideally, biomarkers should reflect the underlying process (pathological or otherwise), be reproducible and non-invasive, and allow repeated measurements over time. However, the currently known biomarkers for AD are not suitable for differentiating the stages and predicting the trajectory of disease progression. Some objective parameters extracted using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely applied to diagnose the stages of the AD continuum. While electroencephalography (EEG) has a high temporal resolution, fMRI has a high spatial resolution. Combined EEG and fMRI (EEG-fMRI) can overcome single-modality drawbacks and obtain multi-dimensional information simultaneously, and it can help explore the hemodynamic changes associated with the neural oscillations that occur during information processing. This technique has been used in the cognitive field in recent years. This review focuses on the different techniques available for studying the AD continuum, including EEG and fMRI in single-modality and multi-modality settings, and the possible future directions of AD diagnosis using EEG-fMRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Futao Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weiping Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, Jiangsu, 210008, China
- Institute of Brain Science, Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
3
|
Babiloni C, Jakhar D, Tucci F, Del Percio C, Lopez S, Soricelli A, Salvatore M, Ferri R, Catania V, Massa F, Arnaldi D, Famà F, Güntekin B, Yener G, Stocchi F, Vacca L, Marizzoni M, Giubilei F, Yıldırım E, Hanoğlu L, Hünerli D, Frisoni GB, Noce G. Resting state electroencephalographic alpha rhythms are sensitive to Alzheimer's disease mild cognitive impairment progression at a 6-month follow-up. Neurobiol Aging 2024; 137:19-37. [PMID: 38402780 DOI: 10.1016/j.neurobiolaging.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Are posterior resting-state electroencephalographic (rsEEG) alpha rhythms sensitive to the Alzheimer's disease mild cognitive impairment (ADMCI) progression at a 6-month follow-up? Clinical, cerebrospinal, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy old seniors (equivalent groups for demographic features) were available from an international archive (www.pdwaves.eu). The ADMCI patients were arbitrarily divided into two groups: REACTIVE and UNREACTIVE, based on the reduction (reactivity) in the posterior rsEEG alpha eLORETA source activities from the eyes-closed to eyes-open condition at ≥ -10% and -10%, respectively. 75% of the ADMCI patients were REACTIVE. Compared to the UNREACTIVE group, the REACTIVE group showed (1) less abnormal posterior rsEEG source activity during the eyes-closed condition and (2) a decrease in that activity at the 6-month follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. Such a biomarker might reflect abnormalities in cortical arousal in quiet wakefulness to be used for clinical studies in ADMCI patients using 6-month follow-ups.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | | | | | | | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
4
|
Sack AT, Paneva J, Küthe T, Dijkstra E, Zwienenberg L, Arns M, Schuhmann T. Target Engagement and Brain State Dependence of Transcranial Magnetic Stimulation: Implications for Clinical Practice. Biol Psychiatry 2024; 95:536-544. [PMID: 37739330 DOI: 10.1016/j.biopsych.2023.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Transcranial magnetic stimulation (TMS) is capable of noninvasively inducing lasting neuroplastic changes when applied repetitively across multiple treatment sessions. In recent years, repetitive TMS has developed into an established evidence-based treatment for various neuropsychiatric disorders such as depression. Despite significant advancements in our understanding of the mechanisms of action of TMS, there is still much to learn about how these mechanisms relate to the clinical effects observed in patients. If there is one thing about TMS that we know for sure, it is that TMS effects are state dependent. In this review, we describe how the effects of TMS on brain networks depend on various factors, including cognitive brain state, oscillatory brain state, and recent brain state history. These states play a crucial role in determining the effects of TMS at the moment of stimulation and are therefore directly linked to what is referred to as target engagement in TMS therapy. There is no control over target engagement without considering the different brain state dependencies of our TMS intervention. Clinical TMS protocols are largely ignoring this fundamental principle, which may explain the large variability and often still limited efficacy of TMS treatments. We propose that after almost 30 years of research on state dependency of TMS, it is time to change standard clinical practice by taking advantage of this fundamental principle. Rather than ignoring TMS state dependency, we can use it to our clinical advantage to improve the effectiveness of TMS treatments.
Collapse
Affiliation(s)
- Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Brain + Nerve Center, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Jasmina Paneva
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tara Küthe
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Eva Dijkstra
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Heart and Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands; Neurowave, Amsterdam, the Netherlands
| | - Lauren Zwienenberg
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Heart and Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands; Synaeda Psycho Medisch Centrum, Leeuwarden, the Netherlands
| | - Martijn Arns
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Brain + Nerve Center, Maastricht University Medical Center, Maastricht, the Netherlands; Heart and Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Baldi S, Schuhmann T, Goossens L, Schruers KRJ. Individualized, connectome-based, non-invasive stimulation of OCD deep-brain targets: A proof-of-concept. Neuroimage 2024; 288:120527. [PMID: 38286272 DOI: 10.1016/j.neuroimage.2024.120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Treatment-resistant obsessive-compulsive disorder (OCD) generally improves with deep-brain stimulation (DBS), thought to modulate neural activity at both the implantation site and in connected brain regions. However, its invasive nature, side-effects, and lack of customization, make non-invasive treatments preferable. Harnessing the established remote effects of cortical transcranial magnetic stimulation (TMS), connectivity-based approaches have emerged for depression that aim at influencing distant regions connected to the stimulation site. We here investigated whether effective OCD DBS targets (here subthalamic nucleus [STN] and nucleus accumbens [NAc]) could be modulated non-invasively with TMS. In a proof-of-concept study with nine healthy individuals, we used 7T magnetic resonance imaging (MRI) and probabilistic tractography to reconstruct the fiber tracts traversing manually segmented STN/NAc. Two TMS targets were individually selected based on the strength of their structural connectivity to either the STN, or both the STN and NAc. In a sham-controlled, within-subject cross-over design, TMS was administered over the personalized targets, located around the precentral and middle frontal gyrus. Resting-state functional 3T MRI was acquired before, and at 5 and 25 min after stimulation to investigate TMS-induced changes in the functional connectivity of the STN and NAc with other regions of the brain. Static and dynamic seed-to-voxel correlation analyses were conducted. TMS over both targets was able to modulate the functional connectivity of the STN and NAc, engaging both overlapping and distinct regions, and unfolding following different temporal dynamics. Given the relevance of the engaged connected regions to OCD pathology, we argue that a personalized, connectivity-based procedure is worth investigating as potential treatment for refractory OCD.
