1
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2024; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Gohari N, Abbasi E, Akrami H. Comprehensive analysis of the prognostic value of glutathione S-transferases Mu family members in breast cancer. Cell Biol Int 2024; 48:1313-1325. [PMID: 38922769 DOI: 10.1002/cbin.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) remains a significant public health concern globally, with a high number of reported cases and a substantial number of deaths every year. Accumulating reactive oxygen species (ROS) and oxidative stress are related to BC and the Glutathione S-transferases Mu (GSTM) family is one of the most important enzymatic detoxifiers associated with many cancers. In this study, UALCAN, Kaplan-Meier plotter, bc-GenExMiner, cBioPortal, STRING, Enrichr, and TIMER databases were employed to carry out a comprehensive bioinformatic analysis and provide new insight into the prognostic value of GSTMs in BC. GSTM2-5 genes in mRNA and protein levels were found to be expressed at lower levels in breast tumors compared to normal tissues, and reduction in mRNA levels is linked to shorter overall survival (OS) and relapse-free survival (RFS). The lower mRNA levels of GSTMs were strongly associated with the worse Scarff-Bloom-Richardson (SBR) grades (p < 0.0001). The mRNA levels of all five GSTMs were substantially higher in estrogen receptor (ER)-positive and progesterone receptor (PR)-positive compared to ER-negative and PR-negative BC patients. As well, when nodal status was compared, GSTM1, GSTM3, and GSTM5 were significantly higher in nodal-positive BC patients (p < .01). Furthermore, GSTM4 had the most gene alteration (4%) among other family members, and GSTM5 showed the strongest correlation with CD4+ T cells (Cor= .234, p = 2.22e-13). In conclusion, our results suggest that GSTM family members may be helpful as biomarkers for prognosis and as therapeutic targets in BC.
Collapse
Affiliation(s)
- Nazanin Gohari
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Elham Abbasi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Akrami
- Associate Professor in Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Abdala-Díaz RT, Casas-Arrojo V, Castro-Varela P, Riquelme C, Carrillo P, Medina MÁ, Cárdenas C, Becerra J, Pérez Manríquez C. Immunomodulatory, Antioxidant, and Potential Anticancer Activity of the Polysaccharides of the Fungus Fomitiporia chilensis. Molecules 2024; 29:3628. [PMID: 39125036 PMCID: PMC11314378 DOI: 10.3390/molecules29153628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Fomitiporia species have aroused the interest of numerous investigations that reveal their biological activity and medicinal potential. The present investigation shows the antioxidant, anticancer, and immunomodulatory activity of acidic polysaccharides obtained from the fungus Fomitiporia chilensis. The acidic polysaccharides were obtained for acidic precipitation with 2% O-N-cetylpyridinium bromide. Chemical analysis was performed using FT-IR and GC-MS methods. The antioxidant capacity of acidic polysaccharides from F. chilensis was evaluated by scavenging free radicals with an ABTS assay. Macrophage proliferation and cytokine production assays were used to determine the immunomodulatory capacity of the polysaccharides. Anti-tumor and cytotoxicity activity was evaluated with an MTT assay in the U-937, HTC-116, and HGF-1 cell lines. The effect of polysaccharides on the cell cycle of the HCT-116 cell line was determined for flow cytometry. Fourier Transform-infrared characterization revealed characteristic absorption peaks for polysaccharides, whereas the GC-MS analysis detected three peaks corresponding to D-galactose, galacturonic acid, and D-glucose. The secreted TNF-α concentration was increased when the cell was treated with 2 mg mL-1 polysaccharides, whereas the IL-6 concentration was increased with all of the evaluated polysaccharide concentrations. A cell cycle analysis of HTC-116 treated with polysaccharides evidenced that the acidic polysaccharides from F. chilensis induce an increase in the G0/G1 cell cycle phase, increasing the apoptotic cell percentage. Results from a proteomic analysis suggest that some of the molecular mechanisms involved in their antioxidant and cellular detoxifying effects and justify their traditional use in heart diseases. Proteomic data are available through ProteomeXchange under identifier PXD048361. The study on acidic polysaccharides from F. chilensis has unveiled their diverse biological activities, including antioxidant, anticancer, and immunomodulatory effects. These findings underscore the promising therapeutic applications of acidic polysaccharides from F. chilensis, warranting further pharmaceutical and medicinal research exploration.
