1
|
Ma L, Zhao W, Ma Q, Wang J, Zhao Z, Zhang J, Gu Y. Genome-Wide Association Study of Birth Wool Length, Birth Weight, and Head Color in Chinese Tan Sheep Through Whole-Genome Re-Sequencing. Animals (Basel) 2024; 14:3495. [PMID: 39682459 DOI: 10.3390/ani14233495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese Tan sheep is a unique breed of sheep that is typical throughout China, mainly used for fur and meat production. They are widely distributed in northwestern China and are famous for their lambskin and shiny white curly wool. In this study, the phenotypic traits of wool length, birth weight, and head coat color were evaluated in 256 Chinese Tan sheep breeds. Whole genome sequencing generated 23.67 million high-quality SNPs for genome-wide association studies (GWAS). We identified 208 significant SNPs associated with birth wool length, implicating RAD50, MACROD2, SAMD5, SASH1, and SPTLC3 as potential candidate genes for this trait. For birth weight, 1056 significant SNPs, with 76.89% of them located on chromosome 2, were identified by GWAS, and XPA, INVS, LOC121818504, GABBR2, LOC101114941, and LOC106990096 were identified as potential candidate genes for birth weight. The GWAS for head coat color identified 1424 significant SNPs across three chromosomes, with 99.65% on chromosome 14, and SPIRE2, TCF25, and MC1R as candidate genes were found to be possibly involved in the development of the black-headed coat color in sheep. Furthermore, we selected head coat color as a representative trait and performed an independent test of our GWAS findings through multiplex PCR SNP genotyping. The findings validated five mutation sites in chromosome 14 (14,251,947 T>A, 14,252,090 G>A, 14,252,158 C>T, 14,252,329 T>G, and 14,252,464 C>T) within the exon1 of the MC1R gene (517 bp), as identified by GWAS in an additional 102 Tan sheep individuals, and revealed that black-headed sheep predominantly exhibited heterozygous genotypes, possibly contributing to their color change. Our results provide a valuable foundation for further study of these three economically important traits, and enhance our understanding of genetic structure and variation in Chinese Tan sheep.
Collapse
Affiliation(s)
- Lina Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Jin Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Lopez-Delisle L, Zakany J, Bochaton C, Osteil P, Mayran A, Darbellay F, Mascrez B, Rekaik H, Duboule D. CTCF-dependent insulation of Hoxb13 and the heterochronic control of tail length. Proc Natl Acad Sci U S A 2024; 121:e2414865121. [PMID: 39499640 PMCID: PMC11573545 DOI: 10.1073/pnas.2414865121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
Mammalian tail length is controlled by several genetic determinants, among which are Hox13 genes, whose function is to terminate the body axis. Accordingly, the precise timing in the transcriptional activation of these genes may impact upon body length. Unlike other Hox clusters, HoxB lacks posterior genes between Hoxb9 and Hoxb13, two genes separated by a ca. 70 kb large DNA segment containing a high number of CTCF sites, potentially isolating Hoxb13 from the rest of the cluster and thereby delaying its negative impact on trunk extension. We deleted the spacer DNA to induce a potential heterochronic gain of function of Hoxb13 at physiological concentration and observed a shortening of the tail as well as other abnormal phenotypes. These defects were all rescued by inactivating Hoxb13 in-cis with the deletion. A comparable gain of function was observed in mutant Embryonic Stem (ES) cells grown as pseudoembryos in vitro, which allowed us to examine in detail the importance of both the number and the orientation of CTCF sites in the insulating activity of the DNA spacer. A short cassette containing all the CTCF sites was sufficient to insulate Hoxb13 from the rest of HoxB, and additional modifications of this CTCF cassette showed that two CTCF sites in convergent orientations were already capable of importantly delaying Hoxb13 activation in these conditions. We discuss the relative importance of genomic distance versus number and orientation of CTCF sites in preventing Hoxb13 to be activated too early during trunk extension and hence to modulate tail length.
