1
|
Inoue S, Fujie K, Hamaguchi T, Ishimaru Y, Miyawaki K, Takahashi A, Nikawa T, Noji S, Watanabe T, Mito T. Lineage-specific duplication and functional diversification of DOPA-decarboxylase genes in the Gryllidae family, as revealed in Gryllus bimaculatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104246. [PMID: 39653316 DOI: 10.1016/j.ibmb.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The DOPA-decarboxylase (DDC) gene is crucial for dopamine synthesis and influences various biological functions in insects, including body coloration, behavior, learning, and sleep. However, its evolutionary impact remains largely unexplored. This study reports on the tandem duplication of two bona fide ddc genes (ddc1 and ddc2) in the Gryllidae cricket family. We herein investigated the function of ddc1 and ddc2 using Gryllus bimaculatus (Gb) as a model. Our results revealed that Gb'ddc1 was expressed systemically, with its expression being higher immediately after molting compared to the stage following melanin pigmentation. In homozygous knockout mutants of Gb'ddc1, generated via CRISPR/Cas9, reduced body color pigmentation and had translucent cuticles, decreased dopamine levels, and over-accumulated DOPA. These mutants died shortly after hatching, likely due to cuticle defects, underscoring the essential role of dopamine, produced by Gb'ddc1, in melanin synthesis. Conversely, Gb'ddc2 expression was confined to the ovary and was not up-regulated after molting. Homozygous knockout mutants of Gb'ddc2 exhibited no body color defects, whereas hatchability and embryonic development rates were significantly reduced. Interestingly, dopamine levels in the ovaries were significantly elevated in Gb'ddc2 mutants. This suggests that normal ovarian dopamine levels, modulated by Gb'ddc2, are vital for fertility maintenance. The function of Gb'ddc2 differs from that of typical ddc, indicating neofunctionalization through evolutionary duplication. Overall, Gb'ddc1 and Gb'ddc2 have distinct functions, and precise regulation of ovarian dopamine levels using these two ddc genes may have enhanced cricket fertility.
Collapse
Affiliation(s)
- Shintaro Inoue
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Kai Fujie
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Taiki Hamaguchi
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Katsuyuki Miyawaki
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Nikawa
- Departments of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan.
| |
Collapse
|
2
|
Yuan H, Liu XJ, Liu XZ, Zhao LN, Mao SL, Huang Y. The evolutionary dynamics of genome sizes and repetitive elements in Ensifera (Insecta: Orthoptera). BMC Genomics 2024; 25:1041. [PMID: 39501135 PMCID: PMC11539627 DOI: 10.1186/s12864-024-10949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND In evolutionary biology, identifying and quantifying inter-lineage genome size variation and elucidating the underlying causes of that variation have long been goals. Repetitive elements (REs) have been proposed and confirmed as being among the most important contributors to genome size variation. However, the evolutionary implications of genome size variation and RE dynamics are not well understood. RESULTS A total of 35 Ensifera insects were collected from different areas in China, including nine species of crickets and 26 species of katydids. The genome sizes of seven species were then determined using flow cytometry. The RepeatExplorer2 pipeline was employed to retrieve the repeated sequences for each species, based on low-coverage (0.1 X) high-throughput Illumina unassembled short reads. The genome sizes of the 35 Ensifera insects exhibited a considerable degree of variation, ranging from 1.00 to 18.34 pg. This variation was more than 18-fold. Similarly, the RE abundances exhibited considerable variation, ranging from 13.66 to 61.16%. In addition, the Tettigonioidea had larger genomes and contained significantly more REs than did the Grylloidea genomes. Analysis of the correlation between RE abundance and the genome size of 35 Ensifera insects revealed that the abundance of REs, transposable elements (TEs), long terminal repeats (LTRs), and long interspersed nuclear elements (LINEs) are significantly correlated with genome size. Notably, there is an inflection point in this correlation, where species with increasingly large genomes (e.g., > 5-10 pg) have repeats that contribute less to genome expansion than expected. Furthermore, this study revealed contrasting evolutionary directions between the Tettigonioidea and Grylloidea clades in terms of the expansion of REs. Tettigonioidea species exhibit a gradual increase in ancestral genome size and RE abundance as they diverge, while Grylloidea species experience sustained genome contraction. CONCLUSIONS This study reveals extensive variation in genome size and RE abundance in Ensifera insects, with distinct evolutionary patterns across two major groups, Tettigonioidea and Grylloidea. This provides valuable insights into the variation in genome size and RE abundance in Ensifera insects, offering a comprehensive understanding of their evolutionary history.
Collapse
Affiliation(s)
- Hao Yuan
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiao-Jing Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xuan-Zeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Na Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shao-Li Mao
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, China.
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Gonzalez-Sqalli E, Caron M, Loppin B. The white gene as a transgenesis marker for the cricket Gryllus bimaculatus. G3 (BETHESDA, MD.) 2024; 14:jkae235. [PMID: 39405185 PMCID: PMC11631507 DOI: 10.1093/g3journal/jkae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 12/12/2024]
Abstract
The cricket Gryllus bimaculatus is an emerging model insect of the order Orthoptera that is used in a wide variety of biological research themes. This hemimetabolous species appears highly complementary to Drosophila and other well-established holometabolous models. To improve transgenesis applications in G. bimaculatus, we have designed a transformation marker gene inspired from the widespread Drosophila mini-white+. Using CRISPR/Cas9, we first generated a loss-of-function mutant allele of the Gb-white gene (Gb-w), which exhibits a white eye coloration at all developmental stages. We then demonstrate that transgenic insertions of a piggyBac vector containing a 3xP3-Gb-w+ cassette rescue eye pigmentation. As an application, we used this vector to generate G. bimaculatus lines expressing a centromeric histone H3 variant (CenH3.1) fused to EGFP and validated EGFP-CenH3.1 detection at cricket centromeres. Finally, we demonstrate that Minos-based germline transformation and site-specific plasmid insertion with the ΦC31 integrase system function in G. bimaculatus.
Collapse
Affiliation(s)
- Emmanuel Gonzalez-Sqalli
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| | - Matthieu Caron
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| |
Collapse
|
5
|
Lv YN, Zeng M, Yan ZY, Zhang PY, Ban N, Yuan DW, Li S, Luan YX, Bai Y. Juvenile hormone signaling is indispensable for late embryogenesis in ametabolous and hemimetabolous insects. BMC Biol 2024; 22:232. [PMID: 39394161 PMCID: PMC11470741 DOI: 10.1186/s12915-024-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Juvenile hormone (JH) is an insect-exclusive hormone involved in regulating diverse aspects of insect physiology, and the evolution of its diverse function is widely interesting. Studying embryogenesis in basal wingless insects is important to understand the functional evolution of JH; however, experimental studies in this regard are scarce. In this study, we conducted CRISPR/Cas9-mediated knockout (KO) of genes involved in JH biosynthesis and signaling cascades in the ametabolous firebrat, Thermobia domestica. Additionally, we investigated whether the primitive action of JH is conserved in the hemimetabolous cricket, Gryllus bimaculatus. RESULTS We observed that KO of JHAMT, CYP15A1, Met, and Kr-h1 resulted in embryonic lethality in T. domestica. Deprivation of JH or JH signaling arrested the progression of extraembryonic fluid resorption after dorsal closure and hatching, which is consistent with the gene expression pattern showing high Kr-h1 expression in the late embryos of T. domestica. The embryos deficient in JH signaling displayed wrinkled and weak legs. Comparative transcriptome analysis revealed that JH signaling promotes embryonic leg maturation through inducing energy supply and muscle activity, as validated by transmission electron microscopy (TEM). In addition, JH signaling exhibited similar embryonic effects in G. bimaculatus. CONCLUSIONS This study reveals the indispensable role of JH signaling in facilitating the maturation of terminal tissues during late embryogenesis, as demonstrated by the regulation of leg development, in ametabolous and hemimetabolous insects. These findings further indicate that the embryonic functions of JH evolved earlier than its anti-metamorphic functions during postembryonic development.