Collapse
Affiliation(s)
- Samantha Baldi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Centre, Maastricht, the Netherlands
| | - Liesbet Goossens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Koen R J Schruers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
6
|
Molcho L, Maimon NB, Hezi N, Zeimer T, Intrator N, Gurevich T. Evaluation of Parkinson's disease early diagnosis using single-channel EEG features and auditory cognitive assessment. Front Neurol 2023; 14:1273458. [PMID: 38174098 PMCID: PMC10762798 DOI: 10.3389/fneur.2023.1273458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Background Parkinson's disease (PD) often presents with subtle early signs, making diagnosis difficult. F-DOPA PET imaging provides a reliable measure of dopaminergic function and is a primary tool for early PD diagnosis. This study aims to evaluate the ability of machine-learning (ML) extracted EEG features to predict F-DOPA results and distinguish between PD and non-PD patients. These features, extracted using a single-channel EEG during an auditory cognitive assessment, include EEG feature A0 associated with cognitive load in healthy subjects, and EEG feature L1 associated with cognitive task differentiation. Methods Participants in this study are comprised of cognitively healthy patients who had undergone an F-DOPA PET scan as a part of their standard care (n = 32), and cognitively healthy controls (n = 20). EEG data collected using the Neurosteer system during an auditory cognitive task, was decomposed using wavelet-packet analysis and machine learning methods for feature extraction. These features were used in a connectivity analysis that was applied in a similar manner to fMRI connectivity. A preliminary model that relies on the features and their connectivity was used to predict initially unrevealed F-DOPA test results. Then, generalized linear mixed models (LMM) were used to discern between PD and non-PD subjects based on EEG variables. Results The prediction model correctly classified patients with unrevealed scores as positive F-DOPA. EEG feature A0 and the Delta band revealed distinct activity patterns separating between study groups, with controls displaying higher activity than PD patients. In controls, EEG feature L1 showed variations between resting state and high-cognitive load, an effect lacking in PD patients. Conclusion Our findings exhibit the potential of single-channel EEG technology in combination with an auditory cognitive assessment to distinguish positive from negative F-DOPA PET scores. This approach shows promise for early PD diagnosis. Additional studies are needed to further verify the utility of this tool as a potential biomarker for PD.
Collapse
Affiliation(s)
- Lior Molcho
- Neurosteer Inc., New York, NY, United States
| | - Neta B. Maimon
- Neurosteer Inc., New York, NY, United States
- Department of Musicology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Neomi Hezi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Nathan Intrator
- Neurosteer Inc., New York, NY, United States
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Snow NJ, Landine J, Chaves AR, Ploughman M. Age and asymmetry of corticospinal excitability, but not cardiorespiratory fitness, predict cognitive impairments in multiple sclerosis. IBRO Neurosci Rep 2023; 15:131-142. [PMID: 37577407 PMCID: PMC10412844 DOI: 10.1016/j.ibneur.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023] Open
Abstract
Background Cognitive impairment is a disabling and underestimated consequence of multiple sclerosis (MS), with multiple determinants that are poorly understood. Objectives We explored predictors of MS-related processing speed impairment (PSI) and age-related mild cognitive impairment (MCI) and hypothesized that cardiorespiratory fitness and corticospinal excitability would predict these impairments. Methods We screened 73 adults with MS (53 females; median [range]: Age 48 [21-70] years, EDSS 2.0 [0.0-6.5]) for PSI and MCI using the Symbol Digit Modalities Test and Montréal Cognitive Assessment, respectively. We identified six persons with PSI (No PSI, n = 67) and 13 with MCI (No MCI, n = 60). We obtained clinical data from medical records and self-reports; used transcranial magnetic stimulation to test corticospinal excitability; and assessed cardiorespiratory fitness using a graded maximal exercise test. We used receiver operator characteristic (ROC) curves to discern predictors of PSI and MCI. Results Interhemispheric asymmetry of corticospinal excitability was specific for PSI, while age was both sensitive and specific for MCI. MS-related PSI was also associated with statin prescriptions, while age-related MCI was related to progressive MS and GABA agonist prescriptions. Cardiorespiratory fitness was associated with neither PSI nor MCI. Discussion Corticospinal excitability is a potential marker of neurodegeneration in MS-related PSI, independent of age-related effects on global cognitive function. Age is a key predictor of mild global cognitive impairment. Cardiorespiratory fitness did not predict cognitive impairments in this clinic-based sample of persons with MS.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Josef Landine
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Arthur R. Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Xie W, Chen X, Ma X, Song S, Ma H, You J, Huang C. Effect of hyperbaric oxygen therapy combined with repetitive transcranial magnetic stimulation on vascular cognitive impairment: a randomised controlled trial protocol. BMJ Open 2023; 13:e073532. [PMID: 37963686 PMCID: PMC10649391 DOI: 10.1136/bmjopen-2023-073532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
INTRODUCTION Vascular cognitive impairment (VCI) has an increasing prevalence worldwide, accounting for at least 20%-40% of all diagnoses of dementia. The decline in cognitive function seriously impairs patients' activities of daily living and social participation and reduces their quality of life. However, there is still a lack of advanced, definitive rehabilitation programmes for VCI. Hyperbaric oxygen therapy (HBOT) and repetitive transcranial magnetic stimulation (rTMS) are recognised treatments for improving cognitive impairment. The former can restore oxygen supply in the brain by increasing oxygen partial pressure in brain tissue, while the latter can enhance neuronal excitability and promote synaptic plasticity. However, no studies have explored the effect of HBO combined with rTMS on VCI. METHODS AND ANALYSIS This study is designed as a single-centre, assessor-blind, randomised controlled clinical trial with four parallel arms. A total of 72 participants will be recruited and randomly assigned to the control group, HBOT group, rTMS group and HBOT combined with rTMS group at a ratio of 1:1:1:1. All enrolled participants will receive conventional treatment. The entire intervention period is 4 weeks, with a 3-week follow-up. Outcomes will be measured at baseline (T0), after a 4-week intervention (T1) and after an additional 3-week follow-up period (T2). The primary endpoint is the Montreal Cognitive Assessment score. The secondary endpoints are Mini-Mental State Examination score, Modified Barthel Index score, latency and amplitude of P300, cerebral cortical oxygenated haemoglobin (HbO2) and deoxygenated haemoglobin (HbR) concentrations as measured by task-state functional near-infrared spectroscopy. ETHICS AND DISSEMINATION Ethics approval was obtained from the West China Hospital Clinical Trials and Biomedical Ethics Committee of Sichuan University (ethics reference: 2022 (1972)). The findings will be published in peer-reviewed journals and disseminated through scientific conferences and seminars. TRIAL REGISTRATION NUMBER ChiCTR2300068242.
