1
|
Ponsot E. Unravelling hidden hearing loss. eLife 2024; 13:e104936. [PMID: 39636674 PMCID: PMC11620737 DOI: 10.7554/elife.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Damage to the synapses connecting hair cells to the auditory nerve leads to undetected hearing impairments.
Collapse
Affiliation(s)
- Emmanuel Ponsot
- Science & Technology of Music and Sound Laboratory, IRCAM/CNRS/Sorbonne UniversitéParisFrance
| |
Collapse
|
2
|
Kim S, Schroeder M, Bharadwaj HM. Effect of digital noise-reduction processing on subcortical speech encoding and relationship to behavioral outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620630. [PMID: 39554128 PMCID: PMC11565834 DOI: 10.1101/2024.10.28.620630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Perceptual benefits from digital noise reduction (NR) vary among individuals with different noise tolerance and sensitivity to distortions introduced in NR-processed speech; however, the physiological bases of the variance are understudied. Here, we developed objective measures of speech encoding in the ascending pathway as candidate measures of individual noise tolerance and sensitivity to NR-processed speech using the brainstem responses to speech syllable /da/. The speech-evoked brainstem response was found to be sensitive to the addition of noise and NR processing. The NR effects on the consonant and vowel portion of the responses were robustly quantified using response-to-response correlation metrics and spectral amplitude ratios, respectively. Further, the f0 amplitude ratios between conditions correlated with behavioral accuracy with NR. These findings suggest that investigating the NR effects on bottom-up speech encoding using brainstem measures is feasible and that individual subcortical encoding of NR-processed speech may relate to individual behavioral outcomes with NR.
Collapse
Affiliation(s)
- Subong Kim
- Department of Communication Sciences and Disorders, Montclair State University, Montclair, NJ, USA
| | - Mary Schroeder
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Hari M. Bharadwaj
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Hauser SN, Hustedt-Mai AR, Wichlinski A, Bharadwaj HM. The relationship between distortion product otoacoustic emissions and audiometric thresholds in the extended high-frequency range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.601801. [PMID: 39026860 PMCID: PMC11257433 DOI: 10.1101/2024.07.05.601801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Distortion product otoacoustic emissions (DPOAEs) and behavioral audiometry are routinely used for hearing screening and assessment. These measures provide related information about hearing status as both are sensitive to cochlear pathologies. However, DPOAE testing is quicker and does not require a behavioral response. Despite these practical advantages, DPOAE testing is often limited to screening only low and mid- frequencies. Variation in ear canal acoustics across ears and probe placements has resulted in less reliable measurements of DPOAEs near 4 kHz and above where standing waves commonly occur. Stimulus calibration in forward pressure level and responses in emitted pressure level can reduce measurement variability. Using these calibrations, this study assessed the correlation between audiometry and DPOAEs in the extended high frequencies where stimulus calibrations and responses are most susceptible to the effect of standing waves. Behavioral thresholds and DPOAE amplitudes were negatively correlated, and DPOAE amplitudes in emitted pressure level accounted for twice as much variance as amplitudes in sound pressure level. Both measures were correlated with age. These data show that with appropriate calibration methods, extended high-frequency DPOAEs are sensitive to differences in audiometric thresholds and highlight the need to consider calibration techniques in clinical and research applications of DPOAEs.
