1
|
Bruno S, Rovelli G, Landi V, Sbarra F, Quaglia A, Pilla F, Lasagna E, Ciani E. Validation of selection signatures for coat color in the Podolica Italiana gray cattle breed. Front Genet 2024; 15:1453295. [PMID: 39717482 PMCID: PMC11663911 DOI: 10.3389/fgene.2024.1453295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Taurine and indicine gray cattle represent relevant livestock resources in many countries of the world. A gray coat color and pigmented skin, which are common in most of the gray cattle breeds, have been demonstrated to confer better adaptation to solar radiation and thermal stresses. In a previous study adopting the FST-outlier approach with BayeScan v2.0, we identified differentially selected genomic regions in a set of gray cattle breeds, including the Podolica Italiana, and contrasted these findings with four non-gray cattle breeds. More supported signals were detected on bovine chromosomes (BTAs) 2, 4, 14, and 26 that encompassed more than fifty genes known to be directly or indirectly related to one or more steps in pigment biology. In the present study, we aimed to validate the previously observed signals using the same methodological approach on three new Podolica Italiana sample sets (N = 30 animals each). These animals were selected from the ANABIC genetic station during performance tests as being representative of the Podolica Italiana population at three different timeframes separated by approximately 10 years each. We typed these samples to the loci of 23,027 quality-controlled single-nucleotide polymorphisms. We also analyzed the dataset using the haplotype-based approach available in hapFLK v1.4 software. Both the FST-outlier and hapFLK approaches validated the abovementioned signals on BTAs 2, 4, 14, and 26. Moreover, both methods detected additional supported regions on BTAs 7 and 18 that included a total of 42 genes, of which most were already known from literature to be implicated in pigmentation traits.
Collapse
Affiliation(s)
- Silvia Bruno
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giacomo Rovelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Vincenzo Landi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Fiorella Sbarra
- Associazione Nazionale Allevatori Bovini Italiani da Carne (ANABIC), Perugia, Italy
| | - Andrea Quaglia
- Associazione Nazionale Allevatori Bovini Italiani da Carne (ANABIC), Perugia, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
2
|
Luo S, Li Z, Wang M, Liu Z, Wang D, Bai Y, Ge H, Yu Y, Yu Y, Chen W, Wang Y, Zhang C, Yu J, Song C, Lv C, Zhen Q, Han Y, Sun L. Genome wide association study and meta-analysis identified multiple new risk loci for freckles in 4813 Chinese individuals. Pigment Cell Melanoma Res 2024; 37:808-821. [PMID: 38970458 DOI: 10.1111/pcmr.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Freckle is a prevalent pigmentary dermatosis with an obvious hereditary component. Dozens of freckles risk loci have been discovered through research on multiple traits or other diseases, rather than as an independent trait. To discover novel variants associated with freckles, we performed GWAS and meta-analysis in 4813 Chinese individuals. We conducted GWAS and meta-analysis of two cohorts: 197 patients and 1603 controls (Cohort I), and 336 patients and 2677 controls (Cohort II), both from China. Then we performed linkage disequilibrium (LD) analysis, eQTL study, and enrichment analysis with association results for functional implications. Finally, we discovered 59 new SNPs and 13 novel susceptibility genes associated with freckles (Pmeta <5 × 10-8), which has enriched the genetic research on freckles.
