1
|
Hama S, Watanabe-Takahashi M, Nishimura H, Omi J, Tamada M, Saitoh T, Maenaka K, Okuda Y, Ikegami A, Kitagawa A, Furuta K, Izumi K, Shimizu E, Nishizono T, Fujiwara M, Miyasaka T, Takamori S, Takayanagi H, Nishikawa K, Kobayashi T, Toyama-Sorimachi N, Yamashita M, Senda T, Hirokawa T, Bito H, Nishikawa K. CaMKII-dependent non-canonical RIG-I pathway promotes influenza virus propagation in the acute-phase of infection. mBio 2024:e0008724. [PMID: 39601535 DOI: 10.1128/mbio.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is one of hundreds of host-cell factors involved in the propagation of type A influenza virus (IAV), although its mechanism of action is unknown. Here, we identified CaMKII inhibitory peptide M3 by targeting its kinase domain using affinity-based screening of a tailored random peptide library. M3 inhibited IAV cytopathicity and propagation in cells by specifically inhibiting the acute-phase activation of retinoic acid-inducible gene I (RIG-I), which is uniquely regulated by CaMKII. Downstream of the RIG-I pathway activated TBK1 and then IRF3, which induced small but sufficient amounts of transcripts of the genes for IFN α/β to provide the capped 5'-ends that were used preferentially as primers to synthesize viral mRNAs by the cap-snatching mechanism. Importantly, knockout of RIG-I in cells almost completely inhibited the expression of IFN mRNAs and subsequent viral NP mRNA early in infection (up to 6 h after infection), which then protected cells from cytopathicity 24 h after infection. Thus, CaMKII-dependent acute-phase activation of RIG-I promoted IAV propagation, whereas the canonical RIG-I pathway stimulated antiviral activity by inducing large amounts of mRNA for IFNs and then for antiviral proteins later in infection. Co-administration of M3 with IAV infection rescued mice from the lethality and greatly reduced proinflammatory cytokine mRNA expression in the lung, indicating that M3 is highly effective against IAV in vivo. Thus, regulation of the CaMKII-dependent non-canonical RIG-I pathway may provide a novel host-factor-directed antiviral therapy.IMPORTANCEThe recent emergence of IAV strains resistant to commonly used therapeutic agents that target viral proteins has exacerbated the need for innovative strategies. Here, we originally identified CaMKII-inhibitory peptide M3, which efficiently inhibits IAV-lethality in vitro and in vivo. M3 specifically inhibited the acute-phase activation of RIG-I, which is a novel pathway to promote IAV propagation. Thus, this pathway acts in an opposite manner compared with the canonical RIG-I pathway, which plays essential roles in antiviral innate immune response later in infection. The CaMKII-dependent non-canonical RIG-I pathway can be a promising and novel drug target for the treatment of infections.
Collapse
Affiliation(s)
- Shinichiro Hama
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hiroki Nishimura
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masakazu Tamada
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takashi Saitoh
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuta Okuda
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Aoi Ikegami
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Asami Kitagawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Koudai Furuta
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kana Izumi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Eiko Shimizu
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takashi Nishizono
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makoto Fujiwara
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tomohiro Miyasaka
- Department of Physiology and Anatomy, Faculty of Pharmacy, Nihon University, Funabashi, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keizo Nishikawa
- Department of Cell Biology and Metabolic Biochemistry, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Toshihiko Kobayashi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
2
|
Watanabe-Takahashi M, Tanigawa T, Hamabata T, Nishikawa K. A tetravalent peptide efficiently inhibits the intestinal toxicity of heat-labile enterotoxin by targeting the receptor-binding region of the B-subunit pentamer. Biochem Biophys Res Commun 2024; 734:150769. [PMID: 39369542 DOI: 10.1016/j.bbrc.2024.150769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Infection by enterotoxigenic Escherichia coli (ETEC) causes severe watery diarrhea and dehydration in humans. Heat-labile enterotoxin (LT) is a major virulence factor produced by ETEC. LT is one of AB5-type toxins, such as Shiga toxin (Stx) and cholera toxin (Ctx), and the B-subunit pentamer is responsible for high affinity binding to the LT-receptor, ganglioside GM1, through multivalent interaction. In this report, we found that Glu51 of the B-subunit plays an essential role in receptor binding compared with other amino acids, such as Glu11, Arg13, and Lys91, all of which were previously shown to be involved in the binding. By targeting Glu51, we identified four tetravalent peptides that specifically bind to the B-subunit pentamer with high affinity by screening tetravalent random-peptide libraries, which were tailored to bind to the B-subunit through multivalent interaction. One of these peptides, GGR-tet, efficiently inhibited the cell-elongation phenotype and the elevation of cellular cAMP levels, both induced by LT. Furthermore, GGR-tet markedly inhibited LT-induced fluid accumulation in the mouse ileum. Thus, GGR-tet represents a novel therapeutic agent against ETEC infection.