Collapse
Affiliation(s)
- Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Zi-Yu Yan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Pei-Yan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ning Ban
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| |
Collapse
|
6
|
Yamashita T, Komenda K, Miłodrowski R, Robak D, Szrajer S, Gaczorek T, Ylla G. Non-gonadal expression of piRNAs is widespread across Arthropoda. FEBS Lett 2024. [PMID: 39358781 DOI: 10.1002/1873-3468.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
PIWI-interacting RNAs (piRNAs) were discovered in the early 2000s and became known for their role in protecting the germline genome against mobile genetic elements. Successively, piRNAs were also detected in the somatic cells of gonads in multiple animal species. In recent years, piRNAs have been reported in non-gonadal tissues in various arthropods, contrary to the initial assumptions of piRNAs being exclusive to gonads. Here, we performed an extensive literature review, which revealed that reports on non-gonadal somatic piRNA expression are not limited to a few specific species. Instead, when multiple studies are considered collectively, it appears to be a widespread phenomenon across arthropods. Furthermore, we systematically analyzed 168 publicly available small RNA-seq datasets from diverse tissues in 17 species, which further supported the bibliographic reports that piRNAs are expressed across tissues and species in Arthropoda.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krystian Komenda
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Rafał Miłodrowski
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Dominik Robak
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Szymon Szrajer
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Gaczorek
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Diaz T, Treidel LA, Menze MA, Williams CM, Lebenzon JE. Beclin-mediated Autophagy Drives Dorsal Longitudinal Flight Muscle Histolysis in the Variable Field Cricket, Gryllus lineaticeps. Integr Comp Biol 2024; 64:565-575. [PMID: 38760886 DOI: 10.1093/icb/icae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight-capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene that encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.
Collapse
Affiliation(s)
- Tomás Diaz
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Lisa A Treidel
- School of Biological Sciences, University of Nebraska Lincoln, 1104 T Street, Lincoln, NE 68588, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, 139 Life Sciences Bldg. Louisville, KY 40292, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Borjon LJ, de Assis Ferreira LC, Trinidad JC, Šašić S, Hohmann AG, Tracey WD. Multiple mechanisms of action of an extremely painful venom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612741. [PMID: 39314321 PMCID: PMC11419154 DOI: 10.1101/2024.09.12.612741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Evolutionary arms races between predator and prey can lead to extremely specific and effective defense mechanisms. Such defenses include venoms that deter predators by targeting nociceptive (pain-sensing) pathways. Through co-evolution, venom toxins can become extremely efficient modulators of their molecular targets. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. The intensity of a velvet ant sting has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand." [1] The effectiveness of the velvet ant sting as a deterrent against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds [2-4]. The venom's low toxicity suggests it has a targeted effect on nociceptive sensory mechanisms [5]. This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals [6-9]. These polymodal nociceptors are called class IV multidendritic dendritic arborizing (cIV da) neurons, and they share many features with vertebrate nociceptors, including conserved sensory receptor channels [10,11]. We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels. Furthermore, we found a single venom peptide (Do6a) that activated larval nociceptors at nanomolar concentrations through Ppk/Bba. Drosophila Ppk/Bba is homologous to mammalian Acid Sensing Ion Channels (ASICs) [12]. However, the Do6a peptide did not produce behavioral signs of nociception in mice, which was instead triggered by other non-specific, less potent, peptides within the venom. This suggests that Do6a is an insect-specific venom component that potently activates insect nociceptors. Consistent with this, we showed that the velvet ant's defensive sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom evolved to target nociceptive systems of both vertebrates and invertebrates, but through different molecular mechanisms.
Collapse
Affiliation(s)
- Lydia J. Borjon
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
| | - Luana C. de Assis Ferreira
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, IN
| | | | - Sunčica Šašić
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
| | - Andrea G. Hohmann
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Department of Psychological and Brain Sciences, Indiana University; Bloomington, IN
- Program in Neuroscience, Indiana University; Bloomington, IN
| | - W. Daniel Tracey
- Department of Biology, Indiana University; Bloomington, IN
- Gill Institute for Neuroscience, Indiana University; Bloomington, IN
- Program in Neuroscience, Indiana University; Bloomington, IN
| |
Collapse
|
9
|
Li X, Jayaprasad S, Einarsdottir E, Cooper SJB, Suh A, Kawakami T, Palacios-Gimenez OM. Chromosome-level genome assembly of the morabine grasshopper Vandiemenella viatica19. Sci Data 2024; 11:997. [PMID: 39266578 PMCID: PMC11393057 DOI: 10.1038/s41597-024-03858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Morabine grasshoppers in the Vandiemenella viatica species group, which show karyotype diversity, have been studied for their ecological distribution and speciation in relation to their genetic and chromosomal diversity. They are good models for studying sex chromosome evolution as "old" and newly emerged sex chromosomes co-exist within the group. Here we present a reference genome for the viatica19 chromosomal race, that possesses the ancestral karyotype within the group. Using PacBio HiFi and Hi-C sequencing, we generated a chromosome-level assembly of 4.09 Gb in span, scaffold N50 of 429 Mb, and complete BUSCO score of 98.1%, containing 10 pseudo-chromosomes. We provide Illumina datasets of males and females, used to identify the X chromosome. The assembly contains 19,034 predicted protein-coding genes, and a total of 75.21% of repetitive DNA sequences. By leveraging HiFi reads, we mapped the genome-wide distribution of methylated bases (5mC and 6 mA). This comprehensive assembly offers a robust reference for morabine grasshoppers and supports further research into speciation and sex chromosome diversification within the group and its related species.
Collapse
Affiliation(s)
- Xuan Li
- Department of Organismal Biology-Systematic Biology, Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden.
| | - Suvratha Jayaprasad
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute Technology, SE-17121, Solna, Sweden
| | - Steven J B Cooper
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences and Environment Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Suh
- Department of Organismal Biology-Systematic Biology, Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | | | - Octavio Manuel Palacios-Gimenez
- Department of Organismal Biology-Systematic Biology, Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden.