Collapse
Affiliation(s)
- Sihan Luo
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Zhuo Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Minhao Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Zhili Liu
- Dalian Dermatosis Hospital, Dalian, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yafen Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yanxia Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yirui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Chang Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Jing Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Can Song
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | | | - Qi Zhen
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
| | - Yang Han
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
3
|
Bettim CA, da Silva AV, Kahmann A, Dorn M, Alho CS, Avila E. MC1R and age heteroclassification of face phenotypes in the Rio Grande do Sul population. Int J Legal Med 2024; 138:859-872. [PMID: 38087053 DOI: 10.1007/s00414-023-03143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Forensic DNA phenotyping (FDP) consists of the use of methodologies for predicting externally visible characteristics (EVCs) from the genetic material of biological samples found in crime scenes and has proven to be a promising tool in aiding human identification in police activities. Currently, methods based on multiplex assays and statistical models of prediction of EVCs related to hair, skin, and iris pigmentation using panels of SNP and INDEL biomarkers have already been developed and validated by the forensic scientific community. As well as traces of pigmentation, an individual's perceived age (PA) can also be considered an EVC and its estimation in unknown individuals can be useful for the progress of investigations. Liu and colleagues (2016) were pioneers in evidencing that, in addition to lifestyle and environmental factors, the presence of SNP and INDEL variants in the MC1R gene - which encodes a transmembrane receptor responsible for regulating melanin production - seems to contribute to an individual's PA. The group highlighted the association between these MC1R gene polymorphisms and the PA in the European population, where carriers of risk haplotypes appeared to be up to 2 years older in comparison to their chronological age (CA). PURPOSE Understanding that genotype-phenotype relationships cannot be extrapolated between different population groups, this study aimed to test this hypothesis and verify the applicability of this variant panel in the Rio Grande do Sul admixed population. METHODS Based on genomic data from a sample of 261 volunteers representative of gaucho population and using a multiple linear regression (MLR) model, our group was able to verify a significant association among nine intronic variants in loci adjacent to MC1R (e.g., AFG3L1P, TUBB3, FANCA) and facial age appearance, whose PA was defined after age heteroclassification of standard frontal face images through 11 assessors. RESULTS Different from that observed in European populations, our results show that the presence of effect alleles (R) of the selected variants in our sample influenced both younger and older face phenotypes. The influence of each variant on PA is expressed as β values. CONCLUSIONS There are important molecular mechanisms behind the effects of MC1R locus on PA, and the genomic background of each population seems to be crucial to determine this influence.
Collapse
Affiliation(s)
- Cássio Augusto Bettim
- Structural Bioinformatics and Computational Biology Lab, Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
| | - Alexsandro Vasconcellos da Silva
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- Technical Scientific and Identification Sections, Superintendency of Federal Police in Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alessandro Kahmann
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil.
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil.
- Interdisciplinary Department, Federal University of Rio Grande Do Sul, Tramandaí, RS, Brazil.
| | - Márcio Dorn
- Structural Bioinformatics and Computational Biology Lab, Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| | - Clarice Sampaio Alho
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| | - Eduardo Avila
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- Technical Scientific and Identification Sections, Superintendency of Federal Police in Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Feng Y, Xie N, Inoue F, Fan S, Saskin J, Zhang C, Zhang F, Hansen MEB, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Belay G, Njamnshi AK, Marks MS, Oancea E, Ahituv N, Tishkoff SA. Integrative functional genomic analyses identify genetic variants influencing skin pigmentation in Africans. Nat Genet 2024; 56:258-272. [PMID: 38200130 PMCID: PMC11005318 DOI: 10.1038/s41588-023-01626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Xie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Shaohua Fan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Human Phenome Institute, School of Life Science, Fudan University, Shanghai, China
| | - Joshua Saskin
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Chao Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Nyambo
- Department of Biochemistry and Molecular Biology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone, Botswana
| | | | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN); Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Elena Oancea