Collapse
Affiliation(s)
- Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| | - Tetsuya Tanigawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takashi Hamabata
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
3
|
Madasu PK, Chandran T. Structural insights into the toxicity of type II ribosome inactivating proteins (RIPs): a molecular dynamics study. J Biomol Struct Dyn 2024:1-12. [PMID: 39466135 DOI: 10.1080/07391102.2024.2419855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/17/2024] [Indexed: 10/29/2024]
Abstract
Ribosome Inactivating Proteins (RIPs) act by irreversibly depurinating the 28S rRNA ricin-sarcin loop (SRL) of the eukaryotic ribosome resulting in protein synthesis inhibition. In general, they consist of two variants: Type I which is single chained (∼30 kDa), and Type II, a more toxic variant which is a Type I N-glycosidase chain covalently linked to a lectin chain. These proteins are believed to play a pivotal role in defence mechanisms. Intriguingly, non-toxic variants of such toxic proteins do exist in nature. To explore their mode of action, in the present study we have selected three toxic (Ricin, Ebulin and HmRIP) as well as two non-toxic (BGSL and SGSL) RIPs and performed molecular docking and molecular dynamic simulations with the SRL loop. This study throws light on the structural stability and plasticity of the toxic and non-toxic RIP complexes. Furthermore, analysis of the active site cavity volume and binding free energy calculations reveal that the SRL, particularly the specific adenine (A4605), is relatively unstable in the case of non-toxic RIPs which is also supported by the free binding energy calculations, and the pocket size analysis indicates the abnormal increase in active site cavity volume of non-toxic RIPs with time. This first-of-its-kind comprehensive study of toxic and non-toxic RIPs gives insights about the mode of action and the dynamic nature of their interaction with the SRL loop. These observations will be helpful in the development of toxoids against RIPs and also in designing novel therapeutic approaches against human diseases.
Collapse
Affiliation(s)
- Pavan K Madasu
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Thyageshwar Chandran
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
4
|
Koizumi N, Hirai T, Kano J, Sato A, Suzuki Y, Sasaki A, Nomura T, Utoguchi N. Utilizing Adenovirus Knob Proteins as Carriers in Cancer Gene Therapy Amidst the Presence of Anti-Knob Antibodies. Int J Mol Sci 2024; 25:10679. [PMID: 39409008 PMCID: PMC11476472 DOI: 10.3390/ijms251910679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Numerous gene therapy drugs for cancer have received global approval, yet their efficacy against solid tumors remains inadequate. Our previous research indicated that the fiber protein, a component of the adenovirus capsid, can propagate from infected cells to neighboring cells that express the adenovirus receptor. We hypothesize that merging this fiber protein with an anti-cancer protein could enable the anti-cancer protein to disseminate around the transfected cells, presenting a novel approach to cancer gene therapy. In our study, we discovered that the knob region of the adenovirus type 5 fiber protein is the smallest unit capable of spreading to adjacent cells in a receptor-specific manner. We also showed that the recombinant knob protein infiltrates cells after dispersing to surrounding cells. To assess the potential of the knob protein to augment gene therapy for solid tumors in mice, we expressed a fusion gene of the A subunit of cytotoxic cholera toxin and the knob region in mouse tumors. We found that this fusion protein only inhibited tumor growth in receptor-expressing mouse melanomas, and this inhibitory effect persisted even in mice with anti-knob antibodies. Our study's findings propose a novel cancer gene therapy strategy that enhances therapeutic effects by specifically delivering therapeutic proteins, expressed from in vivo administered genes, to target molecules. This outcome offers a fresh perspective on gene therapy for solid cancers, and we anticipate that knob proteins will serve as a platform for this method.
Collapse
Affiliation(s)
- Naoya Koizumi
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Takamasa Hirai
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Junpei Kano
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Anna Sato
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Yurika Suzuki
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Arisa Sasaki
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Tetsuya Nomura
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Naoki Utoguchi
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| |
Collapse
|
5
|
Watanabe-Takahashi M, Kumoi K, Yamamoto H, Shimizu E, Motoyama J, Hamabata T, Nishikawa K. Tailored multivalent peptide targeting the B-subunit pentamer of cholera toxin inhibits its intestinal toxicity by inducing aberrant transport of the toxin in cells. Biochem Biophys Res Commun 2024; 716:149991. [PMID: 38704888 DOI: 10.1016/j.bbrc.2024.149991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.