Collapse
Affiliation(s)
- Wei Xie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xichao Ma
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Sihui Song
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Rashid-López R, Macías-García P, Sánchez-Fernández FL, Cano-Cano F, Sarrias-Arrabal E, Sanmartino F, Méndez-Bértolo C, Lozano-Soto E, Gutiérrez-Cortés R, González-Moraleda Á, Forero L, López-Sosa F, Zuazo A, Gómez-Molinero R, Gómez-Ramírez J, Paz-Expósito J, Rubio-Esteban G, Espinosa-Rosso R, Cruz-Gómez ÁJ, González-Rosa JJ. Neuroimaging and serum biomarkers of neurodegeneration and neuroplasticity in Parkinson's disease patients treated by intermittent theta-burst stimulation over the bilateral primary motor area: a randomized, double-blind, sham-controlled, crossover trial study. Front Aging Neurosci 2023; 15:1258315. [PMID: 37869372 PMCID: PMC10585115 DOI: 10.3389/fnagi.2023.1258315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Background and objectives Intermittent theta-burst stimulation (iTBS) is a patterned form of excitatory transcranial magnetic stimulation that has yielded encouraging results as an adjunctive therapeutic option to alleviate the emergence of clinical deficits in Parkinson's disease (PD) patients. Although it has been demonstrated that iTBS influences dopamine-dependent corticostriatal plasticity, little research has examined the neurobiological mechanisms underlying iTBS-induced clinical enhancement. Here, our primary goal is to verify whether iTBS bilaterally delivered over the primary motor cortex (M1) is effective as an add-on treatment at reducing scores for both motor functional impairment and nonmotor symptoms in PD. We hypothesize that these clinical improvements following bilateral M1-iTBS could be driven by endogenous dopamine release, which may rebalance cortical excitability and restore compensatory striatal volume changes, resulting in increased striato-cortico-cerebellar functional connectivity and positively impacting neuroglia and neuroplasticity. Methods A total of 24 PD patients will be assessed in a randomized, double-blind, sham-controlled crossover study involving the application of iTBS over the bilateral M1 (M1 iTBS). Patients on medication will be randomly assigned to receive real iTBS or control (sham) stimulation and will undergo 5 consecutive sessions (5 days) of iTBS over the bilateral M1 separated by a 3-month washout period. Motor evaluation will be performed at different follow-up visits along with a comprehensive neurocognitive assessment; evaluation of M1 excitability; combined structural magnetic resonance imaging (MRI), resting-state electroencephalography and functional MRI; and serum biomarker quantification of neuroaxonal damage, astrocytic reactivity, and neural plasticity prior to and after iTBS. Discussion The findings of this study will help to clarify the efficiency of M1 iTBS for the treatment of PD and further provide specific neurobiological insights into improvements in motor and nonmotor symptoms in these patients. This novel project aims to yield more detailed structural and functional brain evaluations than previous studies while using a noninvasive approach, with the potential to identify prognostic neuroprotective biomarkers and elucidate the structural and functional mechanisms of M1 iTBS-induced plasticity in the cortico-basal ganglia circuitry. Our approach may significantly optimize neuromodulation paradigms to ensure state-of-the-art and scalable rehabilitative treatment to alleviate motor and nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Raúl Rashid-López
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Paloma Macías-García
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - F. Luis Sánchez-Fernández
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Fátima Cano-Cano
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - Esteban Sarrias-Arrabal
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Florencia Sanmartino
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Constantino Méndez-Bértolo
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Elena Lozano-Soto
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Remedios Gutiérrez-Cortés
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - Álvaro González-Moraleda
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Lucía Forero
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Puerta del Mar University Hospital, Cadiz, Spain
| | - Fernando López-Sosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Amaya Zuazo
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Jaime Gómez-Ramírez
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
| | - José Paz-Expósito
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Raúl Espinosa-Rosso
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Neurology, Jerez de la Frontera University Hospital, Jerez de la Frontera, Spain
| | - Álvaro J. Cruz-Gómez
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Javier J. González-Rosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cadiz, Spain
- Department of Psychology, University of Cadiz, Cádiz, Spain
| |
Collapse
|
10
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
11
|
Numssen O, van der Burght CL, Hartwigsen G. Revisiting the focality of non-invasive brain stimulation - Implications for studies of human cognition. Neurosci Biobehav Rev 2023; 149:105154. [PMID: 37011776 PMCID: PMC10186117 DOI: 10.1016/j.neubiorev.2023.105154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Non-invasive brain stimulation techniques are popular tools to investigate brain function in health and disease. Although transcranial magnetic stimulation (TMS) is widely used in cognitive neuroscience research to probe causal structure-function relationships, studies often yield inconclusive results. To improve the effectiveness of TMS studies, we argue that the cognitive neuroscience community needs to revise the stimulation focality principle - the spatial resolution with which TMS can differentially stimulate cortical regions. In the motor domain, TMS can differentiate between cortical muscle representations of adjacent fingers. However, this high degree of spatial specificity cannot be obtained in all cortical regions due to the influences of cortical folding patterns on the TMS-induced electric field. The region-dependent focality of TMS should be assessed a priori to estimate the experimental feasibility. Post-hoc simulations allow modeling of the relationship between cortical stimulation exposure and behavioral modulation by integrating data across stimulation sites or subjects.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
12
|
Lee HJ, Woudsma KJ, Ishraq MF, Lin FH. Design of coil holder for the improved maneuvering in concurrent TMS-MRI. Brain Stimul 2023; 16:966-968. [PMID: 37271336 DOI: 10.1016/j.brs.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Concurrent transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) is time-consuming because of the limited space in the MRI bore and the sophisticated placement and orientation of the TMS coil to elicit the desired brain activities and behaviors. OBJECTIVE We developed a TMS coil holder capable of quick adjustment of the TMS coil position and orientation. The holder can also hold an MRI receiver coil array. METHODS A holder with one controlling knob, two omni-direction rotation joints, and two in-plane rotation joints was developed. RESULTS Different TMS coil positions and orientations can be arranged and fixed in seconds. The holder can also accommodate two TMS coils to allow for multi-coil TMS-MRI. CONCLUSION Our development significantly improves the workflow of the concurrent TMS-MRI in new neuroscience studies and clinical applications.
Collapse
Affiliation(s)
- Hsin-Ju Lee
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - K J Woudsma
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Fa-Hsuan Lin
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Xie JY, Li RH, Yuan W, Du J, Zhou DS, Cheng YQ, Xu XM, Liu H, Yuan TF. Advances in neuroimaging studies of alcohol use disorder (AUD). PSYCHORADIOLOGY 2022; 2:146-155. [PMID: 38665276 PMCID: PMC11003430 DOI: 10.1093/psyrad/kkac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 04/28/2024]
Abstract
Alcohol use disorder (AUD) is a worldwide problem and the most common substance use disorder. Chronic alcohol consumption may have negative effects on the body, the mind, the family, and even society. With the progress of current neuroimaging methods, an increasing number of imaging techniques are being used to objectively detect brain impairment induced by alcoholism and serve a vital role in the diagnosis, prognosis, and treatment assessment of AUD. This article organizes and analyzes the research on alcohol dependence concerning the main noninvasive neuroimaging methods, structural magnetic resonance imaging, functional magnetic resonance imaging, and electroencephalography, as well as the most common noninvasive brain stimulation - transcranial magnetic stimulation, and intersperses the article with joint intra- and intergroup studies, providing an outlook on future research directions.