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Khan H, Yuan H, Liu X, Nie Y, Majid M. Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics. BMC Genomics 2024; 25:687. [PMID: 38997681 PMCID: PMC11245825 DOI: 10.1186/s12864-024-10596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Transposable elements (TEs) are DNA sequences that can move or replicate within a genome, and their study has become increasingly important in understanding genome evolution and function. The Tridactylidae family, including Xya riparia (pygmy mole cricket), harbors a variety of transposable elements (TEs) that have been insufficiently investigated. Further research is required to fully understand their diversity and evolutionary characteristics. Hence, we conducted a comprehensive repeatome analysis of X. riparia species using the chromosome-level assembled genome. The study aimed to comprehensively analyze the abundance, distribution, and age of transposable elements (TEs) in the genome. The results indicated that the genome was 1.67 Gb, with 731.63 Mb of repetitive sequences, comprising 27% of Class II (443.25 Mb), 16% of Class I (268.45 Mb), and 1% of unknown TEs (19.92 Mb). The study found that DNA transposons dominate the genome, accounting for approximately 60% of the total repeat size, with retrotransposons and unknown elements accounting for 37% and 3% of the genome, respectively. The members of the Gypsy superfamily were the most abundant amongst retrotransposons, accounting for 63% of them. The transposable superfamilies (LTR/Gypsy, DNA/nMITE, DNA/hAT, and DNA/Helitron) collectively constituted almost 70% of the total repeat size of all six chromosomes. The study further unveiled a significant linear correlation (Pearson correlation: r = 0.99, p-value = 0.00003) between the size of the chromosomes and the repetitive sequences. The average age of DNA transposon and retrotransposon insertions ranges from 25 My (million years) to 5 My. The satellitome analysis discovered 13 satellite DNA families that comprise about 0.15% of the entire genome. In addition, the transcriptional analysis of TEs found that DNA transposons were more transcriptionally active than retrotransposons. Overall, the study suggests that the genome of X. riparia is complex, characterized by a substantial portion of repetitive elements. These findings not only enhance our understanding of TE evolution within the Tridactylidae family but also provide a foundation for future investigations into the genomic intricacies of related species.
Collapse
Affiliation(s)
- Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xian, China
| | - Huang Yuan
- College of Life Sciences, Shaanxi Normal University, Xian, China
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xian, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xian, China
| | - Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xian, China.
| |
Collapse
|
11
|
Jing X, Zhao HY, Zheng YN, Nie YM, Ma LB, Huang Y. A Chromosome-Level Genome Assembly and Annotation for the Oecanthus rufescens (Orthoptera: Oecanthidae). Genome Biol Evol 2024; 16:evae145. [PMID: 38946321 PMCID: PMC11243396 DOI: 10.1093/gbe/evae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Oecanthus is a genus of cricket known for its distinctive chirping and distributed across major zoogeographical regions worldwide. This study focuses on Oecanthus rufescens, and conducts a comprehensive examination of its genome through genome sequencing technologies and bioinformatic analysis. A high-quality chromosome-level genome of O. rufescens was successfully obtained, revealing significant features of its genome structure. The genome size is 877.9 Mb, comprising ten pseudo-chromosomes and 70 other sequences, with a GC content of 41.38% and an N50 value of 157,110,771 bp, indicating a high level of continuity. BUSCO assessment results demonstrate that the genome's integrity and quality are high (of which 96.8% are single-copy and 1.6% are duplicated). Comprehensive genome annotation was also performed, identifying approximately 310 Mb of repetitive sequences, accounting for 35.3% of the total genome sequence, and discovering 15,481 tRNA genes, 4,082 rRNA genes, and 1,212 other noncoding genes. Furthermore, 15,031 protein-coding genes were identified, with BUSCO assessment results showing that 98.4% (of which 96.3% are single-copy and 1.6% are duplicated) of the genes were annotated.
Collapse
Affiliation(s)
- Xuan Jing
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, China
| | - Hui-Yao Zhao
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, China
| | - Yan-Na Zheng
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, China
| | - Yi-Meng Nie
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, China
| | - Li-Bin Ma
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, 710119 Xi’an, China
| |
Collapse
|
12
|
Lebherz MK, Fouks B, Schmidt J, Bornberg-Bauer E, Grandchamp A. DNA Transposons Favor De Novo Transcript Emergence Through Enrichment of Transcription Factor Binding Motifs. Genome Biol Evol 2024; 16:evae134. [PMID: 38934893 PMCID: PMC11264136 DOI: 10.1093/gbe/evae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
De novo genes emerge from noncoding regions of genomes via succession of mutations. Among others, such mutations activate transcription and create a new open reading frame (ORF). Although the mechanisms underlying ORF emergence are well documented, relatively little is known about the mechanisms enabling new transcription events. Yet, in many species a continuum between absent and very prominent transcription has been reported for essentially all regions of the genome. In this study, we searched for de novo transcripts by using newly assembled genomes and transcriptomes of seven inbred lines of Drosophila melanogaster, originating from six European and one African population. This setup allowed us to detect sample specific de novo transcripts, and compare them to their homologous nontranscribed regions in other samples, as well as genic and intergenic control sequences. We studied the association with transposable elements (TEs) and the enrichment of transcription factor motifs upstream of de novo emerged transcripts and compared them with regulatory elements. We found that de novo transcripts overlap with TEs more often than expected by chance. The emergence of new transcripts correlates with regions of high guanine-cytosine content and TE expression. Moreover, upstream regions of de novo transcripts are highly enriched with regulatory motifs. Such motifs are more enriched in new transcripts overlapping with TEs, particularly DNA TEs, and are more conserved upstream de novo transcripts than upstream their 'nontranscribed homologs'. Overall, our study demonstrates that TE insertion is important for transcript emergence, partly by introducing new regulatory motifs from DNA TE families.
Collapse
Affiliation(s)
| | - Bertrand Fouks
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Julian Schmidt
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Szrajer S, Gray D, Ylla G. The genome assembly and annotation of the cricket Gryllus longicercus. Sci Data 2024; 11:708. [PMID: 38942791 PMCID: PMC11213874 DOI: 10.1038/s41597-024-03554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
The order Orthoptera includes insects such as grasshoppers, katydids, and crickets, among which there are important species for ecosystem stability and pollination, as well as research organisms in different fields such as neurobiology, ecology, and evolution. Crickets, with more than 2,400 described species, are emerging as novel model research organisms, for their diversity, worldwide distribution, regeneration capacity, and their characteristic acoustic communication. Here we report the assembly and annotation of the first New World cricket, that of Gryllus longicercus Weissman & Gray 2019. The genome assembly, generated by combining 44.54 Gb of long reads from PacBio and 120.44 Gb of short Illumina reads, has a length of 1.85 Gb. The genome annotation yielded 19,715 transcripts from 14,789 gene models.
Collapse
Affiliation(s)
- Szymon Szrajer
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| | - David Gray
- Department of Biology, California State University Northridge, Northridge, CA, 91330-8303, USA.
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, 30-387, Poland.
| |
Collapse
|
14
|
Zhang X, Blaxter M, Wood JMD, Tracey A, McCarthy S, Thorpe P, Rayner JG, Zhang S, Sikkink KL, Balenger SL, Bailey NW. Temporal genomics in Hawaiian crickets reveals compensatory intragenomic coadaptation during adaptive evolution. Nat Commun 2024; 15:5001. [PMID: 38866741 PMCID: PMC11169259 DOI: 10.1038/s41467-024-49344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Theory predicts that compensatory genetic changes reduce negative indirect effects of selected variants during adaptive evolution, but evidence is scarce. Here, we test this in a wild population of Hawaiian crickets using temporal genomics and a high-quality chromosome-level cricket genome. In this population, a mutation, flatwing, silences males and rapidly spread due to an acoustically-orienting parasitoid. Our sampling spanned a social transition during which flatwing fixed and the population went silent. We find long-range linkage disequilibrium around the putative flatwing locus was maintained over time, and hitchhiking genes had functions related to negative flatwing-associated effects. We develop a combinatorial enrichment approach using transcriptome data to test for compensatory, intragenomic coevolution. Temporal changes in genomic selection were distributed genome-wide and functionally associated with the population's transition to silence, particularly behavioural responses to silent environments. Our results demonstrate how 'adaptation begets adaptation'; changes to the sociogenetic environment accompanying rapid trait evolution can generate selection provoking further, compensatory adaptation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China.