Collapse
Affiliation(s)
- Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| | - Kahori Kumoi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hiroshi Yamamoto
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Eiko Shimizu
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Takashi Hamabata
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
6
|
Tamura A, Azam AH, Nakamura T, Lee K, Iyoda S, Kondo K, Ojima S, Chihara K, Yamashita W, Cui L, Akeda Y, Watashi K, Takahashi Y, Yotsuyanagi H, Kiga K. Synthetic phage-based approach for sensitive and specific detection of Escherichia coli O157. Commun Biol 2024; 7:535. [PMID: 38710842 PMCID: PMC11074155 DOI: 10.1038/s42003-024-06247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.
Collapse
Affiliation(s)
- Azumi Tamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Nakamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kohei Kondo
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kotaro Chihara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Wakana Yamashita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| |
Collapse
|
7
|
Sato W, Watanabe-Takahashi M, Murata T, Utsunomiya-Tate N, Motoyama J, Anzai M, Ishihara S, Nishioka N, Uchiyama H, Togashi J, Nishihara S, Kawasaki K, Saito T, Saido TC, Funamoto S, Nishikawa K. A tailored tetravalent peptide displays dual functions to inhibit amyloid β production and aggregation. Commun Biol 2023; 6:383. [PMID: 37031306 PMCID: PMC10082830 DOI: 10.1038/s42003-023-04771-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Inhibition of amyloid-β peptide (Aβ) accumulation in the brain is a promising approach for treatment of Alzheimer's disease (AD). Aβ is produced by β-secretase and γ-secretase in endosomes via sequential proteolysis of amyloid precursor protein (APP). Aβ and APP have a common feature to readily cluster to form multimers. Here, using multivalent peptide library screens, we identified a tetravalent peptide, LME-tet, which binds APP and Aβ via multivalent interactions. In cells, LME-tet-bound APP in the plasma membrane is transported to endosomes, blocking Aβ production through specific inhibition of β-cleavage, but not γ-cleavage. LME-tet further suppresses Aβ aggregation by blocking formation of the β-sheet conformation. Inhibitory effects are not observed with a monomeric peptide, emphasizing the significance of multivalent interactions for mediating these activities. Critically, LME-tet efficiently reduces Aβ levels in the brain of AD model mice, suggesting it may hold promise for treatment of AD.
Collapse
Affiliation(s)
- Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takuya Murata
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | | | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Masataka Anzai
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Seiko Ishihara
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Nanako Nishioka
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hina Uchiyama
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Juri Togashi
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Saeka Nishihara
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Riken Center For Brain Science, Saitama, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
8
|
Hama S, Nakahara M, Watanabe-Takahashi M, Shimizu E, Tsutsuki H, Yahiro K, Nishikawa K. Development of a novel tetravalent peptide that absorbs subtilase cytotoxin by targeting the receptor-binding B-subunit. Biochem Biophys Res Commun 2022; 629:95-100. [PMID: 36115284 DOI: 10.1016/j.bbrc.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Subtilase cytotoxin (SubAB) is a major virulence factor produced by eae-negative Shiga-toxigenic Escherichia coli (STEC) that can cause fatal systemic complications. SubAB binds to target cells through multivalent interactions between its B-subunit pentamer and receptor molecules such as glycoproteins with a terminal N-glycolylneuraminic acid (Neu5Gc). We screened randomized multivalent peptide libraries synthesized on a cellulose membrane and identified a series of tetravalent peptides that efficiently bind to the receptor-binding region of the SubAB B-subunit pentamer. These peptides competitively inhibited the binding of the B-subunit to a receptor-mimic molecule containing clustered Neu5Gc (Neu5Gc-polymer). We selected the peptide with the highest inhibitory efficacy, FFP-tet, and covalently bound it to beads to synthesize FFP-tet-beads, a highly clustered SubAB absorber that displayed potency to absorb SubAB cytotoxicity through direct binding to the toxin. The efficacy of FFP-tet-beads to absorb SubAB cytotoxicity in solution was similar to that of Neu5Gc-polymer, suggesting that FFP-tet-beads might be an effective therapeutic agent against complications arising from eae-negative STEC infection.