Collapse
Affiliation(s)
- Ji-Yu Xie
- School of Mental Health, Wenzhou Medical University, Wenzho 325000, Zhejiangu, China
| | - Rui-Hua Li
- Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Wei Yuan
- Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315000, Zhejiang, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| | - Xue-Ming Xu
- Department of Psychiatry, Taizhou Second People's Hospital, Taizhou 318000, Zhejiang, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, Guizhou, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
14
|
Feredoes E. Developments in Transcranial Magnetic Stimulation to Study Human Cognition. J Cogn Neurosci 2022; 35:6-10. [PMID: 36223241 DOI: 10.1162/jocn_a_01923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Kaklauskas A, Abraham A, Ubarte I, Kliukas R, Luksaite V, Binkyte-Veliene A, Vetloviene I, Kaklauskiene L. A Review of AI Cloud and Edge Sensors, Methods, and Applications for the Recognition of Emotional, Affective and Physiological States. SENSORS (BASEL, SWITZERLAND) 2022; 22:7824. [PMID: 36298176 PMCID: PMC9611164 DOI: 10.3390/s22207824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Affective, emotional, and physiological states (AFFECT) detection and recognition by capturing human signals is a fast-growing area, which has been applied across numerous domains. The research aim is to review publications on how techniques that use brain and biometric sensors can be used for AFFECT recognition, consolidate the findings, provide a rationale for the current methods, compare the effectiveness of existing methods, and quantify how likely they are to address the issues/challenges in the field. In efforts to achieve the key goals of Society 5.0, Industry 5.0, and human-centered design better, the recognition of emotional, affective, and physiological states is progressively becoming an important matter and offers tremendous growth of knowledge and progress in these and other related fields. In this research, a review of AFFECT recognition brain and biometric sensors, methods, and applications was performed, based on Plutchik's wheel of emotions. Due to the immense variety of existing sensors and sensing systems, this study aimed to provide an analysis of the available sensors that can be used to define human AFFECT, and to classify them based on the type of sensing area and their efficiency in real implementations. Based on statistical and multiple criteria analysis across 169 nations, our outcomes introduce a connection between a nation's success, its number of Web of Science articles published, and its frequency of citation on AFFECT recognition. The principal conclusions present how this research contributes to the big picture in the field under analysis and explore forthcoming study trends.
Collapse
Affiliation(s)
- Arturas Kaklauskas
- Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Ajith Abraham
- Machine Intelligence Research Labs, Scientific Network for Innovation and Research Excellence, Auburn, WA 98071, USA
| | - Ieva Ubarte
- Institute of Sustainable Construction, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Romualdas Kliukas
- Department of Applied Mechanics, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Vaida Luksaite
- Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Arune Binkyte-Veliene
- Institute of Sustainable Construction, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Ingrida Vetloviene
- Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| | - Loreta Kaklauskiene
- Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
16
|
The effects of concurrent bilateral anodal tDCS of primary motor cortex and cerebellum on corticospinal excitability: a randomized, double-blind sham-controlled study. Brain Struct Funct 2022; 227:2395-2408. [PMID: 35984496 PMCID: PMC9418272 DOI: 10.1007/s00429-022-02533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1), and cerebellum (CB) can change the level of M1 corticospinal excitability (CSE). A randomized double-blinded crossover, the sham-controlled study design was used to investigate the effects of concurrent bilateral anodal tDCS of M1 and CB (concurrent bilateral a-tDCSM1+CB) on the CSE. Twenty-one healthy participants were recruited in this study. Each participant received anodal-tDCS (a-tDCS) of 2 mA, 20 min in four pseudo-randomized, counterbalanced sessions, separated by at least 7 days (7.11 days ± 0.65). These sessions were bilateral M1 stimulation (bilateral a-tDCSM1), bilateral cerebellar stimulation (bilateral a-tDCSCB), concurrent bilateral a-tDCSM1+CB, and sham stimulation (bilateral a-tDCSSham). Transcranial magnetic stimulation (TMS) was delivered over the left M1, and motor evoked potentials (MEPs) of a contralateral hand muscle were recorded before and immediately after the intervention to measure CSE changes. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) were assessed with paired-pulse TMS protocols. Anodal-tDCS significantly increased CSE after concurrent bilateral a-tDCSM1+CB and bilateral a-tDCSCB. Interestingly, CSE was decreased after bilateral a-tDCSM1. Respective alterations in SICI, LICI, and ICF were seen, including increased SICI and decreased ICF, which indicate the involvement of glutamatergic and GABAergic systems in these effects. These results confirm that the concurrent bilateral a-tDCSM1+CB have a facilitatory effect on CSE, whereas bilateral a-tDCSM1 exert some inhibitory effects. Moreover, the effects of the 2 mA, 20 min a-tDCS on the CB were consistent with its effects on the M1.
Collapse
|
17
|
The phase of sensorimotor mu and beta oscillations has the opposite effect on corticospinal excitability. Brain Stimul 2022; 15:1093-1100. [PMID: 35964870 DOI: 10.1016/j.brs.2022.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Neural oscillations in the primary motor cortex (M1) shape corticospinal excitability. Power and phase of ongoing mu (8-13 Hz) and beta (14-30 Hz) activity may mediate motor cortical output. However, the functional dynamics of both mu and beta phase and power relationships and their interaction, are largely unknown. OBJECTIVE Here, we employ recently developed real-time targeting of the mu and beta rhythm, to apply phase-specific brain stimulation and probe motor corticospinal excitability non-invasively. For this, we used instantaneous read-out and analysis of ongoing oscillations, targeting four different phases (0°, 90°, 180°, and 270°) of mu and beta rhythms with suprathreshold single-pulse transcranial magnetic stimulation (TMS) to M1. Ensuing motor evoked potentials (MEPs) in the right first dorsal interossei muscle were recorded. Twenty healthy adults took part in this double-blind randomized crossover study. RESULTS Mixed model regression analyses showed significant phase-dependent modulation of corticospinal output by both mu and beta rhythm. Strikingly, these modulations exhibit a double dissociation. MEPs are larger at the mu trough and rising phase and smaller at the peak and falling phase. For the beta rhythm we found the opposite behavior. Also, mu power, but not beta power, was positively correlated with corticospinal output. Power and phase effects did not interact for either rhythm, suggesting independence between these aspects of oscillations. CONCLUSION Our results provide insights into real-time motor cortical oscillation dynamics, which offers the opportunity to improve the effectiveness of TMS by specifically targeting different frequency bands.