Collapse
Affiliation(s)
- Roberto T. Abdala-Díaz
- Department of Ecology and Geology, Institute of Blue Biotechnology and Development (IBYDA), Malaga University, E-29071 Malaga, Spain; (R.T.A.-D.); (V.C.-A.)
| | - Virginia Casas-Arrojo
- Department of Ecology and Geology, Institute of Blue Biotechnology and Development (IBYDA), Malaga University, E-29071 Malaga, Spain; (R.T.A.-D.); (V.C.-A.)
| | - Pablo Castro-Varela
- FICOLAB Microalgal Research Group, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción PC 304000, Chile;
| | - Cristian Riquelme
- Mycology Laboratory, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Isla Teja, PO 567, Valdivia PC 5049000, Chile;
| | - Paloma Carrillo
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, E-29071 Málaga, Spain; (P.C.); (M.Á.M.); (C.C.)
- Malaga Biomedical Research Institute and Nanomedicine Platform (IBIMA PlataformaBIONAND), C/Severo Ochoa, 35, E-29590 Málaga, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, E-29071 Málaga, Spain; (P.C.); (M.Á.M.); (C.C.)
- Malaga Biomedical Research Institute and Nanomedicine Platform (IBIMA PlataformaBIONAND), C/Severo Ochoa, 35, E-29590 Málaga, Spain
- Network Biomedical Research Center for Rare Diseases (CIBERER), U741, E-28029 Málaga, Spain
| | - Casimiro Cárdenas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, E-29071 Málaga, Spain; (P.C.); (M.Á.M.); (C.C.)
- Research Support Central Services (SCAI) of the University of Málaga, E-29071 Málaga, Spain
| | - José Becerra
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción PC 304000, Chile;
- Technological Development Unit, University of Concepción, Concepción PC 304000, Chile
| | - Claudia Pérez Manríquez
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción PC 304000, Chile;
- Technological Development Unit, University of Concepción, Concepción PC 304000, Chile
| |
Collapse
|
4
|
Mendoza-Martínez GD, Orzuna-Orzuna JF, Roque-Jiménez JA, Gloria-Trujillo A, Martínez-García JA, Sánchez-López N, Hernández-García PA, Lee-Rangel HA. A Polyherbal Mixture with Nutraceutical Properties for Ruminants: A Meta-Analysis and Review of BioCholine Powder. Animals (Basel) 2024; 14:667. [PMID: 38473052 PMCID: PMC11154432 DOI: 10.3390/ani14050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
BioCholine Powder is a polyherbal feed additive composed of Achyrantes aspera, Trachyspermum ammi, Azadirachta indica, and Citrullus colocynthis. The objective of this study was to analyze published results that support the hypothesis that the polyherbal product BioCholine Powder has rumen bypass choline metabolites through a meta-analysis and effect size analysis (ES). Using Scopus, Web of Science, ScienceDirect, PubMed, and university dissertation databases, a systematic search was conducted for experiments published in scientific documents that evaluated the effects of BioCholine supplementation on the variables of interest. The analyzed data were extracted from twenty-one publications (fifteen scientific articles, three abstracts, and three graduate dissertations available in institutional libraries). The studies included lamb growing-finishing, lactating ewes and goats, calves, and dairy cows. The effects of BioCholine were analyzed using random effects statistical models to compare the weighted mean difference (WMD) between BioCholine-supplemented ruminants and controls (no BioCholine). Heterogeneity was explored, and three subgroup analyses were performed for doses [(4 (or 5 g/d), 8 (10 g/d)], supplementation in gestating and lactating ewes (pre- and postpartum supplementation), and blood metabolites by species and physiological state (lactating goats, calves, lambs, ewes). Supplementation with BioCholine in sheep increased the average daily lamb gain (p < 0.05), final body weight (p < 0.01), and daily milk yield (p < 0.05) without effects on intake or feed conversion. Milk yield was improved in small ruminants with BioCholine prepartum supplementation (p < 0.10). BioCholine supplementation decreased blood urea (p < 0.01) and increased levels of the liver enzymes alanine transaminase (ALT; p < 0.10) and albumin (p < 0.001). BioCholine doses over 8 g/d increased blood glucose, albumin (p < 0.10), cholesterol, total protein, and globulin (p < 0.05). The ES values of BioCholine in retained energy over the control in growing lambs were +7.15% NEm (p < 0.10) and +9.25% NEg (p < 0.10). In conclusion, adding BioCholine Powder to domestic ruminants' diets improves productive performance, blood metabolite indicators of protein metabolism, and liver health, showing its nutraceutical properties where phosphatidylcholine prevails as an alternative that can meet the choline requirements in ruminants.