Collapse
Affiliation(s)
- Samantha N. Hauser
- Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47901, USA
| | | | - Anna Wichlinski
- Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47901, USA
| | - Hari M. Bharadwaj
- Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
5
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
6
|
Ginsberg H, Singh R, Bharadwaj HM, Heinz MG. A multi-channel EEG mini-cap can improve reliability for recording auditory brainstem responses in chinchillas. J Neurosci Methods 2023; 398:109954. [PMID: 37625650 PMCID: PMC10560491 DOI: 10.1016/j.jneumeth.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Disabling hearing loss affects nearly 466 million people worldwide (World Health Organization). The auditory brainstem response (ABR) is the most common non-invasive clinical measure of evoked potentials, e.g., as an objective measure for universal newborn hearing screening. In research, the ABR is widely used for estimating hearing thresholds and cochlear synaptopathy in animal models of hearing loss. The ABR contains multiple waves representing neural activity across different peripheral auditory pathway stages, which arise within the first 10 ms after stimulus onset. Multi-channel (e.g., 32 or higher) caps provide robust measures for a wide variety of EEG applications for the study of human hearing. However, translational studies using preclinical animal models typically rely on only a few subdermal electrodes. NEW METHOD We evaluated the feasibility of a 32-channel rodent EEG mini-cap for improving the reliability of ABR measures in chinchillas, a common model of human hearing. RESULTS After confirming initial feasibility, a systematic experimental design tested five potential sources of variability inherent to the mini-cap methodology. We found each source of variance minimally affected mini-cap ABR waveform morphology, thresholds, and wave-1 amplitudes. COMPARISON WITH EXISTING METHOD The mini-cap methodology was statistically more robust and less variable than the conventional subdermal-needle methodology, most notably when analyzing ABR thresholds. Additionally, fewer repetitions were required to produce a robust ABR response when using the mini-cap. CONCLUSIONS These results suggest the EEG mini-cap can improve translational studies of peripheral auditory evoked responses. Future work will evaluate the potential of the mini-cap to improve the reliability of more centrally evoked (e.g., cortical) EEG responses.
Collapse
Affiliation(s)
- Hannah Ginsberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| | - Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Hari M Bharadwaj
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, 15260, PA, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| | - Michael G Heinz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, 47907, IN, USA
| |
Collapse
|
7
|
Cancel VE, McHaney JR, Milne V, Palmer C, Parthasarathy A. A data-driven approach to identify a rapid screener for auditory processing disorder testing referrals in adults. Sci Rep 2023; 13:13636. [PMID: 37604867 PMCID: PMC10442397 DOI: 10.1038/s41598-023-40645-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Hearing thresholds form the gold standard assessment in Audiology clinics. However, ~ 10% of adult patients seeking audiological care for self-perceived hearing deficits have thresholds that are normal. Currently, a diagnostic assessment for auditory processing disorder (APD) remains one of the few viable avenues of further care for this patient population, yet there are no standard guidelines for referrals. Here, we identified tests within the APD testing battery that could provide a rapid screener to inform APD referrals in adults. We first analyzed records from the University of Pittsburgh Medical Center (UPMC) Audiology database to identify adult patients with self-perceived hearing difficulties despite normal audiometric thresholds. We then looked at the patients who were referred for APD testing. We examined test performances, correlational relationships, and classification accuracies. Patients experienced most difficulties within the dichotic domain of testing. Additionally, accuracies calculated from sensitivities and specificities revealed the words-in-noise (WIN), the Random Dichotic Digits Task (RDDT) and Quick Speech in Noise (QuickSIN) tests had the highest classification accuracies. The addition of these tests have the greatest promise as a quick screener during routine audiological assessments to help identify adult patients who may be referred for APD assessment and resulting treatment plans.
Collapse
Affiliation(s)
- Victoria E Cancel
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 5060A Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Jacie R McHaney
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 5060A Forbes Tower, Pittsburgh, PA, 15260, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Virginia Milne
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 5060A Forbes Tower, Pittsburgh, PA, 15260, USA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Palmer
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 5060A Forbes Tower, Pittsburgh, PA, 15260, USA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 5060A Forbes Tower, Pittsburgh, PA, 15260, USA.
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of BioEngineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Salloom WB, Bharadwaj H, Strickland EA. The effects of broadband elicitor duration on a psychoacoustic measure of cochlear gain reduction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2482. [PMID: 37092950 PMCID: PMC10257528 DOI: 10.1121/10.0017925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Physiological and psychoacoustic studies of the medial olivocochlear reflex (MOCR) in humans have often relied on long duration elicitors (>100 ms). This is largely due to previous research using otoacoustic emissions (OAEs) that found multiple MOCR time constants, including time constants in the 100s of milliseconds, when elicited by broadband noise. However, the effect of the duration of a broadband noise elicitor on similar psychoacoustic tasks is currently unknown. The current study measured the effects of ipsilateral broadband noise elicitor duration on psychoacoustic gain reduction estimated from a forward-masking paradigm. Analysis showed that both masker type and elicitor duration were significant main effects, but no interaction was found. Gain reduction time constants were ∼46 ms for the masker present condition and ∼78 ms for the masker absent condition (ranging from ∼29 to 172 ms), both similar to the fast time constants reported in the OAE literature (70-100 ms). Maximum gain reduction was seen for elicitor durations of ∼200 ms. This is longer than the 50-ms duration which was found to produce maximum gain reduction with a tonal on-frequency elicitor. Future studies of gain reduction may use 150-200 ms broadband elicitors to maximally or near-maximally stimulate the MOCR.