Collapse
|
18
|
Rafiei F, Rahnev D. TMS Does Not Increase BOLD Activity at the Site of Stimulation: A Review of All Concurrent TMS-fMRI Studies. eNeuro 2022; 9:ENEURO.0163-22.2022. [PMID: 35981879 PMCID: PMC9410768 DOI: 10.1523/eneuro.0163-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely used for understanding brain function in neurologically intact subjects and for the treatment of various disorders. However, the precise neurophysiological effects of TMS at the site of stimulation remain poorly understood. The local effects of TMS can be studied using concurrent TMS-functional magnetic resonance imaging (fMRI), a technique where TMS is delivered during fMRI scanning. However, although concurrent TMS-fMRI was developed over 20 years ago and dozens of studies have used this technique, there is still no consensus on whether TMS increases blood oxygen level-dependent (BOLD) activity at the site of stimulation. To address this question, here we review all previous concurrent TMS-fMRI studies that reported analyses of BOLD activity at the target location. We find evidence that TMS increases local BOLD activity when stimulating the primary motor (M1) and visual (V1) cortices but that these effects are likely driven by the downstream consequences of TMS (finger twitches and phosphenes). However, TMS does not appear to increase BOLD activity at the site of stimulation for areas outside of the M1 and V1 when conducted at rest. We examine the possible reasons for such lack of BOLD signal increase based on recent work in nonhuman animals. We argue that the current evidence points to TMS inducing periods of increased and decreased neuronal firing that mostly cancel each other out and therefore lead to no change in the overall BOLD signal.
Collapse
Affiliation(s)
- Farshad Rafiei
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30313
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30313
| |
Collapse
|
19
|
Mills-Finnerty C, Frangos E, Allen K, Komisaruk B, Wise N. Functional Magnetic Resonance Imaging Studies in Sexual Medicine: A Primer. J Sex Med 2022; 19:1073-1089. [DOI: 10.1016/j.jsxm.2022.03.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
|
20
|
Klooster DCW, Ferguson MA, Boon PAJM, Baeken C. Personalizing Repetitive Transcranial Magnetic Stimulation Parameters for Depression Treatment Using Multimodal Neuroimaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:536-545. [PMID: 34800726 DOI: 10.1016/j.bpsc.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/24/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a tool that can be used to administer treatment for neuropsychiatric disorders such as major depressive disorder, although the clinical efficacy is still rather modest. Overly general stimulation protocols that consider neither patient-specific depression symptomology nor individualized brain characteristics, such as anatomy or structural and functional connections, may be the cause of the high inter- and intraindividual variability in rTMS clinical responses. Multimodal neuroimaging can provide the necessary insights into individual brain characteristics and can therefore be used to personalize rTMS parameters. Optimal coil positioning should include a three-step process: 1) identify the optimal (indirect) target area based on the exact symptom pattern of the patient; 2) derive the cortical (direct) target location based on functional and/or structural connectomes derived from functional and diffusion magnetic resonance imaging data; and 3) determine the ideal coil position by computational modeling, such that the electric field distribution overlaps with the cortical target. These TMS-induced electric field simulations, derived from anatomical and diffusion magnetic resonance imaging data, can be further applied to compute optimal stimulation intensities. In addition to magnetic resonance imaging, electroencephalography can provide complementary information regarding the ongoing brain oscillations. This information can be used to determine the optimal timing and frequency of the stimuli. The heightened benefits of these personalized stimulation approaches are logically reasoned, but speculative. Randomized clinical trials will be required to compare clinical responses from standard rTMS protocols to personalized protocols. Ultimately, an optimized clinical response may result from precision protocols derived from combinations of personalized stimulation parameters.
Collapse
Affiliation(s)
- Deborah C W Klooster
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium.
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul A J M Boon
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium; Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Chris Baeken
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Ghent Experimental Psychiatry Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital Brussels, Jette, Belgium
| |
Collapse
|
21
|
State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci 2022; 23:459-475. [PMID: 35577959 DOI: 10.1038/s41583-022-00598-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition. Here we review the concept of such 'state-dependent' changes in brain activity in response to neural stimulation, and consider examples from research on altered states of consciousness (for example, sleep and anaesthesia) and from task-based manipulations of selective attention and working memory. We relate relevant findings from non-invasive methods used in humans to those obtained from direct electrical and optogenetic stimulation of neuronal ensembles in animal models. Given the widespread use of brain stimulation as a research tool in the laboratory and as a means of augmenting or restoring brain function, consideration of the influence of changing physiological and cognitive states is crucial for increasing the reliability of these interventions.
Collapse
|
22
|
Zhang H, Zhao Y, Qu Y, Huang Y, Chen Z, Lan H, Peng Y, Ren H. The Effect of Repetitive Transcranial Magnetic Stimulation (rTMS) on Cognition in Patients With Traumatic Brain Injury: A Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:832818. [PMID: 35432165 PMCID: PMC9005968 DOI: 10.3389/fneur.2022.832818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive impairment, defined as a decline in memory and executive function, is one of the most severe complications of traumatic brain injury (TBI). Patients with TBI are often unable to return to work due to cognitive impairment and their overall quality of life is reduced. TBI can bring a serious economic burden to patient's families and to society. Reported findings on the efficacy of repetitive transcranial magnetic stimulation (rTMS) in improving cognitive impairment following TBI are inconsistent. The purpose of the proposed study is to investigate whether rTMS can improve memory and executive function in patients with TBI. Herein, we propose a prospective randomized placebo-controlled (rTMS, sham rTMS, cognitive training), parallel-group, single-center trial. 36 participants with a TBI occurring at least 6 months prior will be recruited from an inpatient rehabilitation center. Participants will be randomly assigned to the real rTMS, sham rTMS, or cognitive training groups with a ratio of 1:1:1. A 20-session transcranial magnetic stimulation protocol will be applied to the left and right dorsolateral prefrontal cortices (DLPFC) at frequencies of 10 Hz and 1 Hz, respectively. Neuropsychological assessments will be performed at four time points: baseline, after the 10th rTMS session, after the 20th rTMS session, and 30 days post-intervention. The primary outcome is change in executive function assessed using the Shape Trail Test (STT). The secondary outcome measures are measures from neuropsychological tests: the Hopkins Verbal Learning Test (HVLT), the Brief Visuospatial Memory Test (BVMT), the Digit Span Test (DST). We report on positive preliminary results in terms of improving memory and executive function as well as beneficial changes in brain connectivity among TBI patients undergoing rTMS and hypothesize that we will obtain similar results in the proposed study.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yun Qu
| | - Yunyun Huang
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhu Chen
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hong Lan
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yi Peng
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hongying Ren
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| |
Collapse
|
23
|
Warbrick T. Simultaneous EEG-fMRI: What Have We Learned and What Does the Future Hold? SENSORS (BASEL, SWITZERLAND) 2022; 22:2262. [PMID: 35336434 PMCID: PMC8952790 DOI: 10.3390/s22062262] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023]
Abstract
Simultaneous EEG-fMRI has developed into a mature measurement technique in the past 25 years. During this time considerable technical and analytical advances have been made, enabling valuable scientific contributions to a range of research fields. This review will begin with an introduction to the measurement principles involved in EEG and fMRI and the advantages of combining these methods. The challenges faced when combining the two techniques will then be considered. An overview of the leading application fields where EEG-fMRI has made a significant contribution to the scientific literature and emerging applications in EEG-fMRI research trends is then presented.