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Peter Thorpe
- School of Medicine, University of St Andrews, St Andrews, Fife, UK
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jack G Rayner
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Shangzhe Zhang
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | | | - Susan L Balenger
- College of Biological Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| |
Collapse
|
15
|
Hayakawa S, Kataoka K, Yamamoto M, Asahi T, Suzuki T. DeepLabCut-based daily behavioural and posture analysis in a cricket. Biol Open 2024; 13:bio060237. [PMID: 38533608 PMCID: PMC11070783 DOI: 10.1242/bio.060237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Circadian rhythms are indispensable intrinsic programs that regulate the daily rhythmicity of physiological processes, such as feeding and sleep. The cricket has been employed as a model organism for understanding the neural mechanisms underlying circadian rhythms in insects. However, previous studies measuring rhythm-controlled behaviours only analysed locomotive activity using seesaw-type and infrared sensor-based actometers. Meanwhile, advances in deep learning techniques have made it possible to analyse animal behaviour and posture using software that is devoid of human bias and does not require physical tagging of individual animals. Here, we present a system that can simultaneously quantify multiple behaviours in individual crickets - such as locomotor activity, feeding, and sleep-like states - in the long-term, using DeepLabCut, a supervised machine learning-based software for body keypoints labelling. Our system successfully labelled the six body parts of a single cricket with a high level of confidence and produced reliable data showing the diurnal rhythms of multiple behaviours. Our system also enabled the estimation of sleep-like states by focusing on posture, instead of immobility time, which is a conventional parameter. We anticipate that this system will provide an opportunity for simultaneous and automatic prediction of cricket behaviour and posture, facilitating the study of circadian rhythms.
Collapse
Affiliation(s)
- Shota Hayakawa
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo 162-8480, Japan
| | - Masanobu Yamamoto
- Division of Sciences for Biological System, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Toru Asahi
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
- Comprehensive Research Organization, Waseda University, Tokyo 162-8480, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan
| | - Takeshi Suzuki
- Division of Sciences for Biological System, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
16
|
Cheatle Jarvela AM, Wexler JR. Advances in genome sequencing reveal changes in gene content that contribute to arthropod macroevolution. Dev Genes Evol 2023; 233:59-76. [PMID: 37982820 DOI: 10.1007/s00427-023-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Current sequencing technology allows for the relatively affordable generation of highly contiguous genomes. Technological advances have made it possible for researchers to investigate the consequences of diverse sorts of genomic variants, such as gene gain and loss. With the extraordinary number of high-quality genomes now available, we take stock of how these genomic variants impact phenotypic evolution. We take care to point out that the identification of genomic variants of interest is only the first step in understanding their impact. Painstaking lab or fieldwork is still required to establish causal relationships between genomic variants and phenotypic evolution. We focus mostly on arthropod research, as this phylum has an impressive degree of phenotypic diversity and is also the subject of much evolutionary genetics research. This article is intended to both highlight recent advances in the field and also to be a primer for learning about evolutionary genetics and genomics.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, MD, USA.
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Judith R Wexler
- Department of Ecology, Evolution, and Behavior, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Mishina T, Chiu MC, Hashiguchi Y, Oishi S, Sasaki A, Okada R, Uchiyama H, Sasaki T, Sakura M, Takeshima H, Sato T. Massive horizontal gene transfer and the evolution of nematomorph-driven behavioral manipulation of mantids. Curr Biol 2023; 33:4988-4994.e5. [PMID: 37863060 DOI: 10.1016/j.cub.2023.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
To complete their life cycle, a wide range of parasites must manipulate the behavior of their hosts.1 This manipulation is a well-known example of the "extended phenotype,2" where genes in one organism have phenotypic effects on another organism. Recent studies have explored the parasite genes responsible for such manipulation of host behavior, including the potential molecular mechanisms.3,4 However, little is known about how parasites have acquired the genes involved in manipulating phylogenetically distinct hosts.4 In a fascinating example of the extended phenotype, nematomorph parasites have evolved the ability to induce their terrestrial insect hosts to enter bodies of water, where the parasite then reproduces. Here, we comprehensively analyzed nematomorphs and their mantid hosts, focusing on the transcriptomic changes associated with host manipulations and sequence similarity between host and parasite genes to test molecular mimicry. The nematomorph's transcriptome changed during host manipulation, whereas no distinct changes were found in mantids. We then discovered numerous possible host-derived genes in nematomorphs, and these genes were frequently up-regulated during host manipulation. Our findings suggest a possible general role of horizontal gene transfer (HGT) in the molecular mechanisms of host manipulation, as well as in the genome evolution of manipulative parasites. The evidence of HGT between multicellular eukaryotes remains scarce but is increasing and, therefore, elucidating its mechanisms will advance our understanding of the enduring influence of HGT on the evolution of the web of life.
Collapse
Affiliation(s)
- Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 6500047, Japan.
| | - Ming-Chung Chiu
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan; Department of Entomology, National Taiwan University, Taipei 50007, Taiwan
| | - Yasuyuki Hashiguchi
- Department of Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 5690801, Japan.
| | - Sayumi Oishi
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Atsunari Sasaki
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Ryuichi Okada
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 1568502, Japan
| | - Takeshi Sasaki
- Graduate School of Bioresource Development, Tokyo University of Agriculture, Atsugi 2430034, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan
| | - Hirohiko Takeshima
- Research Center of Marine Bioresources, Department of Marine Bioscience, Fukui Prefectural University, 49-8-2, Katsumi, Obama, Fukui Prefecture 9170116, Japan
| | - Takuya Sato
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 6578501, Japan; Center for Ecological Research, Kyoto University, Otsu 5202113, Japan.
| |
Collapse
|
18
|
Yamashita T, Ohde T, Nakamura T, Ishimaru Y, Watanabe T, Tomonari S, Nakamura Y, Noji S, Mito T. Involvement of the scalloped gene in morphogenesis of the wing margin via regulating cell growth in a hemimetabolous insect Gryllus bimaculatus. Dev Growth Differ 2023; 65:348-359. [PMID: 37310211 DOI: 10.1111/dgd.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
The acquisition of wings was a key event in insect evolution. As hemimetabolous insects were the first group to acquire functional wings, establishing the mechanisms of wing formation in this group could provide useful insights into their evolution. In this study, we aimed to elucidate the expression and function of the gene scalloped (sd), which is involved in wing formation in Drosophila melanogaster, and in Gryllus bimaculatus mainly during postembryonic development. Expression analysis showed that sd is expressed in the tergal edge, legs, antennae, labrum, and cerci during embryogenesis and in the distal margin of the wing pads from at least the sixth instar in the mid to late stages. Because sd knockout caused early lethality, nymphal RNA interference experiments were performed. Malformations were observed in the wings, ovipositor, and antennae. By analyzing the effects on wing morphology, it was revealed that sd is mainly involved in the formation of the margin, possibly through the regulation of cell proliferation. In conclusion, sd might regulate the local growth of wing pads and influence wing margin morphology in Gryllus.
Collapse
Grants
- 17H03945 Ministry of Education, Culture, Sports, Science and Technology
- 19H02970 Ministry of Education, Culture, Sports, Science and Technology
- 19K06691 Ministry of Education, Culture, Sports, Science and Technology
- 20K21436 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takahisa Yamashita
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Takahiro Ohde
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshiyasu Ishimaru
- Graduate School of Sciences and Technology for Innovation, Tokushima University, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Sayuri Tomonari
- Technical Support Department, Tokushima University, Tokushima, Japan
| | - Yuki Nakamura
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| |
Collapse
|
19
|
Orsi GA, Tortora MMC, Horard B, Baas D, Kleman JP, Bucevičius J, Lukinavičius G, Jost D, Loppin B. Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis. Nat Commun 2023; 14:4187. [PMID: 37443316 PMCID: PMC10345107 DOI: 10.1038/s41467-023-39908-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of the emerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as ~25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal-like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.