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Yuan W, Qin H, Bi H, Zhao D, Zhang Y, Chen W. Ssc-mir-221-3p regulates melanin production in Xiang pigs melanocytes by targeting the TYRP1 gene. BMC Genomics 2023; 24:369. [PMID: 37393242 DOI: 10.1186/s12864-023-09451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate gene expression by down-regulating it. Several studies have suggested that miRNAs plays a crucial role in mammalian skin color production. The TYRP1 gene, a member of the tyrosine family, is an important candidate gene that affects melanogenesis. This study aimed to identify genes and miRNAs that affect melanin production in Xiang pigs by transcriptome sequencing, and to validate their targeted regulatory relationships. RESULTS 17 miRNAs and 1,230 genes were significantly differentially expressed (P < 0.05) in the black and white skin tissues of Jianbai Xiang pigs. miRNA-221-3p was identified as a candidate miRNA for melanin formation and its target gene, TYRP1, was selected. The TYRP1 gene is a member of the TYR gene family, which evolved from the TYR gene through chromosome segmental duplication. The function of the gene was highly conserved throughout the evolutionary process. overexpression of TYRP1 gene significantly increased the expression of TYR, TYRP1, and DCT genes P < 0.01, which led to an increase in the relative content of melanin. Silencing of TYRP1 through the use of TYRP1-siRNA significantly reduced the expression of TYR, TYRP1, and DCT genes in Jianbai Xiang pig melanocytes P < 0.01, which in turn decreased the relative melanin content. The targeted binding relationship between ssc-miR-221-3p and TYRP1 gene was validated. After transfection of porcine melanocytes with ssc-miR-221-3p mimic, the expression of ssc-miR-221-3p was significantly up-regulated (P < 0.01). Furthermore, the mRNA and protein levels of TYR, TYRP1, and DCT genes were significantly down-regulated (P < 0.01), and melanin content in cells was significantly reduced (P < 0.01). CONCLUSION The TYRP1 gene affects melanogenesis in melanocytes of Jianbai Xiang pigs, and ssc-miR-221-3p targets the TYRP1 gene to regulate melanogenesis in melanocytes of Jianbai Xiang pigs.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hai Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Huan Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Depeng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, Guizhou Province, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
6
|
Villaplana-Velasco A, Pigeyre M, Engelmann J, Rawlik K, Canela-Xandri O, Tochel C, Lona-Durazo F, Mookiah MRK, Doney A, Parra EJ, Trucco E, MacGillivray T, Rannikmae K, Tenesa A, Pairo-Castineira E, Bernabeu MO. Fine-mapping of retinal vascular complexity loci identifies Notch regulation as a shared mechanism with myocardial infarction outcomes. Commun Biol 2023; 6:523. [PMID: 37188768 PMCID: PMC10185685 DOI: 10.1038/s42003-023-04836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is increasing evidence that the complexity of the retinal vasculature measured as fractal dimension, Df, might offer earlier insights into the progression of coronary artery disease (CAD) before traditional biomarkers can be detected. This association could be partly explained by a common genetic basis; however, the genetic component of Df is poorly understood. We present a genome-wide association study (GWAS) of 38,000 individuals with white British ancestry from the UK Biobank aimed to comprehensively study the genetic component of Df and analyse its relationship with CAD. We replicated 5 Df loci and found 4 additional loci with suggestive significance (P < 1e-05) to contribute to Df variation, which previously were reported in retinal tortuosity and complexity, hypertension, and CAD studies. Significant negative genetic correlation estimates support the inverse relationship between Df and CAD, and between Df and myocardial infarction (MI), one of CAD's fatal outcomes. Fine-mapping of Df loci revealed Notch signalling regulatory variants supporting a shared mechanism with MI outcomes. We developed a predictive model for MI incident cases, recorded over a 10-year period following clinical and ophthalmic evaluation, combining clinical information, Df, and a CAD polygenic risk score. Internal cross-validation demonstrated a considerable improvement in the area under the curve (AUC) of our predictive model (AUC = 0.770 ± 0.001) when comparing with an established risk model, SCORE, (AUC = 0.741 ± 0.002) and extensions thereof leveraging the PRS (AUC = 0.728 ± 0.001). This evidences that Df provides risk information beyond demographic, lifestyle, and genetic risk factors. Our findings shed new light on the genetic basis of Df, unveiling a common control with MI, and highlighting the benefits of its application in individualised MI risk prediction.
Collapse
Affiliation(s)
- Ana Villaplana-Velasco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Marie Pigeyre
- Population Health Research Institute (PHRI), Department of Medicine, Faculty of Health Sciences, McMaster University, McMaster University, Hamilton, Ontario, Canada
| | - Justin Engelmann
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Konrad Rawlik
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Oriol Canela-Xandri
- MRC Human Genetics Unit, IGC, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Claire Tochel
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | - Alex Doney
- VAMPIRE project, Computing, School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Esteban J Parra
- University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Emanuele Trucco
- VAMPIRE project, Computing, School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Tom MacGillivray
- VAMPIRE project, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Kristiina Rannikmae
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Albert Tenesa
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK
- MRC Human Genetics Unit, IGC, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Erola Pairo-Castineira
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK.
