1
|
Yao R, Shi L, Niu Y, Li H, Fan X, Wang B. Driving brain state transitions via Adaptive Local Energy Control Model. Neuroimage 2025; 306:121023. [PMID: 39800170 DOI: 10.1016/j.neuroimage.2025.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025] Open
Abstract
The brain, as a complex system, achieves state transitions through interactions among its regions and also performs various functions. An in-depth exploration of brain state transitions is crucial for revealing functional changes in both health and pathological states and realizing precise brain function intervention. Network control theory offers a novel framework for investigating the dynamic characteristics of brain state transitions. Existing studies have primarily focused on analyzing the energy required for brain state transitions, which are driven either by the single brain region or by all brain regions. However, they often neglect the critical question of how the whole brain responds to external control inputs that are driven by control energy from multiple brain regions, which limits their application value in guiding clinical neurostimulation. In this paper, we proposed the Adaptive Local Energy Control Model (ALECM) to explore brain state transitions, which considers the complex interactions of the whole brain along the white matter network when external control inputs are applied to multiple regions. It not only quantifies the energy required for state transitions but also predicts their outcomes based on local control. Our results indicated that patients with Schizophrenia (SZ) and Bipolar Disorder (BD) required more energy to drive the brain state transitions from the pathological state to the healthy baseline state, which is defined as Hetero-state transition. Importantly, we successfully induced Hetero-state transition in the patients' brains by using the ALECM, with subnetworks or specific brain regions serving as local control sets. Eventually, the network similarity between patients and healthy subjects reached baseline levels. These offer evidence that the ALECM can effectively quantify the cost characteristics of brain state transitions, providing a theoretical foundation for accurately predicting the efficacy of electromagnetic perturbation therapies in the future.
Collapse
Affiliation(s)
- Rong Yao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Langhua Shi
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - HaiFang Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Fan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
2
|
Li Z, Liu Z, Gao Y, Tang B, Gu S, Luo C, Lui S. Functional brain controllability in Parkinson's disease and its association with motor outcomes after deep brain stimulation. Front Neurosci 2024; 18:1433577. [PMID: 39575098 PMCID: PMC11578951 DOI: 10.3389/fnins.2024.1433577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Considering the high economic burden and risks of deep brain stimulation (DBS) surgical failure, predicting the motor outcomes of DBS in Parkinson's disease (PD) is of significant importance in clinical decision-making. Functional controllability provides a rationale for combining the abnormal connections of the cortico-striato-thalamic-cortical (CSTC) motor loops and dynamic changes after medication in DBS outcome prediction. Methods In this study, we analyzed the association between preoperative delta functional controllability after medication within CSTC loops and motor outcomes of subthalamic nucleus DBS (STN-DBS) and globus pallidus interna DBS (GPi-DBS) and predicted motor outcomes in a Support Vector Regression (SVR) model using the delta controllability of focal regions. Results While the STN-DBS motor outcomes were associated with the delta functional controllability of the thalamus, the GPi-DBS motor outcomes were related to the delta functional controllability of the caudate nucleus and postcentral gyrus. In the SVR model, the predicted and actual motor outcomes were positively correlated, with p = 0.020 and R = 0.514 in the STN-DBS group, and p = 0.011 and R = 0.705 in the GPi- DBS group. Discussion Our findings indicate that different focal regions within the CSTC motor loops are involved in STN-DBS and GPi-DBS and support the feasibility of functional controllability in predicting DBS motor outcomes for PD in clinical decision-making.