Collapse
Affiliation(s)
- Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 1211, Switzerland
| | - Célia Bochaton
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Pierre Osteil
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Alexandre Mayran
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Fabrice Darbellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva 1211, Switzerland
| | - Hocine Rekaik
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université Paris Sciences et Lettres, Paris 75231, France
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva 1211, Switzerland
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Université Paris Sciences et Lettres, Paris 75231, France
| |
Collapse
|
3
|
Larsson MNA, Morell Miranda P, Pan L, Başak Vural K, Kaptan D, Rodrigues Soares AE, Kivikero H, Kantanen J, Somel M, Özer F, Johansson AM, Storå J, Günther T. Ancient Sheep Genomes Reveal Four Millennia of North European Short-Tailed Sheep in the Baltic Sea Region. Genome Biol Evol 2024; 16:evae114. [PMID: 38795367 PMCID: PMC11162877 DOI: 10.1093/gbe/evae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/27/2024] Open
Abstract
Sheep are among the earliest domesticated livestock species, with a wide variety of breeds present today. However, it remains unclear how far back this diversity goes, with formal documentation only dating back a few centuries. North European short-tailed (NEST) breeds are often assumed to be among the oldest domestic sheep populations, even thought to represent relicts of the earliest sheep expansions during the Neolithic period reaching Scandinavia <6,000 years ago. This study sequenced the genomes (up to 11.6X) of five sheep remains from the Baltic islands of Gotland and Åland, dating from the Late Neolithic (∼4,100 cal BP) to historical times (∼1,600 CE). Our findings indicate that these ancient sheep largely possessed the genetic characteristics of modern NEST breeds, suggesting a substantial degree of long-term continuity of this sheep type in the Baltic Sea region. Despite the wide temporal spread, population genetic analyses show high levels of affinity between the ancient genomes and they also exhibit relatively high genetic diversity when compared to modern NEST breeds, implying a loss of diversity in most breeds during the last centuries associated with breed formation and recent bottlenecks. Our results shed light on the development of breeds in Northern Europe specifically as well as the development of genetic diversity in sheep breeds, and their expansion from the domestication center in general.
Collapse
Affiliation(s)
- Martin N A Larsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Li Pan
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Hanna Kivikero
- Department of Culture, University of Helsinki, Helsinki, Finland
| | - Juha Kantanen
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Anna M Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Storå
- Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Zhong T, Hou D, Zhao Q, Zhan S, Wang L, Li L, Zhang H, Zhao W, Yang S, Niu L. Comparative whole-genome resequencing to uncover selection signatures linked to litter size in Hu Sheep and five other breeds. BMC Genomics 2024; 25:480. [PMID: 38750582 PMCID: PMC11094944 DOI: 10.1186/s12864-024-10396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dunying Hou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang, 615013, China
| | - Shizhong Yang
- Academy of Agricultural Sciences Liangshan, Xichang, 615000, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
5
|
Li T, Jin M, Wang H, Zhang W, Yuan Z, Wei C. Whole-Genome Scanning for Selection Signatures Reveals Candidate Genes Associated with Growth and Tail Length in Sheep. Animals (Basel) 2024; 14:687. [PMID: 38473071 DOI: 10.3390/ani14050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Compared to Chinese indigenous sheep, Western sheep have rapid growth rate, larger physique, and higher meat yield. These excellent Western sheep were introduced into China for crossbreeding to expedite the enhancement of production performance and mutton quality in local breeds. Here, we investigated population genetic structure and genome-wide selection signatures among the Chinese indigenous sheep and the introduced sheep based on whole-genome resequencing data. The PCA, N-J tree and ADMIXTURE results showed significant genetic difference between Chinese indigenous sheep and introduced sheep. The nucleotide diversity (π) and linkage disequilibrium (LD) decay results indicated that the genomic diversity of introduced breeds were lower. Then, Fst & π ratio, XP-EHH, and de-correlated composite of multiple signals (DCMS) methods were used to detect the selection signals. The results showed that we identified important candidate genes related to growth rate and body size in the introduced breeds. Selected genes with stronger selection signatures are associated with growth rate (CRADD), embryonic development (BVES, LIN28B, and WNT11), body size (HMGA2, MSRB3, and PTCH1), muscle development and fat metabolism (MSTN, PDE3A, LGALS12, GGPS1, and SAR1B), wool color (ASIP), and hair development (KRT71, KRT74, and IRF2BP2). Thus, these genes have the potential to serve as candidate genes for enhancing the growth traits of Chinese indigenous sheep. We also identified tail-length trait-related candidate genes (HOXB13, LIN28A, PAX3, and VEGFA) in Chinese long-tailed breeds. Among these genes, HOXB13 is the main candidate gene for sheep tail length phenotype. LIN28A, PAX3, and VEGFA are related to embryonic development and angiogenesis, so these genes may be candidate genes for sheep tail type traits. This study will serve as a foundation for further genetic improvement of Chinese indigenous sheep and as a reference for studies related to growth and development of sheep.