Collapse
Affiliation(s)
- Guillermo A Orsi
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38000, Grenoble, France.
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Dominique Baas
- Laboratoire MeLiS, CNRS UMR 52684, Inserm U 1314, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, UMR5075, University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
20
|
Catto MA, Labadie PE, Jacobson AL, Kennedy GG, Srinivasan R, Hunt BG. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. BMC Genomics 2023; 24:343. [PMID: 37344773 DOI: 10.1186/s12864-023-09375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.
Collapse
Affiliation(s)
- Michael A Catto
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Paul E Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University College of Agriculture, Auburn, AL, 36849, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
21
|
Kulkarni A, Ewen-Campen B, Terao K, Matsumoto Y, Li Y, Watanabe T, Kao JA, Parhad SS, Ylla G, Mizunami M, Extavour CG. oskar acts with the transcription factor Creb to regulate long-term memory in crickets. Proc Natl Acad Sci U S A 2023; 120:e2218506120. [PMID: 37192168 PMCID: PMC10214185 DOI: 10.1073/pnas.2218506120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function. Here, we provide empirical support for this hypothesis in the form of evidence for a neural role for oskar. We show that oskar is expressed in the adult neural stem cells of a hemimetabolous insect, the cricket Gryllus bimaculatus. In these stem cells, called neuroblasts, oskar is required together with the ancient animal transcription factor Creb to regulate long-term (but not short-term) olfactory memory. We provide evidence that oskar positively regulates Creb, which plays a conserved role in long-term memory across animals, and that oskar in turn may be a direct target of Creb. Together with previous reports of a role for oskar in nervous system development and function in crickets and flies, our results are consistent with the hypothesis that oskar's original somatic role may have been in the insect nervous system. Moreover, its colocalization and functional cooperation with the conserved pluripotency gene piwi in the nervous system may have facilitated oskar's later co-option to the germ line in holometabolous insects.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Kanta Terao
- Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | | | - Yaolong Li
- Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Takayuki Watanabe
- Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Research Center for Integrative Evolutionary Science, School of Advanced Sciences, Sokendai-Hayama, Kanagawa240-0193, Japan
| | - Jonchee A. Kao
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Swapnil S. Parhad
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA01655
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
22
|
Dossey AT, Oppert B, Chu FC, Lorenzen MD, Scheffler B, Simpson S, Koren S, Johnston JS, Kataoka K, Ide K. Genome and Genetic Engineering of the House Cricket ( Acheta domesticus): A Resource for Sustainable Agriculture. Biomolecules 2023; 13:589. [PMID: 37189337 PMCID: PMC10136058 DOI: 10.3390/biom13040589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The house cricket, Acheta domesticus, is one of the most farmed insects worldwide and the foundation of an emerging industry using insects as a sustainable food source. Edible insects present a promising alternative for protein production amid a plethora of reports on climate change and biodiversity loss largely driven by agriculture. As with other crops, genetic resources are needed to improve crickets for food and other applications. Methods: We present the first high quality annotated genome assembly of A. domesticus from long read data and scaffolded to chromosome level, providing information needed for genetic manipulation. Results: Gene groups related to immunity were annotated and will be useful for improving value to insect farmers. Metagenome scaffolds in the A. domesticus assembly, including Invertebrate Iridescent Virus 6 (IIV6), were submitted as host-associated sequences. We demonstrate both CRISPR/Cas9-mediated knock-in and knock-out of A. domesticus and discuss implications for the food, pharmaceutical, and other industries. RNAi was demonstrated to disrupt the function of the vermilion eye-color gene producing a useful white-eye biomarker phenotype. Conclusions: We are utilizing these data to develop technologies for downstream commercial applications, including more nutritious and disease-resistant crickets, as well as lines producing valuable bioproducts, such as vaccines and antibiotics.
Collapse
Affiliation(s)
- Aaron T. Dossey
- All Things Bugs LLC, Invertebrate Studies Institute, Inc., 2211 Snapper Ln., Oklahoma City, OK 73130, USA
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, 1515 College, Ave., Manhattan, KS 66502, USA
| | - Fu-Chyun Chu
- All Things Bugs LLC, Invertebrate Studies Institute, Inc., 2211 Snapper Ln., Oklahoma City, OK 73130, USA
| | - Marcé D. Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Scheffler
- USDA Agricultural Research Service, Jamie Whitten Delta States Research Center, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Sheron Simpson
- USDA Agricultural Research Service, Jamie Whitten Delta States Research Center, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Kosuke Kataoka
- Faculty of Science and Engineering, Waseda University, 2-2 TWIns #02C214, Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Keigo Ide
- Faculty of Science and Engineering, Waseda University, 2-2 TWIns #02C214, Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
23
|
Mochizuki T, Sakamoto M, Tanizawa Y, Seike H, Zhu Z, Zhou YJ, Fukumura K, Nagata S, Nakamura Y. Best Practices for Comprehensive Annotation of Neuropeptides of Gryllus bimaculatus. INSECTS 2023; 14:121. [PMID: 36835690 PMCID: PMC9960350 DOI: 10.3390/insects14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Genome annotation is critically important data that can support research. Draft genome annotations cover representative genes; however, they often do not include genes that are expressed only in limited tissues and stages, or genes with low expression levels. Neuropeptides are responsible for regulation of various physiological and biological processes. A recent study disclosed the genome draft of the two-spotted cricket Gryllus bimaculatus, which was utilized to understand the intriguing physiology and biology of crickets. Thus far, only two of the nine reported neuropeptides in G. bimaculatus were annotated in the draft genome. Even though de novo assembly using transcriptomic analyses can comprehensively identify neuropeptides, this method does not follow those annotations on the genome locus. In this study, we performed the annotations based on the reference mapping, de novo transcriptome assembly, and manual curation. Consequently, we identified 41 neuropeptides out of 43 neuropeptides, which were reported in the insects. Further, 32 of the identified neuropeptides on the genomic loci in G. bimaculatus were annotated. The present annotation methods can be applicable for the neuropeptide annotation of other insects. Furthermore, the methods will help to generate useful infrastructures for studies relevant to neuropeptides.
