1
|
Kawase M, Ichiyanagi K. Mouse retrotransposons: sequence structure, evolutionary age, genomic distribution and function. Genes Genet Syst 2024; 98:337-351. [PMID: 37989301 DOI: 10.1266/ggs.23-00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Retrotransposons are transposable elements that are transposed via transcription and reverse transcription. Their copies have accumulated in the genome of mammals, occupying approximately 40% of mammalian genomic mass. These copies are often involved in numerous phenomena, such as chromatin spatial organization, gene expression, development and disease, and have been recognized as a driving force in evolution. Different organisms have gained specific retrotransposon subfamilies and retrotransposed copies, such as hundreds of Mus-specific subfamilies with diverse sequences and genomic locations. Despite this complexity, basic information is still necessary for present-day genomic and epigenomic studies. Herein, we describe the characteristics of each subfamily of Mus-specific retrotransposons in terms of sequence structure, phylogenetic relationships, evolutionary age, and preference for A or B compartments of chromatin.
Collapse
Affiliation(s)
- Masaki Kawase
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
2
|
Fischer V, Kretschmer M, Germain PL, Kaur J, Mompart-Barrenechea S, Pelczar P, Schürmann D, Schär P, Gapp K. Sperm chromatin accessibility's involvement in the intergenerational effects of stress hormone receptor activation. Transl Psychiatry 2023; 13:378. [PMID: 38065942 PMCID: PMC10709351 DOI: 10.1038/s41398-023-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.
Collapse
Affiliation(s)
- Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Jasmine Kaur
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sergio Mompart-Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Zhao M, Zou G, Tang J, Guo J, Wang F, Chen Z. Probe-labeled electrochemical approach for highly selective detection of 5-carboxycytosine in DNA. Anal Chim Acta 2023; 1273:341521. [PMID: 37423653 DOI: 10.1016/j.aca.2023.341521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
5-carboxycytosine (5caC) plays a critical role as an intermediate form in DNA methylation and demethylation processes. Its distribution and quantity significantly influence the dynamic equilibrium of these processes, thereby impacting the normal physiological activities of organisms. However, the analysis of 5caC presents a significant challenge due to its low abundance in the genome, making it almost undetectable in most tissues. In response to this challenge, we propose a selective method for 5caC detection using differential pulse voltammetry (DPV) at glassy carbon electrode (GCE), hinging on probe labeling. The probe molecule Biotin LC-Hydrazide was introduced into the target base and the labeled DNA was immobilized onto the electrode surface with the help of T4 polynucleotide kinase (T4 PNK). Leveraging the precise and efficient recognition of streptavidin and biotin, streptavidin-horseradish peroxidase (SA-HRP) on the surface of the electrode catalyzed a redox reaction involving hydroquinone and hydrogen peroxide, resulting in an amplified current signal. This procedure allowed us to quantitatively detect 5caC based on variations in current signals. This method demonstrated good linearity ranging from 0.01 to 100 nM with a detection limit as low as 7.9 pM. We have successfully applied it to evaluate the 5caC levels in complex biological samples. The probe labeling contributes to a high selectivity for 5caC detection, while the sulfhydryl modification via T4 PNK efficiently circumvents the limitation of specific sequences. Encouragingly, no reports have been made about electrochemical methods for detecting 5caC in DNA, suggesting that our method offers a promising alternative for 5caC detection in clinical samples.