- The Bayes Centre, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
7
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
8
|
Lazareva TE, Barbitoff YA, Changalidis AI, Tkachenko AA, Maksiutenko EM, Nasykhova YA, Glotov AS. Biobanking as a Tool for Genomic Research: From Allele Frequencies to Cross-Ancestry Association Studies. J Pers Med 2022; 12:2040. [PMID: 36556260 PMCID: PMC9783756 DOI: 10.3390/jpm12122040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, great advances have been made in the field of collection, storage, and analysis of biological samples. Large collections of samples, biobanks, have been established in many countries. Biobanks typically collect large amounts of biological samples and associated clinical information; the largest collections include over a million samples. In this review, we summarize the main directions in which biobanks aid medical genetics and genomic research, from providing reference allele frequency information to allowing large-scale cross-ancestry meta-analyses. The largest biobanks greatly vary in the size of the collection, and the amount of available phenotype and genotype data. Nevertheless, all of them are extensively used in genomics, providing a rich resource for genome-wide association analysis, genetic epidemiology, and statistical research into the structure, function, and evolution of the human genome. Recently, multiple research efforts were based on trans-biobank data integration, which increases sample size and allows for the identification of robust genetic associations. We provide prominent examples of such data integration and discuss important caveats which have to be taken into account in trans-biobank research.
Collapse
Affiliation(s)
- Tatyana E. Lazareva
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton I. Changalidis
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
- Faculty of Software Engineering and Computer Systems, ITMO University, 197101 St. Petersburg, Russia
| | - Alexander A. Tkachenko
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Evgeniia M. Maksiutenko
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Yulia A. Nasykhova
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| | - Andrey S. Glotov
- Departemnt of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Investigating the genetic architecture of eye colour in a Canadian cohort. iScience 2022; 25:104485. [PMID: 35712076 PMCID: PMC9194134 DOI: 10.1016/j.isci.2022.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Eye color is highly variable in populations with European ancestry, ranging from low to high quantities of melanin in the iris. Polymorphisms in the HERC2/OCA2 locus have the largest effect on eye color in these populations, although other genomic regions also influence eye color. We performed genome-wide association studies of eye color in a Canadian cohort of European ancestry (N = 5,641) and investigated candidate causal variants. We uncovered several candidate causal signals in the HERC2/OCA2 region, whereas other loci likely harbor a single causal signal. We observed colocalization of eye color signals with the expression or methylation profiles of cultured primary melanocytes. Genetic correlations of eye and hair color suggest high genome-wide pleiotropy, but locus-level differences in the genetic architecture of both traits. Overall, we provide a better picture of the polymorphisms underpinning eye color variation, which may be a consequence of specific molecular processes in the iris melanocytes. Genome-wide association studies of eye color in 5,641 participants Multiple independent candidate causal variants were identified across HERC2/OCA2 Single candidate causal variants observed on or near IRF4, SLC24A4, TYR, and TYRP1 Colocalization of eye color signals with expression and methylation profiles
Collapse
|
10
|
Urtatiz O, Haage A, Tanentzapf G, Van Raamsdonk CD. Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. eLife 2021; 10:71825. [PMID: 34939927 PMCID: PMC8747508 DOI: 10.7554/elife.71825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract, or central nervous system. It is rare in melanomas arising in the epidermis. The mechanism for this specificity is unknown. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene. We found that GNAQQ209L, in combination with signaling from the interfollicular epidermis (IFE), stimulates dendrite extension, leads to actin cytoskeleton disorganization, inhibits proliferation, and promotes apoptosis in melanocytes. The effect was reversible and paracrine. In contrast, the epidermal environment increased the survival of wildtype and BrafV600E expressing melanocytes. Hence, our studies reveal the flip side of Gαq/11 signaling, which was hitherto unsuspected. In the future, the identification of the epidermal signals that restrain the GNAQQ209L oncogene could suggest novel therapies for GNAQ and GNA11 mutant melanomas.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|