Collapse
Affiliation(s)
- Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hitomi Seike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
24
|
Numata T, Sato-Numata K, Yoshino M. Intermediate conductance Ca 2+-activated potassium channels are activated by functional coupling with stretch-activated nonselective cation channels in cricket myocytes. FRONTIERS IN INSECT SCIENCE 2023; 2:1100671. [PMID: 38468799 PMCID: PMC10926553 DOI: 10.3389/finsc.2022.1100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2024]
Abstract
Cooperative gating of localized ion channels ranges from fine-tuning excitation-contraction coupling in muscle cells to controlling pace-making activity in the heart. Membrane deformation resulting from muscle contraction activates stretch-activated (SA) cation channels. The subsequent Ca2+ influx activates spatially localized Ca2+-sensitive K+ channels to fine-tune spontaneous muscle contraction. To characterize endogenously expressed intermediate conductance Ca2+-activated potassium (IK) channels and assess the functional relevance of the extracellular Ca2+ source leading to IK channel activity, we performed patch-clamp techniques on cricket oviduct myocytes and recorded single-channel data. In this study, we first investigated the identification of IK channels that could be distinguished from endogenously expressed large-conductance Ca2+-activated potassium (BK) channels by adding extracellular Ba2+. The single-channel conductance of the IK channel was 62 pS, and its activity increased with increasing intracellular Ca2+ concentration but was not voltage-dependent. These results indicated that IK channels are endogenously expressed in cricket oviduct myocytes. Second, the Ca2+ influx pathway that activates the IK channel was investigated. The absence of extracellular Ca2+ or the presence of Gd3+ abolished the activity of IK channels. Finally, we investigated the proximity between SA and IK channels. The removal of extracellular Ca2+, administration of Ca2+ to the microscopic region in a pipette, and application of membrane stretching stimulation increased SA channel activity, followed by IK channel activity. Membrane stretch-induced SA and IK channel activity were positively correlated. However, the emergence of IK channel activity and its increase in response to membrane mechanical stretch was not observed without Ca2+ in the pipette. These results strongly suggest that IK channels are endogenously expressed in cricket oviduct myocytes and that IK channel activity is regulated by neighboring SA channel activity. In conclusion, functional coupling between SA and IK channels may underlie the molecular basis of spontaneous rhythmic contractions.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
25
|
Genome Survey Sequencing of the Mole Cricket Gryllotalpa orientalis. Genes (Basel) 2023; 14:genes14020255. [PMID: 36833184 PMCID: PMC9957284 DOI: 10.3390/genes14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The mole cricket Gryllotalpa orientalis is an evolutionarily, medicinal, and agriculturally significant insect that inhabits underground environments and is distributed globally. This study measured genome size by flow cytometry and k-mer based on low-coverage sequencing, and nuclear repetitive elements were also identified. The haploid genome size estimate is 3.14 Gb by flow cytometry, 3.17 Gb, and 3.77 Gb-based two k-mer methods, respectively, which is well within the range previously reported for other species of the suborder Ensifera. 56% of repetitive elements were found in G. orientalis, similar to 56.83% in Locusta migratoria. However, the great size of repetitive sequences could not be annotated to specific repeat element families. For the repetitive elements that were annotated, Class I-LINE retrotransposon elements were the most common families and more abundant than satellite and Class I-LTR. These results based on the newly developed genome survey could be used in the taxonomic study and whole genome sequencing to improve the understanding of the biology of G. orientalis.
Collapse
|
26
|
Bai Y, He Y, Shen CZ, Li K, Li DL, He ZQ. CRISPR/Cas9-Mediated genomic knock out of tyrosine hydroxylase and yellow genes in cricket Gryllus bimaculatus. PLoS One 2023; 18:e0284124. [PMID: 37036877 PMCID: PMC10085040 DOI: 10.1371/journal.pone.0284124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Gryllus bimaculatus is an emerging model organism in various fields of biology such as behavior, neurology, physiology and genetics. Recently, application of reverse genetics provides an opportunity of understanding the functional genomics and manipulating gene regulation networks with specific physiological response in G. bimaculatus. By using CRISPR/Cas9 system in G. bimaculatus, we present an efficient knockdown of Tyrosine hydroxylase (TH) and yellow-y, which are involved in insect melanin and catecholamine-biosynthesis pathway. As an enzyme catalyzing the conversion of tyrosine to 3,4-dihydroxyphenylalanine, TH confines the first step reaction in the pathway. Yellow protein (dopachrome conversion enzyme, DCE) is also involved in the melanin biosynthetic pathway. The regulation system and molecular mechanism of melanin biogenesis in the pigmentation and their physiological functions in G. bimaculatus hasn't been well defined by far for lacking of in vivo models. Deletion and insertion of nucleotides in target sites of both TH and Yellow are detected in both F0 individuals and the inheritable F1 progenies. We confirm that TH and yellow-y are down-regulated in mutants by quantitative real-time PCR analysis. Compared with the control group, mutations of TH and yellow-y genes result in defects in pigmentation. Most F0 nymphs with mutations of TH gene die by the first instar, and the only adult had significant defects in the wings and legs. However, we could not get any homozygotes of TH mutants for all the F2 die by the first instar. Therefore, TH gene is very important for the growth and development of G. bimaculatus. When the yellow-y gene is knocked out, 71.43% of G. bimaculatus are light brown, with a slight mosaic on the abdomen. The yellow-y gene can be inherited stably through hybridization experiment with no obvious phenotype except lighter cuticular color. The present loss of function study indicates the essential roles of TH and yellow in pigmentation, and TH possesses profound and extensive effects of dopamine synthesis in embryonic development in G. bimaculatus.
Collapse
Affiliation(s)
- Yun Bai
- School of Life Science, East China Normal University, Shanghai, China
| | - Yuan He
- School of Life Science, East China Normal University, Shanghai, China
| | - Chu-Ze Shen
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Zhu-Qing He
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
27
|
Inoue S, Watanabe T, Hamaguchi T, Ishimaru Y, Miyawaki K, Nikawa T, Takahashi A, Noji S, Mito T. Combinatorial expression of ebony and tan generates body color variation from nymph through adult stages in the cricket, Gryllus bimaculatus. PLoS One 2023; 18:e0285934. [PMID: 37200362 DOI: 10.1371/journal.pone.0285934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Insect body colors and patterns change markedly during development in some species as they adapt to their surroundings. The contribution of melanin and sclerotin pigments, both of which are synthesized from dopamine, to cuticle tanning has been well studied. Nevertheless, little is known about how insects alter their body color patterns. To investigate this mechanism, the cricket Gryllus bimaculatus, whose body color patterns change during postembryonic development, was used as a model in this study. We focused on the ebony and tan genes, which encode enzymes that catalyze the synthesis and degradation, respectively, of the precursor of yellow sclerotin N-β-alanyl dopamine (NBAD). Expression of the G. bimaculatus (Gb) ebony and tan transcripts tended to be elevated just after hatching and the molting period. We found that dynamic alterations in the combined expression levels of Gb'ebony and Gb'tan correlated with the body color transition from the nymphal stages to the adult. The body color of Gb'ebony knockout mutants generated by CRISPR/Cas9 systemically darkened. Meanwhile, Gb'tan knockout mutants displayed a yellow color in certain areas and stages. The phenotypes of the Gb'ebony and Gb'tan mutants probably result from an over-production of melanin and yellow sclerotin NBAD, respectively. Overall, stage-specific body color patterns in the postembryonic stages of the cricket are governed by the combinatorial expression of Gb'ebony and Gb'tan. Our findings provide insights into the mechanism by which insects evolve adaptive body coloration at each developmental stage.
Collapse
Affiliation(s)
- Shintaro Inoue
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taiki Hamaguchi
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Katsuyuki Miyawaki
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Takeshi Nikawa
- Departments of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Ishii, Ishii-cho, Myozai-gun, Tokushima, Japan
| |
Collapse
|
28
|
Yuan R, Zheng B, Li Z, Ma X, Shu X, Qu Q, Ye X, Li S, Tang P, Chen X. The chromosome-level genome of Chinese praying mantis Tenodera sinensis (Mantodea: Mantidae) reveals its biology as a predator. Gigascience 2022; 12:giad090. [PMID: 37882605 PMCID: PMC10600911 DOI: 10.1093/gigascience/giad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The Chinese praying mantis, Tenodera sinensis (Saussure), is a carnivorous insect that preys on a variety of arthropods and small vertebrates, including pest species. Several studies have been conducted to understand its behavior and physiology. However, there is limited knowledge about the genetic information underlying its genome evolution, digestive demands, and predatory behaviors. FINDINGS Here we have assembled the chromosome-level genome of T. sinensis, representing the first sequenced genome of the family Mantidae, with a genome size of 2.54 Gb and scaffold N50 of 174.78 Mb. Our analyses revealed that 98.6% of BUSCO genes are present, resulting in a well-annotated assembly compared to other insect genomes, containing 25,022 genes. The reconstructed phylogenetic analysis showed the expected topology placing the praying mantis in an appropriate position. Analysis of transposon elements suggested the Gypsy/Dirs family, which belongs to long terminal repeat (LTR) transposons, may be a key factor resulting in the larger genome size. The genome shows expansions in several digestion and detoxification associated gene families, including trypsin and glycosyl hydrolase (GH) genes, ATP-binding cassette (ABC) transporter, and carboxylesterase (CarE), reflecting the possible genomic basis of digestive demands. Furthermore, we have found 1 ultraviolet-sensitive opsin and 2 long-wavelength-sensitive (LWS) opsins, emphasizing the core role of LWS opsins in regulating predatory behaviors. CONCLUSIONS The high-quality genome assembly of the praying mantis provides a valuable repository for studying the evolutionary patterns of the mantis genomes and the gene expression profiles of insect predators.