Collapse
Affiliation(s)
- Ziyu Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Zhiqin Liu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| |
Collapse
|
3
|
Papallo S, Di Nardo F, Siciliano M, Esposito S, Canale F, Cirillo G, Cirillo M, Trojsi F, Esposito F. Functional Connectome Controllability in Patients with Mild Cognitive Impairment after Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex. J Clin Med 2024; 13:5367. [PMID: 39336854 PMCID: PMC11432536 DOI: 10.3390/jcm13185367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) has shown therapeutic effects in neurological patients by inducing neural plasticity. In this pilot study, we analyzed the modifying effects of high-frequency (HF-)rTMS applied to the dorsolateral prefrontal cortex (DLPFC) of patients with mild cognitive impairment (MCI) using an advanced approach of functional connectome analysis based on network control theory (NCT). Methods: Using local-to-global functional parcellation, average and modal controllability (AC/MC) were estimated for DLPFC nodes of prefrontal-lateral control networks (R/LH_Cont_PFCl_3/4) from a resting-state fMRI series acquired at three time points (T0 = baseline, T1 = T0 + 4 weeks, T2 = T1 + 20 weeks) in MCI patients receiving regular daily sessions of 10 Hz HF-rTMS (n = 10, 68.00 ± 8.16 y, 4 males) or sham (n = 10, 63.80 ± 9.95 y, 5 males) stimulation, between T0 and T1. Longitudinal (group) effects on AC/MC were assessed with non-parametric statistics. Spearman correlations (ρ) of AC/MC vs. neuropsychological (RBANS) score %change (at T1, T2 vs. T0) were calculated. Results: AC median was reduced in MCI-rTMS, compared to the control group, for RH_Cont_PFCl_3/4 at T1 and T2 (vs. T0). In MCI-rTMS patients, for RH_Cont_PFCl_3, AC % change at T1 (vs. T0) was negatively correlated with semantic fluency (ρ = -0.7939, p = 0.045) and MC % change at T2 (vs. T0) was positively correlated with story memory (ρ = 0.7416, p = 0.045). Conclusions: HF-rTMS stimulation of DLFC nodes significantly affects the controllability of the functional connectome in MCI patients. Emerging correlations between AC/MC controllability and cognitive performance changes, immediately (T1 vs. T0) and six months (T2 vs. T0) after treatment, suggest NCT could help explain the HF-rTMS impact on prefrontal-lateral control network, monitoring induced neural plasticity effects in MCI patients.
Collapse
Affiliation(s)
- Simone Papallo
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Sabrina Esposito
- First Division of Neurology and Neurophysiopathology, University Hospital, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Fabrizio Canale
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- First Division of Neurology and Neurophysiopathology, University Hospital, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Cirillo
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- First Division of Neurology and Neurophysiopathology, University Hospital, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
4
|
Volpi T, Silvestri E, Aiello M, Lee JJ, Vlassenko AG, Goyal MS, Corbetta M, Bertoldo A. The brain's "dark energy" puzzle: How strongly is glucose metabolism linked to resting-state brain activity? J Cereb Blood Flow Metab 2024; 44:1433-1449. [PMID: 38443762 PMCID: PMC11342718 DOI: 10.1177/0271678x241237974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024]
Abstract
Brain glucose metabolism, which can be investigated at the macroscale level with [18F]FDG PET, displays significant regional variability for reasons that remain unclear. Some of the functional drivers behind this heterogeneity may be captured by resting-state functional magnetic resonance imaging (rs-fMRI). However, the full extent to which an fMRI-based description of the brain's spontaneous activity can describe local metabolism is unknown. Here, using two multimodal datasets of healthy participants, we built a multivariable multilevel model of functional-metabolic associations, assessing multiple functional features, describing the 1) rs-fMRI signal, 2) hemodynamic response, 3) static and 4) time-varying functional connectivity, as predictors of the human brain's metabolic architecture. The full model was trained on one dataset and tested on the other to assess its reproducibility. We found that functional-metabolic spatial coupling is nonlinear and heterogeneous across the brain, and that local measures of rs-fMRI activity and synchrony are more tightly coupled to local metabolism. In the testing dataset, the degree of functional-metabolic spatial coupling was also related to peripheral metabolism. Overall, although a significant proportion of regional metabolic variability can be described by measures of spontaneous activity, additional efforts are needed to explain the remaining variance in the brain's 'dark energy'.