Collapse
Affiliation(s)
- William B Salloom
- Department of Speech Language and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Hari Bharadwaj
- Department of Speech Language and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elizabeth A Strickland
- Department of Speech Language and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
9
|
Trevino M, Zang A, Lobarinas E. The middle ear muscle reflex: Current and future role in assessing noise-induced cochlear damage. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:436. [PMID: 36732247 PMCID: PMC9867568 DOI: 10.1121/10.0016853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The middle ear muscle reflex (MEMR) in humans is a bilateral contraction of the middle ear stapedial muscle in response to moderate-to-high intensity acoustic stimuli. Clinically, MEMR thresholds have been used for differential diagnosis of otopathologies for decades. More recently, changes in MEMR amplitude or threshold have been proposed as an assessment for noise-induced synaptopathy, a subclinical form of cochlear damage characterized by suprathreshold hearing problems that occur as a function of inner hair cell (IHC) synaptic loss, including hearing-in-noise deficits, tinnitus, and hyperacusis. In animal models, changes in wideband MEMR immittance have been correlated with noise-induced synaptopathy; however, studies in humans have shown more varied results. The discrepancies observed across studies could reflect the heterogeneity of synaptopathy in humans more than the effects of parametric differences or relative sensitivity of the measurement. Whereas the etiology and degree of synaptopathy can be carefully controlled in animal models, synaptopathy in humans likely stems from multiple etiologies and thus can vary greatly across the population. Here, we explore the evolving research evidence of the MEMR response in relation to subclinical noise-induced cochlear damage and the MEMR as an early correlate of suprathreshold deficits.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Andie Zang
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
10
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. Binaural temporal coding and the middle ear muscle reflex in audiometrically normal young adults. Hear Res 2023; 427:108663. [PMID: 36502543 DOI: 10.1016/j.heares.2022.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Noise exposure may damage the synapses that connect inner hair cells with auditory nerve fibers, before outer hair cells are lost. In humans, this cochlear synaptopathy (CS) is thought to decrease the fidelity of peripheral auditory temporal coding. In the current study, the primary hypothesis was that higher middle ear muscle reflex (MEMR) thresholds, as a proxy measure of CS, would be associated with smaller values of the binaural intelligibility level difference (BILD). The BILD, which is a measure of binaural temporal coding, is defined here as the difference in thresholds between the diotic and the antiphasic versions of the digits in noise (DIN) test. This DIN BILD may control for factors unrelated to binaural temporal coding such as linguistic, central auditory, and cognitive factors. Fifty-six audiometrically normal adults (34 females) aged 18 - 30 were tested. The test battery included standard pure tone audiometry, tympanometry, MEMR using a 2 kHz elicitor and 226 Hz and 1 kHz probes, the Noise Exposure Structured Interview, forward digit span test, extended high frequency (EHF) audiometry, and diotic and antiphasic DIN tests. The study protocol was pre-registered prior to data collection. MEMR thresholds did not predict the DIN BILD. Secondary analyses showed no association between MEMR thresholds and the individual diotic and antiphasic DIN thresholds. Greater lifetime noise exposure was non-significantly associated with higher MEMR thresholds, larger DIN BILD values, and lower (better) antiphasic DIN thresholds, but not with diotic DIN thresholds, nor with EHF thresholds. EHF thresholds were associated with neither MEMR thresholds nor any of the DIN outcomes, including the DIN BILD. Results provide no evidence that young, audiometrically normal people incur CS with impacts on binaural temporal processing.
Collapse
Affiliation(s)
- Adnan M Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Audiology and Speech Therapy, Birzeit University, Palestine.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| |
Collapse
|