Collapse
Affiliation(s)
- Tracy Warbrick
- Brain Products GmbH, Zeppelinstrasse 7, 82205 Gilching, Germany
| |
Collapse
|
24
|
Cohen AL. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments. J Neurodev Disord 2022; 14:19. [PMID: 35279095 PMCID: PMC8918299 DOI: 10.1186/s11689-022-09433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
A wide variety of model systems and experimental techniques can provide insight into the structure and function of the human brain in typical development and in neurodevelopmental disorders. Unfortunately, this work, whether based on manipulation of animal models or observational and correlational methods in humans, has a high attrition rate in translating scientific discovery into practicable treatments and therapies for neurodevelopmental disorders.With new computational and neuromodulatory approaches to interrogating brain networks, opportunities exist for "bedside-to bedside-translation" with a potentially shorter path to therapeutic options. Specifically, methods like lesion network mapping can identify brain networks involved in the generation of complex symptomatology, both from acute onset lesion-related symptoms and from focal developmental anomalies. Traditional neuroimaging can examine the generalizability of these findings to idiopathic populations, while non-invasive neuromodulation techniques such as transcranial magnetic stimulation provide the ability to do targeted activation or inhibition of these specific brain regions and networks. In parallel, real-time functional MRI neurofeedback also allow for endogenous neuromodulation of specific targets that may be out of reach for transcranial exogenous methods.Discovery of novel neuroanatomical circuits for transdiagnostic symptoms and neuroimaging-based endophenotypes may now be feasible for neurodevelopmental disorders using data from cohorts with focal brain anomalies. These novel circuits, after validation in large-scale highly characterized research cohorts and tested prospectively using noninvasive neuromodulation and neurofeedback techniques, may represent a new pathway for symptom-based targeted therapy.
Collapse
Affiliation(s)
- Alexander Li Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Momi D, Ozdemir RA, Tadayon E, Boucher P, Di Domenico A, Fasolo M, Shafi MM, Pascual-Leone A, Santarnecchi E. Phase-dependent local brain states determine the impact of image-guided transcranial magnetic stimulation on motor network electroencephalographic synchronization. J Physiol 2022; 600:1455-1471. [PMID: 34799873 PMCID: PMC9728936 DOI: 10.1113/jp282393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
Recent studies have synchronized transcranial magnetic stimulation (TMS) application with pre-defined brain oscillatory phases showing how brain response to perturbation depends on the brain state. However, none have investigated whether phase-dependent TMS can possibly modulate connectivity with homologous distant brain regions belonging to the same network. In the framework of network-targeted TMS, we investigated whether stimulation delivered at a specific phase of ongoing brain oscillations might favour stronger cortico-cortical (c-c) synchronization of distant network nodes connected to the stimulation target. Neuronavigated TMS pulses were delivered over the primary motor cortex (M1) during ongoing electroencephalography recording in 24 healthy individuals over two repeated sessions 1 month apart. Stimulation effects were analysed considering whether the TMS pulse was delivered at the time of a positive (peak) or negative (trough) phase of μ-frequency oscillation, which determines c-c synchrony within homologous areas of the sensorimotor network. Diffusion weighted imaging was used to study c-c connectivity within the sensorimotor network and identify contralateral regions connected with the stimulation spot. Depending on when during the μ-activity the TMS-pulse was applied (peak or trough), its impact on inter-hemispheric network synchrony varied significantly. Higher M1-M1 phase-lock synchronization after the TMS-pulse (0-200 ms) in the μ-frequency band was found for trough compared to peak stimulation trials in both study visits. Phase-dependent TMS delivery might be crucial not only to amplify local effects but also to increase the magnitude and reliability of the response to the external perturbation, with implications for interventions aimed at engaging more distributed functional brain networks. KEY POINTS: Synchronized transcranial magnetic stimulation (TMS) pulses with pre-defined brain oscillatory phases allow evaluation of the impact of brain states on TMS effects. TMS pulses over M1 at the negative peak of the μ-frequency band induce higher phase-lock synchronization with interconnected contralateral homologous regions. Cortico-cortical synchronization changes are linearly predicted by the fibre density and cross-section of the white matter tract that connects the two brain regions. Phase-dependent TMS delivery might be crucial not only to amplify local effects but also to increase the magnitude and reliability of within-network synchronization.