Collapse
Affiliation(s)
- Shinichiro Hama
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Miki Nakahara
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Eiko Shimizu
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0321, Japan.
| |
Collapse
|
9
|
Anzai M, Watanabe-Takahashi M, Kawabata H, Mizuno S, Taguchi Y, Inoue JI, Nishikawa K. A tetravalent peptide that binds to the RANK-binding region of TRAF6 via a multivalent interaction efficiently inhibits osteoclast differentiation. Biochem Biophys Res Commun 2022; 636:178-183. [DOI: 10.1016/j.bbrc.2022.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/26/2022]
|
10
|
A unique peptide-based pharmacophore identifies an inhibitory compound against the A-subunit of Shiga toxin. Sci Rep 2022; 12:11443. [PMID: 35794188 PMCID: PMC9259562 DOI: 10.1038/s41598-022-15316-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can cause fatal systemic complications. Recently, we identified a potent inhibitory peptide that binds to the catalytic A-subunit of Stx. Here, using biochemical structural analysis and X-ray crystallography, we determined a minimal essential peptide motif that occupies the catalytic cavity and is required for binding to the A-subunit of Stx2a, a highly virulent Stx subtype. Molecular dynamics simulations also identified the same motif and allowed determination of a unique pharmacophore for A-subunit binding. Notably, a series of synthetic peptides containing the motif efficiently inhibit Stx2a. In addition, pharmacophore screening and subsequent docking simulations ultimately identified nine Stx2a-interacting molecules out of a chemical compound database consisting of over 7,400,000 molecules. Critically, one of these molecules markedly inhibits Stx2a both in vitro and in vivo, clearly demonstrating the significance of the pharmacophore for identifying therapeutic agents against EHEC infection.
Collapse
|
11
|
Lingwood C. Therapeutic Uses of Bacterial Subunit Toxins. Toxins (Basel) 2021; 13:toxins13060378. [PMID: 34073185 PMCID: PMC8226680 DOI: 10.3390/toxins13060378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
The B subunit pentamer verotoxin (VT aka Shiga toxin-Stx) binding to its cellular glycosphingolipid (GSL) receptor, globotriaosyl ceramide (Gb3) mediates internalization and the subsequent receptor mediated retrograde intracellular traffic of the AB5 subunit holotoxin to the endoplasmic reticulum. Subunit separation and cytosolic A subunit transit via the ER retrotranslocon as a misfolded protein mimic, then inhibits protein synthesis to kill cells, which can cause hemolytic uremic syndrome clinically. This represents one of the most studied systems of prokaryotic hijacking of eukaryotic biology. Similarly, the interaction of cholera AB5 toxin with its GSL receptor, GM1 ganglioside, is the key component of the gastrointestinal pathogenesis of cholera and follows the same retrograde transport pathway for A subunit cytosol access. Although both VT and CT are the cause of major pathology worldwide, the toxin–receptor interaction is itself being manipulated to generate new approaches to control, rather than cause, disease. This arena comprises two areas: anti neoplasia, and protein misfolding diseases. CT/CTB subunit immunomodulatory function and anti-cancer toxin immunoconjugates will not be considered here. In the verotoxin case, it is clear that Gb3 (and VT targeting) is upregulated in many human cancers and that there is a relationship between GSL expression and cancer drug resistance. While both verotoxin and cholera toxin similarly hijack the intracellular ERAD quality control system of nascent protein folding, the more widespread cell expression of GM1 makes cholera the toxin of choice as the means to more widely utilise ERAD targeting to ameliorate genetic diseases of protein misfolding. Gb3 is primarily expressed in human renal tissue. Glomerular endothelial cells are the primary VT target but Gb3 is expressed in other endothelial beds, notably brain endothelial cells which can mediate the encephalopathy primarily associated with VT2-producing E. coli infection. The Gb3 levels can be regulated by cytokines released during EHEC infection, which complicate pathogenesis. Significantly Gb3 is upregulated in the neovasculature of many tumours, irrespective of tumour Gb3 status. Gb3 is markedly increased in pancreatic, ovarian, breast, testicular, renal, astrocytic, gastric, colorectal, cervical, sarcoma and meningeal cancer relative to the normal tissue. VT has been shown to be effective in mouse xenograft models of renal, astrocytoma, ovarian, colorectal, meningioma, and breast cancer. These studies are herein reviewed. Both CT and VT (and several other bacterial toxins) access the cell cytosol via cell surface ->ER transport. Once in the ER they interface with the protein folding homeostatic quality control pathway of the cell -ERAD, (ER associated degradation), which ensures that only correctly folded nascent proteins are allowed to progress to their cellular destinations. Misfolded proteins are translocated through the ER membrane and degraded by cytosolic proteosome. VT and CT A subunits have a C terminal misfolded protein mimic sequence to hijack this transporter to enter the cytosol. This interface between exogenous toxin and genetically encoded endogenous mutant misfolded proteins, provides a new therapeutic basis for the treatment of such genetic diseases, e.g., Cystic fibrosis, Gaucher disease, Krabbe disease, Fabry disease, Tay-Sachs disease and many more. Studies showing the efficacy of this approach in animal models of such diseases are presented.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Departments of Laboratory Medicine & Pathobiology, and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|