1
|
Taylor IW, Patharkar OR, Mijar M, Hsu CW, Baer J, Niederhuth CE, Ohler U, Benfey PN, Walker JC. Arabidopsis uses a molecular grounding mechanism and a biophysical circuit breaker to limit floral abscission signaling. Proc Natl Acad Sci U S A 2024; 121:e2405806121. [PMID: 39453742 PMCID: PMC11536089 DOI: 10.1073/pnas.2405806121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/05/2024] [Indexed: 10/27/2024] Open
Abstract
Abscission is the programmed separation of plant organs. It is widespread in the plant kingdom with important functions in development and environmental response. In Arabidopsis, abscission of floral organs (sepals, petals, and stamens) is controlled by two receptor-like protein kinases HAESA (HAE) and HAESA LIKE-2 (HSL2), which orchestrate the programmed dissolution of the abscission zone connecting floral organs to the developing fruit. In this work, we use single-cell RNA sequencing to characterize the core HAE/HSL2 abscission gene expression program. We identify the MAP KINASE PHOSPHATASE-1/MKP1 gene as a negative regulator of this pathway. MKP1 acts prior to activation of HAE/HSL2 signaling to establish a signaling threshold required for the initiation of abscission. Furthermore, we use single-cell data to identify genes expressed in two subpopulations of abscission zone cells: those proximal and those distal to the plane of separation. We identify INFLORESCENCE DEFICIENT IN ABSCISSION/IDA family genes, encoding activating ligands of HAE/HSL2, as enriched in distal abscission zone cells at the base of the abscising organs. We show how this expression pattern forms a biophysical circuit breaker whereby, when the organ is shed, the source of the IDA peptides is removed, leading to cessation of HAE/HSL2 signaling. Overall, this work provides insight into the multiple control mechanisms acting on the abscission-signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - John Baer
- Washington University in St Louis, Saint Louis, MO63105
| | | | - Uwe Ohler
- Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin10115, Germany
| | | | | |
Collapse
|
2
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
3
|
Liu J, Yi Q, Dong G, Chen Y, Guo L, Gao Z, Zhu L, Ren D, Zhang Q, Li Q, Li J, Liu Q, Zhang G, Qian Q, Shen L. Improving Rice Quality by Regulating the Heading Dates of Rice Varieties without Yield Penalties. PLANTS (BASEL, SWITZERLAND) 2024; 13:2221. [PMID: 39204657 PMCID: PMC11360702 DOI: 10.3390/plants13162221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The heading date, a critical trait influencing the rice yield and quality, has always been a hot topic in breeding research. Appropriately delaying the flowering time of excellent northern rice varieties is of great significance for improving yields and enhancing regional adaptability during the process for introducing varieties from north to south. In this study, genes influencing the heading date were identified through genome-wide association studies (GWAS). Using KenDao 12 (K12), an excellent cultivar from northern China, as the material, the specific flowering activator, OsMADS50, was edited using the genome-editing method to regulate the heading date to adapt to the southern planting environment. The results indicated that the osmads50 mutant line of K12 flowered about a week later, with a slight increase in the yield and good adaptability in the southern region in China. Additionally, the expressions of key flowering regulatory genes, such as Hd1, Ghd7, Ehd1, Hd3a, and RFT1, were reduced in the mutant plants, corroborating the delayed flowering phenotype. Yield trait analysis revealed that the primary factor for improved yield was an increase in the number of effective tillers, although there is potential for further enhancements in the seed-setting rate and grain plumpness. Furthermore, there were significant increases in the length-to-width ratio of the rice grains, fat content, and seed transparency, all contributing to an overall improvement in the rice quality. In summary, this study successfully obtained a rice variety with a delayed growth period through OsMADS50 gene editing, effectively implementing the strategy for adapting northern rice varieties to southern climates. This achievement significantly supports efforts to enhance the rice yield and quality as well as to optimize production management practices.
Collapse
Affiliation(s)
- Jianguo Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qinqin Yi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Yuyu Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Jingyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| |
Collapse
|
4
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
5
|
Peleke FF, Zumkeller SM, Gültas M, Schmitt A, Szymański J. Deep learning the cis-regulatory code for gene expression in selected model plants. Nat Commun 2024; 15:3488. [PMID: 38664394 PMCID: PMC11045779 DOI: 10.1038/s41467-024-47744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Elucidating the relationship between non-coding regulatory element sequences and gene expression is crucial for understanding gene regulation and genetic variation. We explored this link with the training of interpretable deep learning models predicting gene expression profiles from gene flanking regions of the plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays. With over 80% accuracy, our models enabled predictive feature selection, highlighting e.g. the significant role of UTR regions in determining gene expression levels. The models demonstrated remarkable cross-species performance, effectively identifying both conserved and species-specific regulatory sequence features and their predictive power for gene expression. We illustrated the application of our approach by revealing causal links between genetic variation and gene expression changes across fourteen tomato genomes. Lastly, our models efficiently predicted genotype-specific expression of key functional gene groups, exemplified by underscoring known phenotypic and metabolic differences between Solanum lycopersicum and its wild, drought-resistant relative, Solanum pennellii.