Collapse
Affiliation(s)
- Davide Momi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti
| | - Recep A. Ozdemir
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ehsan Tadayon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pierre Boucher
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alberto Di Domenico
- Department of Psychological Science, Humanities and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Mirco Fasolo
- Department of Psychological Science, Humanities and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston MA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Guttmann Brain Health Institute, Guttmann Institut, Universitat Autonoma, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Leodori G, De Bartolo MI, Guerra A, Fabbrini A, Rocchi L, Latorre A, Paparella G, Belvisi D, Conte A, Bhatia KP, Rothwell JC, Berardelli A. Motor Cortical Network Excitability in Parkinson's Disease. Mov Disord 2022; 37:734-744. [PMID: 35001420 DOI: 10.1002/mds.28914] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Motor impairment in Parkinson's disease (PD) reflects changes in the basal ganglia-thalamocortical circuit converging on the primary motor cortex (M1) and supplementary motor area (SMA). Previous studies assessed M1 excitability in PD using transcranial magnetic stimulation (TMS)-evoked electromyographic activity. TMS-evoked electroencephalographic activity may unveil broader motor cortical network changes in PD. OBJECTIVE The aim was to assess motor cortical network excitability in PD. METHODS We compared TMS-evoked cortical potentials (TEPs) from M1 and the pre-SMA between 20 PD patients tested off and on medication and 19 healthy controls (HCs) and investigated possible correlations with bradykinesia. RESULTS Off PD patients compared to HCs had smaller P30 responses from the M1s contralateral (M1+) and ipsilateral (M1-) to the most bradykinetic side and increased pre-SMA N40. Dopaminergic therapy normalized the amplitude of M1+ and M1- P30 as well as pre-SMA N40. We found a positive correlation between M1+ P30 amplitude and bradykinesia in off PD patients. CONCLUSIONS Changes in M1 P30 and pre-SMA N40 in PD suggest that M1 excitability is reduced on both sides, whereas pre-SMA excitability is increased. The effect of dopaminergic therapy and the clinical correlation suggest that these cortical changes may reflect abnormal basal ganglia-thalamocortical activity. TMS electroencephalography provides novel insight into motor cortical network changes related to the pathophysiology of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Mizutani-Tiebel Y, Tik M, Chang KY, Padberg F, Soldini A, Wilkinson Z, Voon CC, Bulubas L, Windischberger C, Keeser D. Concurrent TMS-fMRI: Technical Challenges, Developments, and Overview of Previous Studies. Front Psychiatry 2022; 13:825205. [PMID: 35530029 PMCID: PMC9069063 DOI: 10.3389/fpsyt.2022.825205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a promising treatment modality for psychiatric and neurological disorders. Repetitive TMS (rTMS) is widely used for the treatment of psychiatric and neurological diseases, such as depression, motor stroke, and neuropathic pain. However, the underlying mechanisms of rTMS-mediated neuronal modulation are not fully understood. In this respect, concurrent or simultaneous TMS-fMRI, in which TMS is applied during functional magnetic resonance imaging (fMRI), is a viable tool to gain insights, as it enables an investigation of the immediate effects of TMS. Concurrent application of TMS during neuroimaging usually causes severe artifacts due to magnetic field inhomogeneities induced by TMS. However, by carefully interleaving the TMS pulses with MR signal acquisition in the way that these are far enough apart, we can avoid any image distortions. While the very first feasibility studies date back to the 1990s, recent developments in coil hardware and acquisition techniques have boosted the number of TMS-fMRI applications. As such, a concurrent application requires expertise in both TMS and MRI mechanisms and sequencing, and the hurdle of initial technical set up and maintenance remains high. This review gives a comprehensive overview of concurrent TMS-fMRI techniques by collecting (1) basic information, (2) technical challenges and developments, (3) an overview of findings reported so far using concurrent TMS-fMRI, and (4) current limitations and our suggestions for improvement. By sharing this review, we hope to attract the interest of researchers from various backgrounds and create an educational knowledge base.
Collapse
Affiliation(s)
- Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Martin Tik
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Kai-Yen Chang
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Aldo Soldini
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Zane Wilkinson
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Cui Ci Voon
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Christian Windischberger
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Neuroimaging Core Unit Munich - NICUM, University Hospital LMU, Munich, Germany.,Department of Radiology, University Hospital LMU, Munich, Germany
| |
Collapse
|
28
|
Janssens SEW, Sack AT. Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 2021; 15:802244. [PMID: 34924982 PMCID: PMC8674306 DOI: 10.3389/fnhum.2021.802244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Collapse
Affiliation(s)
- Shanice E. W. Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Centre for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
29
|
da Silva Machado CB, da Silva LM, Gonçalves AF, Andrade PRD, Mendes CKTT, de Assis TJCF, Godeiro Júnior CDO, Andrade SM. Multisite non-invasive brain stimulation in Parkinson's disease: A scoping review. NeuroRehabilitation 2021; 49:515-531. [PMID: 34776426 PMCID: PMC8764602 DOI: 10.3233/nre-210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND: Parkinson’s disease (PD) is a progressive neurodegenerative disorder, characterized by cardinal motor symptoms in addition to cognitive impairment. New insights concerning multisite non-invasive brain stimulation effects have been gained, which can now be used to develop innovative treatment approaches. OBJECTIVE: Map the researchs involving multisite non-invasive brain stimulation in PD, synthesize the available evidence and discuss future directions. METHODS: The databases PubMed, PsycINFO, CINAHL, LILACS and The Cochrane Library were searched from inception until April 2020, without restrictions on the date of publication or the language in which it was published. The reviewers worked in pairs and sequentially evaluated the titles, abstracts and then the full text of all publications identified as potentially relevant. RESULTS: Twelve articles met the inclusion criteria. The target brain regions included mainly the combination of a motor and a frontal area, such as stimulation of the primary motor córtex associated with the dorsolateral prefrontal cortex. Most of the trials showed that this modality was only more effective for the motor component, or for the cognitive and/or non-motor, separately. CONCLUSIONS: Despite the results being encouraging for the use of the multisite aproach, the indication for PD management should be carried out with caution and deserves scientific deepening.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clécio de Oliveira Godeiro Júnior
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, La Tronche, Grenoble, France.,Division of Neurology, Hospital Universitario Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
30
|
Schilberg L, Ten Oever S, Schuhmann T, Sack AT. Phase and power modulations on the amplitude of TMS-induced motor evoked potentials. PLoS One 2021; 16:e0255815. [PMID: 34529682 PMCID: PMC8445484 DOI: 10.1371/journal.pone.0255815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
The evaluation of transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) promises valuable information about fundamental brain related mechanisms and may serve as a diagnostic tool for clinical monitoring of therapeutic progress or surgery procedures. However, reports about spontaneous fluctuations of MEP amplitudes causing high intra-individual variability have led to increased concerns about the reliability of this measure. One possible cause for high variability of MEPs could be neuronal oscillatory activity, which reflects fluctuations of membrane potentials that systematically increase and decrease the excitability of neuronal networks. Here, we investigate the dependence of MEP amplitude on oscillation power and phase by combining the application of single pulse TMS over the primary motor cortex with concurrent recordings of electromyography and electroencephalography. Our results show that MEP amplitude is correlated to alpha phase, alpha power as well as beta phase. These findings may help explain corticospinal excitability fluctuations by highlighting the modulatory effect of alpha and beta phase on MEPs. In the future, controlling for such a causal relationship may allow for the development of new protocols, improve this method as a (diagnostic) tool and increase the specificity and efficacy of general TMS applications.