Collapse
Affiliation(s)
- Germán David Mendoza-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - José Alejandro Roque-Jiménez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Ejido Nuevo León, Mexicali 21705, Mexico
| | - Adrián Gloria-Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - José Antonio Martínez-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | - Nallely Sánchez-López
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana—Xochimilco, Mexico City 04960, Mexico; (G.D.M.-M.); (J.A.R.-J.); (A.G.-T.); (J.A.M.-G.); (N.S.-L.)
| | | | - Héctor Aaron Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, S.L.P., Soledad de Graciano Sánchez 78000, Mexico;
| |
Collapse
|
5
|
Lv T, Lou Y, Yan Q, Nie L, Cheng Z, Zhou X. Phosphorylation: new star of pathogenesis and treatment in steatotic liver disease. Lipids Health Dis 2024; 23:50. [PMID: 38368351 PMCID: PMC10873984 DOI: 10.1186/s12944-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Steatotic liver disease poses a serious threat to human health and has emerged as one of the most significant burdens of chronic liver disease worldwide. Currently, the research mechanism is not clear, and there is no specific targeted drug for direct treatment. Phosphorylation is widely regarded as the most common type of protein modification, closely linked to steatotic liver disease in previous studies. However, there is no systematic review to clarify the relationship and investigate from the perspective of phosphorylation. Phosphorylation has been found to mainly regulate molecule stability, affect localization, transform molecular function, and cooperate with other protein modifications. Among them, adenosine 5'-monophosphate-activated protein kinase (AMPK), serine/threonine kinase (AKT), and nuclear factor kappa-B (NF-kB) are considered the core mechanisms in steatotic liver disease. As to treatment, lifestyle changes, prescription drugs, and herbal ingredients can alleviate symptoms by influencing phosphorylation. It demonstrates the significant role of phosphorylation as a mechanism occurrence and a therapeutic target in steatotic liver disease, which could be a new star for future exploration.
Collapse
Affiliation(s)
- Tiansu Lv
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Nie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Rodriguez-Ramiro I, Pastor-Fernández A, López-Aceituno JL, Garcia-Dominguez E, Sierra-Ramirez A, Valverde AM, Martinez-Pastor B, Efeyan A, Gomez-Cabrera MC, Viña J, Fernandez-Marcos PJ. Pharmacological and genetic increases in liver NADPH levels ameliorate NASH progression in female mice. Free Radic Biol Med 2024; 210:448-461. [PMID: 38036067 DOI: 10.1016/j.freeradbiomed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.
Collapse
Affiliation(s)
- Ildefonso Rodriguez-Ramiro
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain; Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, E28029, Spain; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Spain
| | - Bárbara Martinez-Pastor
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain.
| |
Collapse
|
7
|
Qingyang L, Ruohui W, Shiman S, Danyu S, Runhong M, Yihua L. Comparison of different drying technologies for walnut ( Juglans regia L.) pellicles: Changes from phenolic composition, antioxidant activity to potential application. Food Chem X 2023; 20:101037. [PMID: 38144737 PMCID: PMC10739750 DOI: 10.1016/j.fochx.2023.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
The analysis of the phenolic profile in the walnut pellicle (WP) and its exploitability can help to promote the valorization of the industrial waste from walnut production. Three forms of 33 monomeric phenols in WPs were quantified based on our previously established LC-MS/MS method. The levels of protocatechuic acid and 4-hydroxybenzoic acid in the WPs were the highest, exceeding 400 μg/g. Antioxidant tests revealed that all three phenolic forms of WPs were effective antioxidants (IC50: 2.12-35.05 µg/mL). The findings also revealed that drying temperature had a substantial type-dependent effect on phenolics and their antioxidant ability in WPs. KEGG enrichment analysis found that drying method has the greatest impact on WPs phenols in six metabolic pathways. Besides, 11 active substances in WPs were identified by a compound-targeted activity screening approach, indicating that WPs could be used as a natural antioxidant source in the development of medical and nutraceutical products.