Collapse
Affiliation(s)
- Ruizhong Yuan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Boying Zheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Zekai Li
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xingzhou Ma
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Shu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qiuyu Qu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Pu Tang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
29
|
Liu C, Zhang W. Molecular basis of somatosensation in insects. Curr Opin Neurobiol 2022; 76:102592. [DOI: 10.1016/j.conb.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
|
30
|
Bhattarai UR, Katuwal M, Poulin R, Gemmell NJ, Dowle E. Genome assembly and annotation of the European earwig Forficula auricularia (subspecies B). G3 (BETHESDA, MD.) 2022; 12:jkac199. [PMID: 35972389 PMCID: PMC9526046 DOI: 10.1093/g3journal/jkac199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022]
Abstract
The European earwig Forficula auricularia is an important model for studies of maternal care, sexual selection, sociality, and host-parasite interactions. However, detailed genetic investigations of this species are hindered by a lack of genomic resources. Here, we present a high-quality hybrid genome assembly for Forficula auricularia using Nanopore long-reads and 10× linked-reads. The final assembly is 1.06 Gb in length with 31.03% GC content. It consists of 919 scaffolds with an N50 of 12.55 Mb. Half of the genome is present in only 20 scaffolds. Benchmarking Universal Single-Copy Orthologs scores are ∼90% from 3 sets of single-copy orthologs (eukaryotic, insect, and arthropod). The total repeat elements in the genome are 64.62%. The MAKER2 pipeline annotated 12,876 protein-coding genes and 21,031 mRNAs. Phylogenetic analysis revealed the assembled genome as that of species B, one of the 2 known genetic subspecies of Forficula auricularia. The genome assembly, annotation, and associated resources will be of high value to a large and diverse group of researchers working on dermapterans.
Collapse
Affiliation(s)
| | - Mandira Katuwal
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Eddy Dowle
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
31
|
Gupta A, Nair S. Heritable Epigenomic Modifications Influence Stress Resilience and Rapid Adaptations in the Brown Planthopper ( Nilaparvata lugens). Int J Mol Sci 2022; 23:8728. [PMID: 35955860 PMCID: PMC9368798 DOI: 10.3390/ijms23158728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
DNA methylation in insects is integral to cellular differentiation, development, gene regulation, genome integrity, and phenotypic plasticity. However, its evolutionary potential and involvement in facilitating rapid adaptations in insects are enigmatic. Moreover, our understanding of these mechanisms is limited to a few insect species, of which none are pests of crops. Hence, we studied methylation patterns in the brown planthopper (BPH), a major rice pest, under pesticide and nutritional stress, across its life stages. Moreover, as the inheritance of epigenetic changes is fundamentally essential for acclimation, adaptability, and evolution, we determined the heritability and persistence of stress-induced methylation marks in BPH across generations. Our results revealed that DNA methylation pattern(s) in BPH varies/vary with environmental cues and is/are insect life-stage specific. Further, our findings provide novel insights into the heritability of stress-induced methylation marks in BPH. However, it was observed that, though heritable, these marks eventually fade in the absence of the stressors, thereby suggesting the existence of fitness cost(s) associated with the maintenance of the stressed epigenotype. Furthermore, we demonstrate how 5-azacytidine-mediated disruption of BPH methylome influences expression levels of stress-responsive genes and, thereby, highlight demethylation/methylation as a phenomenon underlying stress resilience of BPH.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
32
|
Timm VF, Gonçalves LT, Valente V, Deprá M. The efficiency of the COI gene as a DNA barcode and an overview of Orthoptera (Caelifera and Ensifera) sequences in the BOLD System. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthoptera, among the oldest and most numerous insect lineages, is an excellent model for evolutionary studies but has numerous taxonomic problems. To mitigate these issues, the cytochrome c oxidase subunit I (COI), standardized with the DNA barcode for Metazoa, is increasingly used for specimen identification and species delimitation. We tested the performance of COI as a DNA barcode in Orthoptera, using two analyses based on intra- and interspecific distances, barcode gap and Probability of Correct Identification (PCI); and estimated species richness through Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP). We filtered all sequences of Orthoptera available in Barcode of Life Data System (BOLD) and used 11,605 COI sequences, covering 1,132 species, 226 genera, and 18 families. The overall average PCI was 73.86%. For 82.2% of genera the barcode gap boxplots were classified as good or intermediate, indicating that COI can be effective as a DNA barcode in Orthoptera, although with varying efficiency depending on the need for more information. ABGD and ASAP inferred species richness similar to labels informed by BOLD for the suborders Caelifera and Ensifera. The representation of Orthoptera in the BOLD database and the results of these analyses are discussed.
Collapse
Affiliation(s)
- Vítor Falchi Timm
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil
| | | | - V.l.S. Valente
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil,
| | | |
Collapse
|
33
|
Nakajima Y, Ogura A. Genomics and effective trait candidates of edible insects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Bando T, Okumura M, Bando Y, Hagiwara M, Hamada Y, Ishimaru Y, Mito T, Kawaguchi E, Inoue T, Agata K, Noji S, Ohuchi H. Toll signalling promotes blastema cell proliferation during cricket leg regeneration via insect macrophages. Development 2022; 149:272415. [PMID: 34622924 DOI: 10.1242/dev.199916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.
Collapse
Affiliation(s)
- Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Misa Okumura
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yuki Bando
- Faculty of Medicine, Okayama University Medical School, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Marou Hagiwara
- Faculty of Medicine, Okayama University Medical School, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yoshimasa Hamada
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Eri Kawaguchi
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Takeshi Inoue
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Kiyokazu Agata
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| |
Collapse
|
35
|
Nakamura T, Ylla G, Extavour CG. Genomics and genome editing techniques of crickets, an emerging model insect for biology and food science. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100881. [PMID: 35123119 DOI: 10.1016/j.cois.2022.100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Most tools available for manipulating gene function in insects have been developed for holometabolous species. In contrast, functional genetics tools for the Hemimetabola are highly underdeveloped. This is a barrier both to understanding ancestral insect biology, and to optimizing contemporary study and manipulation of particular large hemimetabolous orders of crucial economic and agricultural importance like the Orthoptera. For orthopteran insects, including crickets, the rapid spread of next-generation sequencing technology has made transcriptome data available for a wide variety of species over the past decade. Furthermore, whole genome sequences of orthopteran insects with relatively large genome sizes are now available. With these new genome assemblies and the development of genome editing technologies such as the CRISPR-Cas9 system, it has become possible to create gene knock-out and knock-in strains in orthopteran insects. As a result, orthopteran species should become increasingly feasible for laboratory study not only in research fields that have traditionally used insects, but also in agricultural fields that use them as food and feed. In this review, we summarize these recent advances and their relevance to such applications.