Collapse
Affiliation(s)
- Fritz Forbang Peleke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Seeland, OT, Gatersleben, Germany
| | - Simon Maria Zumkeller
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, Forschungszentrum Jülich, D-52428, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Soest, 59494, Germany
| | - Armin Schmitt
- Breeding Informatics Group, University of Göttingen, Göttingen, 37075, Germany
- Center of Integrated Breeding Research (CiBreed), Göttingen, 37075, Germany
| | - Jędrzej Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Seeland, OT, Gatersleben, Germany.
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, Forschungszentrum Jülich, D-52428, Jülich, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
6
|
Castañón-Suárez CA, Arrizubieta M, Castelán-Muñoz N, Sánchez-Rodríguez DB, Caballero-Cordero C, Zluhan-Martínez E, Patiño-Olvera SC, Arciniega-González J, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. The MADS-box genes SOC1 and AGL24 antagonize XAL2 functions in Arabidopsis thaliana root development. FRONTIERS IN PLANT SCIENCE 2024; 15:1331269. [PMID: 38576790 PMCID: PMC10994003 DOI: 10.3389/fpls.2024.1331269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024]
Abstract
MADS-domain transcription factors play pivotal roles in numerous developmental processes in Arabidopsis thaliana. While their involvement in flowering transition and floral development has been extensively examined, their functions in root development remain relatively unexplored. Here, we explored the function and genetic interaction of three MADS-box genes (XAL2, SOC1 and AGL24) in primary root development. By analyzing loss-of-function and overexpression lines, we found that SOC1 and AGL24, both critical components in flowering transition, redundantly act as repressors of primary root growth as the loss of function of either SOC1 or AGL24 partially recovers the primary root growth, meristem cell number, cell production rate, and the length of fully elongated cells of the short-root mutant xal2-2. Furthermore, we observed that the simultaneous overexpression of AGL24 and SOC1 leads to short-root phenotypes, affecting meristem cell number and fully elongated cell size, whereas SOC1 overexpression is sufficient to affect columella stem cell differentiation. Additionally, qPCR analyses revealed that these genes exhibit distinct modes of transcriptional regulation in roots compared to what has been previously reported for aerial tissues. We identified 100 differentially expressed genes in xal2-2 roots by RNA-seq. Moreover, our findings revealed that the expression of certain genes involved in cell differentiation, as well as stress responses, which are either upregulated or downregulated in the xal2-2 mutant, reverted to WT levels in the absence of SOC1 or AGL24.
Collapse
Affiliation(s)
- Claudio A. Castañón-Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maite Arrizubieta
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Castelán-Muñoz
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Postgrado en Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, Estado de México, Mexico
| | - Diana Belén Sánchez-Rodríguez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carolina Caballero-Cordero
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sandra C. Patiño-Olvera
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - J.Arturo Arciniega-González
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Salami M, Heidari B, Alizadeh B, Batley J, Wang J, Tan XL, Dadkhodaie A, Richards C. Dissection of quantitative trait nucleotides and candidate genes associated with agronomic and yield-related traits under drought stress in rapeseed varieties: integration of genome-wide association study and transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1342359. [PMID: 38567131 PMCID: PMC10985355 DOI: 10.3389/fpls.2024.1342359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Introduction An important strategy to combat yield loss challenge is the development of varieties with increased tolerance to drought to maintain production. Improvement of crop yield under drought stress is critical to global food security. Methods In this study, we performed multiomics analysis in a collection of 119 diverse rapeseed (Brassica napus L.) varieties to dissect the genetic control of agronomic traits in two watering regimes [well-watered (WW) and drought stress (DS)] for 3 years. In the DS treatment, irrigation continued till the 50% pod development stage, whereas in the WW condition, it was performed throughout the whole growing season. Results The results of the genome-wide association study (GWAS) using 52,157 single-nucleotide polymorphisms (SNPs) revealed 1,281 SNPs associated with traits. Six stable SNPs showed sequence variation for flowering time between the two irrigation conditions across years. Three novel SNPs on chromosome C04 for plant weight were located within drought tolerance-related gene ABCG16, and their pleiotropically effects on seed weight per plant and seed yield were characterized. We identified the C02 peak as a novel signal for flowering time, harboring 52.77% of the associated SNPs. The 288-kbps LD decay distance analysis revealed 2,232 candidate genes (CGs) associated with traits. The CGs BIG1-D, CAND1, DRG3, PUP10, and PUP21 were involved in phytohormone signaling and pollen development with significant effects on seed number, seed weight, and grain yield in drought conditions. By integrating GWAS and RNA-seq, 215 promising CGs were associated with developmental process, reproductive processes, cell wall organization, and response to stress. GWAS and differentially expressed genes (DEGs) of leaf and seed in the yield contrasting accessions identified BIG1-D, CAND1, and DRG3 genes for yield variation. Discussion The results of our study provide insights into the genetic control of drought tolerance and the improvement of marker-assisted selection (MAS) for breeding high-yield and drought-tolerant varieties.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Alizadeh