Collapse
Affiliation(s)
- Tommaso Volpi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - John J Lee
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrei G Vlassenko
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Manu S Goyal
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Li Q, Zhao Y, Hu Y, Liu Y, Wang Y, Zhang Q, Long F, Chen Y, Wang Y, Li H, Poels EMP, Kamperman AM, Sweeney JA, Kuang W, Li F, Gong Q. Linked patterns of symptoms and cognitive covariation with functional brain controllability in major depressive disorder. EBioMedicine 2024; 106:105255. [PMID: 39032426 PMCID: PMC11324849 DOI: 10.1016/j.ebiom.2024.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Controllability analysis is an approach developed for evaluating the ability of a brain region to modulate function in other regions, which has been found to be altered in major depressive disorder (MDD). Both depressive symptoms and cognitive impairments are prominent features of MDD, but the case-control differences of controllability between MDD and controls can not fully interpret the contribution of both clinical symptoms and cognition to brain controllability and linked patterns among them in MDD. METHODS Sparse canonical correlation analysis was used to investigate the associations between resting-state functional brain controllability at the network level and clinical symptoms and cognition in 99 first-episode medication-naïve patients with MDD. FINDINGS Average controllability was significantly correlated with clinical features. The average controllability of the dorsal attention network (DAN) and visual network had the highest correlations with clinical variables. Among clinical variables, depressed mood, suicidal ideation and behaviour, impaired work and activities, and gastrointestinal symptoms were significantly negatively associated with average controllability, and reduced cognitive flexibility was associated with reduced average controllability. INTERPRETATION These findings highlight the importance of brain regions in modulating activity across brain networks in MDD, given their associations with symptoms and cognitive impairments observed in our study. Disrupted control of brain reconfiguration of DAN and visual network during their state transitions may represent a core brain mechanism for the behavioural impairments observed in MDD. FUNDING National Natural Science Foundation of China (82001795 and 82027808), National Key R&D Program (2022YFC2009900), and Sichuan Science and Technology Program (2024NSFSC0653).
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Youjin Zhao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yongbo Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yang Liu
- Academy of Mathematics and Systems Science Chinese, Academy of Science, Beijing, China
| | - Yaxuan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Qian Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Fenghua Long
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yufei Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yitian Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Haoran Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Eline M P Poels
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Astrid M Kamperman
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Department of Psychiatry and Behavioural Neuroscience, University of Cincinnati, Cincinnati, OH, 45219, USA
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China.
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Li Y, Yang H, Gu S. Enhancing neural encoding models for naturalistic perception with a multi-level integration of deep neural networks and cortical networks. Sci Bull (Beijing) 2024; 69:1738-1747. [PMID: 38490889 DOI: 10.1016/j.scib.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/27/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
Cognitive neuroscience aims to develop computational models that can accurately predict and explain neural responses to sensory inputs in the cortex. Recent studies attempt to leverage the representation power of deep neural networks (DNNs) to predict the brain response and suggest a correspondence between artificial and biological neural networks in their feature representations. However, typical voxel-wise encoding models tend to rely on specific networks designed for computer vision tasks, leading to suboptimal brain-wide correspondence during cognitive tasks. To address this challenge, this work proposes a novel approach that upgrades voxel-wise encoding models through multi-level integration of features from DNNs and information from brain networks. Our approach combines DNN feature-level ensemble learning and brain atlas-level model integration, resulting in significant improvements in predicting whole-brain neural activity during naturalistic video perception. Furthermore, this multi-level integration framework enables a deeper understanding of the brain's neural representation mechanism, accurately predicting the neural response to complex visual concepts. We demonstrate that neural encoding models can be optimized by leveraging a framework that integrates both data-driven approaches and theoretical insights into the functional structure of the cortical networks.
Collapse
Affiliation(s)
- Yuanning Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| | - Huzheng Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| |
Collapse
|
7
|
Meng T, Duan G, Li A. Target control of complex networks: How to save control energy. Phys Rev E 2023; 108:014301. [PMID: 37583158 DOI: 10.1103/physreve.108.014301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 08/17/2023]
Abstract
Controlling complex networks has received much attention in the past two decades. In order to control complex networks in practice, recent progress is mainly focused on the control energy required to drive the associated system from an initial state to any final state within finite time. However, one of the major challenges when controlling complex networks is that the amount of control energy is usually prohibitively expensive. Previous explorations on reducing the control energy often rely on adding more driver nodes to be controlled directly by external control inputs, or reducing the number of target nodes required to be controlled. Here we show that the required control energy can be reduced exponentially by appropriately setting the initial states of uncontrollable nodes for achieving the target control of complex networks. We further present the energy-optimal initial states and theoretically prove their existence for any structure of network. Moreover, we demonstrate that the control energy could be saved by reducing the distance between the energy-optimal states set and the initial states of uncontrollable nodes. Finally, we propose a strategy to determine the optimal time to inject the control inputs, which may reduce the control energy exponentially. Our conclusions are all verified numerically, and shed light on saving control energy in practical control.