Collapse
Affiliation(s)
- Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA; Howard Hughes Medical Institute, USA
| |
Collapse
|
36
|
Mito T, Ishimaru Y, Watanabe T, Nakamura T, Ylla G, Noji S, Extavour CG. Cricket: The third domesticated insect. Curr Top Dev Biol 2022; 147:291-306. [PMID: 35337452 DOI: 10.1016/bs.ctdb.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.
Collapse
Affiliation(s)
- Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
37
|
Ohde T, Mito T, Niimi T. A hemimetabolous wing development suggests the wing origin from lateral tergum of a wingless ancestor. Nat Commun 2022; 13:979. [PMID: 35190538 PMCID: PMC8861169 DOI: 10.1038/s41467-022-28624-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
The origin and evolution of the novel insect wing remain enigmatic after a century-long discussion. The mechanism of wing development in hemimetabolous insects, in which the first functional wings evolved, is key to understand where and how insect wings evolutionarily originate. This study explored the developmental origin and the postembryonic dramatic growth of wings in the cricket Gryllus bimaculatus. We find that the lateral tergal margin, which is homologous between apterygote and pterygote insects, comprises a growth organizer to expand the body wall to form adult wing blades in Gryllus. We also find that Wnt, Fat-Dachsous, and Hippo pathways are involved in the disproportional growth of Gryllus wings. These data provide insights into where and how insect wings originate. Wings evolved from the pre-existing lateral terga of a wingless insect ancestor, and the reactivation or redeployment of Wnt/Fat-Dachsous/Hippo-mediated feed-forward circuit might have expanded the lateral terga. Here, the authors investigate wing development in cricket and find support for evolution of the novel insect wing from the pre-existing dorsal body wall of a wingless ancestor by activation of an evolutionarily conserved growth mechanism.
Collapse
|
38
|
Evolutionarily conserved function of the even-skipped ortholog in insects revealed by gene knock-out analyses in Gryllus bimaculatus. Dev Biol 2022; 485:1-8. [DOI: 10.1016/j.ydbio.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022]
|
39
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
40
|
Veenstra JA. Identification of cells expressing Calcitonins A and B, PDF and ACP in Locusta migratoria using cross-reacting antisera and in situ hybridization. Peptides 2021; 146:170667. [PMID: 34600039 DOI: 10.1016/j.peptides.2021.170667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
This work was initiated because an old publication suggested that electrocoagulation of four paraldehyde fuchsin positive cells in the brain of Locusta migratoria might produce a diuretic hormone, the identity of which remains unknown, since none of the antisera to the various putative Locusta diuretic hormones recognizes these cells. The paraldehyde fuchsin positive staining suggests a peptide with a disulfide bridge and the recently identified Locusta calcitonins have both a disulfide bridge and are structurally similar to calcitonin-like diuretic hormone. In situ hybridization and antisera raised to calcitonin-A and -B were used to show where these peptides are expressed in Locusta. Calcitonin-A is produced by neurons and neuroendocrine cells that were previously shown to be immunoreactive to an antiserum to pigment dispersing factor (PDF). The apparent PDF-immunoreactivity in these neurons and neuroendocrine cells is due to crossreactivity with the calcitonin-A precursor. As confirmed by both an PDF-precursor specific antiserum and in situ hybridisation, those calcitonin-A expressing cells do not express PDF. Calcitonin B is expressed by numerous enteroendocrine cells in the midgut as well as the midgut caeca. A guinea pig antiserum to calcitonin A seemed quite specific as it recognized only the calcitonin A expressing cells. However, rabbit antisera to calcitonin-A and-B both crossreacted with neuroendocrine cells in the brain that produce ACP (AKH/corazonin-related peptide), this is almost certainly due to the common C-terminal dipeptide SPamide that is shared between Locusta calcitonin-A, calcitonin-B and ACP.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 Pessac Cedex, France.
| |
Collapse
|
41
|
Methylation patterns of Tf2 retrotransposons linked to rapid adaptive stress response in the brown planthopper (Nilaparvata lugens). Genomics 2021; 113:4214-4226. [PMID: 34774681 DOI: 10.1016/j.ygeno.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Transposable elements (TEs) exhibit vast diversity across insect orders and are one of the major factors driving insect evolution and speciation. Presence of TEs can be both beneficial and deleterious to their host. While it is well-established that TEs impact life-history traits, adaptations and survivability of insects under hostile environments, the influence of the ecological niche on TE-landscape remains unclear. Here, we analysed the dynamics of Tf2 retrotransposons in the brown planthopper (BPH), under environmental fluctuations. BPH, a major pest of rice, is found in almost all rice-growing ecosystems. We believe genome plasticity, attributed to TEs, has allowed BPH to adapt and colonise novel ecological niches. Our study revealed bimodal age-distribution for Tf2 elements in BPH, indicating the occurrence of two major transpositional events in its evolutionary history and their contribution in shaping BPH genome. While TEs can provide genome flexibility and facilitate adaptations, they impose massive load on the genome. Hence, we investigated the involvement of methylation in modulating transposition in BPH. We performed comparative analyses of the methylation patterns of Tf2 elements in BPH feeding on resistant- and susceptible-rice varieties, and also under pesticide stress, across different life-stages. Results confirmed that methylation, particularly in non-CG context, is involved in TE regulation and dynamics under stress. Furthermore, we observed differential methylation for BPH adults and nymphs, emphasising the importance of screening juvenile life-stages in understanding adaptive-stress-responses in insects. Collectively, this study enhances our understanding of the role of transposons in influencing the evolutionary trajectory and survival strategies of BPH across generations.
Collapse
|
42
|
Whittle CA, Kulkarni A, Extavour CG. Evolutionary dynamics of sex-biased genes expressed in cricket brains and gonads. J Evol Biol 2021; 34:1188-1211. [PMID: 34114713 DOI: 10.1111/jeb.13889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Sex-biased gene expression, particularly sex-biased expression in the gonad, has been linked to rates of protein sequence evolution (nonsynonymous to synonymous substitutions, dN/dS) in animals. However, in insects, sex-biased expression studies remain centred on a few holometabolous species. Moreover, other major tissue types such as the brain remain underexplored. Here, we studied sex-biased gene expression and protein evolution in a hemimetabolous insect, the cricket Gryllus bimaculatus. We generated novel male and female RNA-seq data for two sexual tissue types, the gonad and somatic reproductive system, and for two core components of the nervous system, the brain and ventral nerve cord. From a genome-wide analysis, we report several core findings. Firstly, testis-biased genes had accelerated evolution, as compared to ovary-biased and unbiased genes, which was associated with positive selection events. Secondly, although sex-biased brain genes were much less common than for the gonad, they exhibited a striking tendency for rapid protein sequence evolution, an effect that was stronger for the female than male brain. Further, some sex-biased brain genes were linked to sexual functions and mating behaviours, which we suggest may have accelerated their evolution via sexual selection. Thirdly, a tendency for narrow cross-tissue expression breadth, suggesting low pleiotropy, was observed for sex-biased brain genes, suggesting relaxed purifying selection, which we speculate may allow enhanced freedom to evolve adaptive protein functional changes. The findings of rapid evolution of testis-biased genes and male and female-biased brain genes are discussed with respect to pleiotropy, positive selection and the mating biology of this cricket.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|