Collapse
Affiliation(s)
- Li Qingyang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Wang Ruohui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Sun Shiman
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Shen Danyu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Mo Runhong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Liu Yihua
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| |
Collapse
|
8
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
9
|
Sule RO, Phinney BS, Salemi MR, Gomes AV. Mitochondrial and Proteasome Dysfunction Occurs in the Hearts of Mice Treated with Triazine Herbicide Prometryn. Int J Mol Sci 2023; 24:15266. [PMID: 37894945 PMCID: PMC10607192 DOI: 10.3390/ijms242015266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Wróblewska J, Wróblewski M, Hołyńska-Iwan I, Modrzejewska M, Nuszkiewicz J, Wróblewska W, Woźniak A. The Role of Glutathione in Selected Viral Diseases. Antioxidants (Basel) 2023; 12:1325. [PMID: 37507865 PMCID: PMC10376684 DOI: 10.3390/antiox12071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During inflammatory processes, immunocompetent cells are exposed to substantial amounts of free radicals and toxic compounds. Glutathione is a cysteine-containing tripeptide that is an important and ubiquitous antioxidant molecule produced in human organs. The intracellular content of GSH regulates the detoxifying capacity of cells, as well as the inflammatory and immune response. GSH is particularly important in the liver, where it serves as the major non-protein thiol involved in cellular antioxidant defense. There are numerous causes of hepatitis. The inflammation of the liver can be caused by a variety of infectious viruses. The relationship between oxidative stress and the hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV) infection is not fully known. The aim of this study was to examine the relationship between hepatotropic viruses and glutathione status, including reduced glutathione (GSH) and oxidized glutathione (GSSG), as well as antioxidant enzymes, e.g., glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in liver diseases.
Collapse
Affiliation(s)
- Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
11
|
Wang Y, Cheng W, Wang X, He T, Liu J, Chen S, Zhang J. Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice. Food Chem Toxicol 2023:113913. [PMID: 37348806 DOI: 10.1016/j.fct.2023.113913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Endemic arsenic (As) poisoning is a severe biogeochemical disease that endangers human health. Epidemiological investigations and animal experiments have confirmed the damaging effects of As on the liver, but there is an urgent need to investigate the underlying mechanisms. This study adopted a metabolomic approach using UHPLC-QE/MS to identify the different metabolites and metabolic mechanisms associated with As-induced hepatotoxicity in mice. A network pharmacology approach was applied to predict the potential target of As-induced hepatotoxicity. The predicted targets of differential metabolites were subjected to a deep matching for elucidating the integration mechanisms. The results demonstrate that the levels of ALT and AST in plasma significantly increased in mice after As exposure. In addition, the liver tissue showed disorganized liver lobules, lax cytoplasm and inflammatory cell infiltration. Metabolomic analysis revealed that As exposure caused disturbance to 40 and 75 potential differential metabolites in plasma and liver, respectively. Further investigation led to discovering five vital metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis and nicotinate and nicotinamide metabolism pathways. These pathways may responded to As-induced hepatotoxicity primarily through lipid metabolism, apoptosis, and deoxyribonucleic acid damage. The network pharmacology suggested that As could induce hepatotoxicity in mice by acting on targets including Hsp90aa1, Akt2, Egfr, and Tnf, which regulate PI3K Akt, HIF-1, MAPK, and TNF signaling pathways. Finally, the integrated metabolomics and network pharmacology revealed eight key targets associated with As-induced hepatoxicity, namely DNMT1, MAOB, PARP1, MAOA, EPHX2, ANPEP, XDH, and ADA. The results also suggest that nicotinic acid and nicotinamide metabolisms may be involved in As-induced hepatotoxicity. This research identified the metabolites, targets, and mechanisms of As-induced hepatotoxicity, offering meaningful insights and establishing the groundwork for developing antidotes for widespread As poisoning.
Collapse
Affiliation(s)
- Yazhi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoning Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Shuangshuang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
12
|
Hypolipidemic Effects of Beetroot Juice in SHR-CRP and HHTg Rat Models of Metabolic Syndrome: Analysis of Hepatic Proteome. Metabolites 2023; 13:metabo13020192. [PMID: 36837811 PMCID: PMC9965406 DOI: 10.3390/metabo13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, red beetroot has attracted attention as a health-promoting functional food. Studies have shown that beetroot administration can reduce blood pressure and ameliorate parameters of glucose and lipid metabolism; however, mechanisms underlying these beneficial effects of beetroot are not yet fully understood. In the current study, we analysed the effects of beetroot on parameters of glucose and lipid metabolism in two models of metabolic syndrome: (i) transgenic spontaneously hypertensive rats expressing human C-reactive protein (SHR-CRP rats), and (ii) hereditary hypertriglyceridemic (HHTg) rats. Treatment with beetroot juice for 4 weeks was, in both models, associated with amelioration of oxidative stress, reduced circulating lipids, smaller visceral fat depots, and lower ectopic fat accumulation in the liver compared to the respective untreated controls. On the other hand, beetroot treatment had no significant effects on the sensitivity of the muscle and adipose tissue to insulin action in either model. Analyses of hepatic proteome revealed significantly deregulated proteins involved in glycerophospholipid metabolism, mTOR signalling, inflammation, and cytoskeleton rearrangement.