Collapse
Affiliation(s)
- Mei Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Tang
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Jingyi Guo
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Fang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China.
| | - Zilin Chen
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Erenpreisa J, Vainshelbaum NM, Lazovska M, Karklins R, Salmina K, Zayakin P, Rumnieks F, Inashkina I, Pjanova D, Erenpreiss J. The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer. Int J Mol Sci 2023; 24:11660. [PMID: 37511419 PMCID: PMC10380301 DOI: 10.3390/ijms241411660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Collapse
Affiliation(s)
| | | | - Marija Lazovska
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Roberts Karklins
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Juris Erenpreiss
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
| |
Collapse
|
5
|
Stow EC, Baddoo M, LaRosa AJ, LaCoste D, Deininger P, Belancio V. SCIFER: approach for analysis of LINE-1 mRNA expression in single cells at a single locus resolution. Mob DNA 2022; 13:21. [PMID: 36028901 PMCID: PMC9413895 DOI: 10.1186/s13100-022-00276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Endogenous expression of L1 mRNA is the first step in an L1-initiated mutagenesis event. However, the contribution of individual cell types to patterns of organ-specific L1 mRNA expression remains poorly understood, especially at single-locus resolution. We introduce a method to quantify expression of mobile elements at the single-locus resolution in scRNA-Seq datasets called Single Cell Implementation to Find Expressed Retrotransposons (SCIFER). SCIFER aligns scRNA-Seq reads uniquely to the genome and extracts alignments from single cells by cell-specific barcodes. In contrast to the alignment performed using default parameters, this alignment strategy increases accuracy of L1 locus identification by retaining only reads that are uniquely mapped to individual L1 loci. L1 loci expressed in single cells are unambiguously identified using a list of L1 loci manually validated to be expressed in bulk RNA-Seq datasets generated from the same cell line or organ. RESULTS Validation of SCIFER using MCF7 cells determined technical parameters needed for optimal detection of L1 expression in single cells. We show that unsupervised analysis of L1 expression in single cells exponentially inflates both the levels of L1 expression and the number of expressed L1 loci. Application of SCIFER to analysis of scRNA-Seq datasets generated from mouse and human testes identified that mouse Round Spermatids and human Spermatogonia, Spermatocytes, and Round Spermatids express the highest levels of L1 mRNA. Our analysis also determined that similar to mice, human testes from unrelated individuals share as much as 80% of expressed L1 loci. Additionally, SCIFER determined that individual mouse cells co-express different L1 sub-families and different families of transposable elements, experimentally validating their co-existence in the same cell. CONCLUSIONS SCIFER detects mRNA expression of individual L1 loci in single cells. It is compatible with scRNA-Seq datasets prepared using traditional sequencing methods. Validated using a human cancer cell line, SCIFER analysis of mouse and human testes identified key cell types supporting L1 expression in these species. This will further our understanding of differences and similarities in endogenous L1 mRNA expression patterns in mice and humans.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Alexis J LaRosa
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Dawn LaCoste
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Victoria Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA.
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Abakir A, Alenezi F, Ruzov A. Detecting and Mapping N6-Methyladenosine on RNA/DNA Hybrids. Methods Mol Biol 2022; 2528:329-344. [PMID: 35704202 DOI: 10.1007/978-1-0716-2477-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A) is an RNA modification essential for posttranscriptional regulation of gene expression in eukaryotes. We recently demonstrated that m6A decorates the RNA components of R-loops, specific nucleic acid structures consisting of an RNA/DNA hybrid and a single strand of non-template DNA, that represent a major source of genetic instability and, at the same time, contribute to regulation of gene expression in mammalian cells. According to growing body of experimental evidence, adenosine methylation affects stability of these structures and potentially influences various aspects of their metabolism. Here, we present two methods for detection and analysis of m6A-containing RNA/DNA hybrids: an immunostaining protocol allowing investigation of their spatial distribution in eukaryotic cells and m6A-DNA immunoprecipitation (DIP), an antibody-based technique that permits their genome mapping and locus-specific analysis. In addition to the m6A-focused studies, these methodologies can also contribute to elucidating the functional roles of other RNA modifications in R-loop biology.
Collapse
Affiliation(s)
| | - Fahad Alenezi
- General Department of Criminal Evidence, Ministry of Interior Affairs, Al-Dajeej, Kuwait
| | - Alexey Ruzov
- Institute of Bioengineering, Research Centre of Biotechnology RAS, Moscow, Russia.
| |
Collapse
|
7
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|