Collapse
Affiliation(s)
- Tao Meng
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China
| | - Gaopeng Duan
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China
- Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Tozlu C, Card S, Jamison K, Gauthier SA, Kuceyeski A. Larger lesion volume in people with multiple sclerosis is associated with increased transition energies between brain states and decreased entropy of brain activity. Netw Neurosci 2023; 7:539-556. [PMID: 37397885 PMCID: PMC10312270 DOI: 10.1162/netn_a_00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 01/10/2024] Open
Abstract
Quantifying the relationship between the brain's functional activity patterns and its structural backbone is crucial when relating the severity of brain pathology to disability in multiple sclerosis (MS). Network control theory (NCT) characterizes the brain's energetic landscape using the structural connectome and patterns of brain activity over time. We applied NCT to investigate brain-state dynamics and energy landscapes in controls and people with MS (pwMS). We also computed entropy of brain activity and investigated its association with the dynamic landscape's transition energy and lesion volume. Brain states were identified by clustering regional brain activity vectors, and NCT was applied to compute the energy required to transition between these brain states. We found that entropy was negatively correlated with lesion volume and transition energy, and that larger transition energies were associated with pwMS with disability. This work supports the notion that shifts in the pattern of brain activity in pwMS without disability results in decreased transition energies compared to controls, but, as this shift evolves over the disease, transition energies increase beyond controls and disability occurs. Our results provide the first evidence in pwMS that larger lesion volumes result in greater transition energy between brain states and decreased entropy of brain activity.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sophie Card
- Horace Greeley High School, Chappaqua, NY, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan A. Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Li Q, Yao L, You W, Liu J, Deng S, Li B, Luo L, Zhao Y, Wang Y, Wang Y, Zhang Q, Long F, Sweeney JA, Gu S, Li F, Gong Q. Controllability of Functional Brain Networks and Its Clinical Significance in First-Episode Schizophrenia. Schizophr Bull 2022; 49:659-668. [PMID: 36402458 PMCID: PMC10154712 DOI: 10.1093/schbul/sbac177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND HYPOTHESIS Disrupted control of brain state transitions may contribute to the diverse dysfunctions of cognition, emotion, and behavior that are fundamental to schizophrenia. Control theory provides the rationale for evaluating brain state transitions from a controllability perspective, which may help reveal the brain mechanism for clinical features such as cognitive control deficits associated with schizophrenia. We hypothesized that brain controllability would be altered in patients with schizophrenia, and that controllability of brain networks would be related to clinical symptomatology. STUDY DESIGN Controllability measurements of functional brain networks, including average controllability and modal controllability, were calculated and compared between 125 first-episode never-treated patients with schizophrenia and 133 healthy controls (HCs). Associations between controllability metrics and clinical symptoms were evaluated using sparse canonical correlation analysis. STUDY RESULTS Compared to HCs, patients showed significantly increased average controllability (PFDR = .023) and decreased modal controllability (PFDR = .023) in dorsal anterior cingulate cortex (dACC). General psychopathology symptoms and positive symptoms were positively correlated with average controllability in regions of default mode network and negatively associated with average controllability in regions of sensorimotor, dorsal attention, and frontoparietal networks. CONCLUSIONS Our findings suggest that altered controllability of functional activity in dACC may play a critical role in the pathophysiology of schizophrenia, consistent with the importance of this region in cognitive and brain state control operations. The demonstration of associations of functional controllability with psychosis symptoms suggests that the identified alterations in average controllability of brain function may contribute to the severity of acute psychotic illness in schizophrenia.
Collapse
Affiliation(s)
- Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Jiang Liu
- Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikuang Deng
- Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Li
- Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Qian Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Fenghua Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Shi Gu
- Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China.,Functional and Molecular Imaging Key Laboratory, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|