- Oil Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research Education and Extension, Organization, (AREEO), Karaj, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
8
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Rogers HJ. How far can omics go in unveiling the mechanisms of floral senescence? Biochem Soc Trans 2023; 51:1485-1493. [PMID: 37387359 PMCID: PMC10586764 DOI: 10.1042/bst20221097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Floral senescence is of fundamental interest in understanding plant developmental regulation, it is of ecological and agricultural interest in relation to seed production, and is of key importance to the production of cut flowers. The biochemical changes occurring are well-studied and involve macromolecular breakdown and remobilisation of nutrients to developing seeds or other young organs in the plant. However, the initiation and regulation of the process and inter-organ communication remain to be fully elucidated. Although ethylene emission, which becomes autocatalytic, is a key regulator in some species, in other species it appears not to be as important. Other plant growth regulators such as cytokinins, however, seem to be important in floral senescence across both ethylene sensitive and insensitive species. Other plant growth regulators are also likely involved. Omics approaches have provided a wealth of data especially in ornamental species where genome data is lacking. Two families of transcription factors: NAC and WRKY emerge as major regulators, and omics information has been critical in understanding their functions. Future progress would greatly benefit from a single model species for understanding floral senescence; however, this is challenging due to the diversity of regulatory mechanisms. Combining omics data sets can be powerful in understanding different layers of regulation, but in vitro biochemical and or genetic analysis through transgenics or mutants is still needed to fully verify mechanisms and interactions between regulators.
Collapse
|
10
|
Chen J, Ren B, Bian C, Qin D, Zhang L, Li J, Wei J, Wang A, Huo J, Gang H. Transcriptomic and metabolomic analyses reveal molecular mechanisms associated with the natural abscission of blue honeysuckle (Lonicera caerulea L.) ripe fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107740. [PMID: 37150009 DOI: 10.1016/j.plaphy.2023.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is rich in phenolic compounds and has an extremely high nutritional value. Fruit abscission in the ripe period significantly impacts production and economic benefits. However, the mechanism associated with the abscission of blue honeysuckle fruit remains largely unknown. The easy-abscission cultivar 'HSY' and the hard-abscission cultivar 'Berel' were selected as plant materials. Anatomical changes of the 'HSY' fruit abscission zone (FAZ) during the abscission mainly included cell expansion, detachment, and collapse. Active changes in cell wall-degrading enzyme activity between 39 days postanthesis (DPA) and 55 DPA in 'HSY' FAZ, but not in 'Berel', suggest a critical role for cell-wall-degrading enzymes in regulating abscission. Transcriptome and metabolome analyses revealed that the genes and metabolites responding to abscission mainly act on pathways such as plant hormone signal transduction, starch and sucrose metabolism, pentose and glucuronate interconversions, and phenylpropanoid biosynthesis. The regulatory pathways of fruit abscission are mainly summarized into two parts: phytohormone synthesis and signal transduction, FAZ cell wall metabolism. In this study, 46 key genes related to plant hormone response, 45 key genes involved in FAZ cell wall metabolism, and 73 transcription factors were screened. Quantitative real-time PCR (qRT-PCR) assessed the expression pattern of 12 selected candidate genes, demonstrating the accuracy of the transcriptome data and elucidating the expression patterns of key candidate genes during growth and development. This study will provide an essential resource for understanding the molecular regulatory mechanism of fruit abscission in the blue honeysuckle.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Bingbing Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyang Bian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China
| | - Lijun Zhang
- Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China
| | - Jiacheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jia Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Aoxue Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|