Collapse
Affiliation(s)
- Lukas Schilberg
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021; 18. [PMID: 34284369 PMCID: PMC8840800 DOI: 10.1088/1741-2552/ac160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment. Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes. Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches. Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- Hung-Yun Lu
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America
| | - Elizabeth S Lorenc
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Hanlin Zhu
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Justin Kilmarx
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America
| | - James Sulzer
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Chong Xie
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Philippe N Tobler
- University of Zurich, Neuroeconomics and Social Neuroscience, Zurich, Switzerland
| | - Andrew J Watrous
- The University of Texas at Austin, Neurology, Austin, TX, United States of America
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, WA, United States of America.,University of Washington, Bioengineering, Seattle, WA, United States of America.,Washington National Primate Research Center, Seattle, WA, United States of America
| | - Jarrod Lewis-Peacock
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Samantha R Santacruz
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| |
Collapse
|
32
|
Oathes DJ, Balderston NL, Kording KP, DeLuisi JA, Perez GM, Medaglia JD, Fan Y, Duprat RJ, Satterthwaite TD, Sheline YI, Linn KA. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 12:e1553. [PMID: 33470055 DOI: 10.1002/wcs.1553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Combining transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging offers an unprecedented tool for studying how brain networks interact in vivo and how repetitive trains of TMS modulate those networks among patients diagnosed with affective disorders. TMS compliments neuroimaging by allowing the interrogation of causal control among brain circuits. Together with TMS, neuroimaging can provide valuable insight into the mechanisms underlying treatment effects and downstream circuit communication. Here we provide a background of the method, review relevant study designs, consider methodological and equipment options, and provide statistical recommendations. We conclude by describing emerging approaches that will extend these tools into exciting new applications. This article is categorized under: Psychology > Emotion and Motivation Psychology > Theory and Methods Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A DeLuisi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gianna M Perez
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Romain J Duprat
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kristin A Linn
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Scrivener CL. When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI. Front Neurosci 2021; 15:636424. [PMID: 34267620 PMCID: PMC8276697 DOI: 10.3389/fnins.2021.636424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide non-invasive measures of brain activity at varying spatial and temporal scales, offering different views on brain function for both clinical and experimental applications. Simultaneous recording of these measures attempts to maximize the respective strengths of each method, while compensating for their weaknesses. However, combined recording is not necessary to address all research questions of interest, and experiments may have greater statistical power to detect effects by maximizing the signal-to-noise ratio in separate recording sessions. While several existing papers discuss the reasons for or against combined recording, this article aims to synthesize these arguments into a flow chart of questions that researchers can consider when deciding whether to record EEG and fMRI separately or simultaneously. Given the potential advantages of simultaneous EEG-fMRI, the aim is to provide an initial overview of the most important concepts and to direct readers to relevant literature that will aid them in this decision.
Collapse
Affiliation(s)
- Catriona L. Scrivener
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Momi D, Ozdemir RA, Tadayon E, Boucher P, Di Domenico A, Fasolo M, Shafi MM, Pascual-Leone A, Santarnecchi E. Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions. Sci Rep 2021; 11:12458. [PMID: 34127688 PMCID: PMC8203778 DOI: 10.1038/s41598-021-90663-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced
signal propagation after perturbation of two distinct brain networks. For this purpose,
24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over
cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.
Collapse
Affiliation(s)
- Davide Momi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Recep A Ozdemir
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ehsan Tadayon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pierre Boucher
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences , University of Chieti-Pescara, Chieti, Italy
| | - Mirco Fasolo
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Mouhsin M Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Guttmann Brain Health Institute, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.
| |
Collapse
|
35
|
Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage 2021; 237:118093. [PMID: 33940146 DOI: 10.1016/j.neuroimage.2021.118093] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The experimental manipulation of neural activity by neurostimulation techniques overcomes the inherent limitations of correlative recordings, enabling the researcher to investigate causal brain-behavior relationships. But only when stimulation and recordings are combined, the direct impact of the stimulation on neural activity can be evaluated. In humans, this can be achieved non-invasively through the concurrent combination of transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging (fMRI). Concurrent TMS-fMRI allows the assessment of the neurovascular responses evoked by TMS with excellent spatial resolution and full-brain coverage. This enables the functional mapping of both local and remote network effects of TMS in cortical as well as deep subcortical structures, offering unique opportunities for basic research and clinical applications. The purpose of this review is to introduce the reader to this powerful tool. We will introduce the technical challenges and state-of-the art solutions and provide a comprehensive overview of the existing literature and the available experimental approaches. We will highlight the unique insights that can be gained from concurrent TMS-fMRI, including the state-dependent assessment of neural responsiveness and inter-regional effective connectivity, the demonstration of functional target engagement, and the systematic evaluation of stimulation parameters. We will also discuss how concurrent TMS-fMRI during a behavioral task can help to link behavioral TMS effects to changes in neural network activity and to identify peripheral co-stimulation confounds. Finally, we will review the use of concurrent TMS-fMRI for developing TMS treatments of psychiatric and neurological disorders and suggest future improvements for further advancing the application of concurrent TMS-fMRI.
Collapse
Affiliation(s)
- Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany.
| | - Rathiga Varatheeswaran
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
36
|
Yeager B, Dougher C, Cook R, Medaglia J. The role of transcranial magnetic stimulation in understanding attention-related networks in single subjects. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100017. [PMID: 36246510 PMCID: PMC9559099 DOI: 10.1016/j.crneur.2021.100017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Attention is a cognitive mechanism that has been studied through several methodological viewpoints, including animal models, MRI in stroke patients, and fMRI in healthy subjects. Activation-based fMRI research has also pointed to specific networks that activate during attention tasks. Most recently, network neuroscience has been used to study the functional connectivity of large-scale networks for attention to reveal how strongly correlated networks are to each other when engaged in specific behaviors. While neuroimaging has revealed important information about the neural correlates of attention, it is crucial to better understand how these processes are organized and executed in the brain in single subjects to guide theories and treatments for attention. Noninvasive brain stimulation is an effective tool to causally manipulate neural activity to detect the causal roles of circuits in behavior. We describe how combining transcranial magnetic stimulation (TMS) with modern precision network analysis in single-subject neuroimaging could test the roles of regions, circuits, and networks in regulating attention as a pathway to improve treatment effect magnitudes and specificity. Though studied for over 100 years, the brain basis of attention is still queried. Complexity in frameworks for attention makes brain mapping difficult. Relevant brain networks vary significantly across subjects, challenging progress. Single-subject neuroimaging with TMS can improve our understanding of attention.
Collapse
Affiliation(s)
- B.E. Yeager
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
- Corresponding author.
| | - C.C. Dougher
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
| | - R.H. Cook
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
| | - J.D. Medaglia
- Department of Psychology, Drexel University, Stratton Hall, 3201 Chestnut Street, Philadelphia, PA, 19104, USA
- Department of Neurology, Drexel University College of Medicine, 245 N. 15th Street, Mail Stop 423, New College Building, Suite 7102, Philadelphia, PA, 19102, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|