Collapse
|
13
|
Ye M, Li H, Luo H, Zhou Y, Luo W, Lin Z. Potential Antioxidative Activity of Homocysteine in Erythrocytes under Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12010202. [PMID: 36671064 PMCID: PMC9855177 DOI: 10.3390/antiox12010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Homocysteine is an amino acid containing a free sulfhydryl group, making it probably contribute to the antioxidative capacity in the body. We recently found that plasma total homocysteine (total-Hcy) concentration increased with time when whole blood samples were kept at room temperature. The present study was to elucidate how increased plasma total-Hcy is produced and explore the potential physiological role of homocysteine. Erythrocytes and leukocytes were separated and incubated in vitro; the amount of total-Hcy released by these two kinds of cells was then determined by HPLC-MS. The effects of homocysteine and methionine on reactive oxygen species (ROS) production, osmotic fragility, and methemoglobin formation in erythrocytes under oxidative stress were studied. The reducing activities of homocysteine and methionine were tested by ferryl hemoglobin (Hb) decay assay. As a result, it was discovered that erythrocytes metabolized methionine to homocysteine, which was then oxidized within the cells and released to the plasma. Homocysteine and its precursor methionine could significantly decrease Rosup-induced ROS production in erythrocytes and inhibit Rosup-induced erythrocyte's osmotic fragility increase and methemoglobin formation. Homocysteine (but not methionine) was demonstrated to enhance ferryl Hb reduction. In conclusion, erythrocytes metabolize methionine to homocysteine, which contributes to the antioxidative capability under oxidative stress and might be a supplementary protective factor for erythrocytes against ROS damage.
Collapse
|
14
|
Zhang W, Shi Y, Niu S, Li L, Lin L, Gao X, Cai W, Chen Y, Zhong Y, Tang D, Tang M, Dai Y. Integrated computer analysis and a self-built Chinese cohort study identified GSTM2 as one survival-relevant gene in human colon cancer potentially regulating immune microenvironment. Front Oncol 2022; 12:881906. [PMID: 36263204 PMCID: PMC9574330 DOI: 10.3389/fonc.2022.881906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
According to a recent report by GLOBOCAN, colorectal cancer is the third most common and second most deadly cancer in 2020. In our previous proteomic study, we found that the expression of GSTM2 in colon tissues was significantly lower than that in para-cancer tissues, and its lower expression was associated with reduced overall survival rate of patients, suggesting that this gene might play a role in the occurrence of colon cancer. As a member of the detoxifying enzyme family, GSTM2 is likely to play an important role in the initiation of tumors. Whereas, the functions of GSTM2 in colon cancer are barely known. In this study, using the RNA-Seq datasets of colon cancer patients from public database (ntumor = 457, nnormal = 41), we confirmed the reduced expression of GSTM2 and its prognostic value in colon cancer. Furthermore, we used our own Chinese cohort (ntumor = 100, nnormal = 72) verified the lower GSTM2 expression in colon cancer, and also its effects on patient prognosis. Subsequently, we uncovered two potential reasons for the lower expression of GSTM2 in colon cancer tissues, including the deep deletion of GSTM2 on genome, and the up-regulation of RAD21 or SP1. Moreover, we disclosed that GSTM2 might be involved in several immune-related pathways in colon cancer, such as chemokine signaling and leukocyte transendothelial migration. Finally, we revealed that the GSTM2 expression was closely related to the immune-related scores of colon cancer and the infiltration ratios of various immune cells, suggesting that GSTM2 might regulate the development of colon cancer by modulating immune microenvironment. In conclusion, we uncovered the prognostic value of GSTM2 based on the public data and our own data, revealed its potential regulatory role in tumor immune microenvironment, and disclosed the probable reasons for its lower expression in colon cancer. The findings of our study provide a potential prognostic biomarker and drug target for clinical diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
- Medical School, Nanchang Institute of Technology, Nanchang, China
| | - Yutong Shi
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shumeng Niu
- Laboratory Department, Shanghai Hongkou Jiangwan Hospital, Shanghai, China
| | - Lintai Li
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Liewen Lin
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Xucan Gao
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yumei Chen
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yafang Zhong
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- *Correspondence: Yong Dai, ; ; Donge Tang, ; Min Tang,
| | - Min Tang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Yong Dai, ; ; Donge Tang, ; Min Tang,
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
- *Correspondence: Yong Dai, ; ; Donge Tang, ; Min Tang,
| |
Collapse
|
15
|
Wang T, Hu L, Lu J, Xiao M, Liu J, Xia H, Lu H. Functional metabolomics revealed functional metabolic-characteristics of chronic hepatitis that is significantly differentiated from acute hepatitis in mice. Pharmacol Res 2022; 180:106248. [DOI: 10.1016/j.phrs.2022.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
|