Collapse
Affiliation(s)
- Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Klawatsch J, Papachristou D, Koutsouli P, Upadhyay M, Seichter D, Russ I, Mioč B, Simčič M, Bizelis I, Medugorac I. Genetic basis of ear length in sheep breeds sampled across the region from the Middle East to the Alps. Anim Genet 2024; 55:123-133. [PMID: 38069488 DOI: 10.1111/age.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024]
Abstract
Ear length in sheep (Ovis aries) shows a wide range of natural variation, from the absence of an outer ear structure (anotia), to small outer ears (microtia), to regular ear length. Up until now, the underlying genetics of this phenotype has been studied in four sheep breeds from China, Jordan and Italy. These studies revealed a broad range of genes significantly associated with ear length, potentially indicating genetic heterogeneity across breeds or geographic regions. In the current study, we performed genome-wide SNP genotyping and haplotype-based mapping, in a population of 340 individuals, to identify loci influencing ear length variation in additional sheep breeds from Slovenia, Croatia, Cyprus and Greece. Additionally, two previously described candidate variants were also genotyped in our mapping population. The mapping model without candidate variant genotypes revealed only one genome-wide significant signal, which was located next to HMX1 on OAR6. This region was previously described as being associated with ear length variation in the Altay and Awassi sheep breeds. The mapping model including the candidate duplication genotype near HMX1 as a fixed effect explained the phenotypic variance on OAR6 and revealed an additional genome-wide significant locus on OAR13 associated with ear length. Our results, combined with published evidence, suggest that a duplication in the evolutionarily conserved region near HMX1 is the major regulator of ear length in sheep breeds descended from a larger region from Central Asia, to the Middle East, Cyprus, Greece and to the Alps. This distribution suggests an ancient origin of the derived allele.
Collapse
Affiliation(s)
- Jürgen Klawatsch
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
- Tierzuchtforschung e.V. Munich, Grub, Germany
| | | | - Panagiota Koutsouli
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | | | - Ingolf Russ
- Tierzuchtforschung e.V. Munich, Grub, Germany
| | - Boro Mioč
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Mojca Simčič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iosif Bizelis
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| |
Collapse
|
7
|
Zhao Y, He S, Huang J, Liu M. Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F 2 Resource Population. Animals (Basel) 2023; 13:2162. [PMID: 37443959 DOI: 10.3390/ani13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
pH was one of the important meat quality traits, which was an important factor affecting the storage/shelf life and quality of meat in meat production. In order to find a way to extend the storage/shelf life, the pH values (pH45min, pH24h, pH48h and pH72h) of the longissimus dorsi muscles in F2 individuals of 462 Texel sheep × Altay sheep were determined, genotyping was performed using Illumina Ovine SNP 600 K BeadChip and whole genome resequencing technology, a genome-wide association analysis (GWAS) was used to screen the candidate genes and molecular markers for pH values related to the quality traits of mutton, and the effects of population stratification were detected by Q-Q plots. The results showed that the pH population stratification analysis did not find significant systemic bias, and there was no obvious population stratification effect. The results of the association analysis showed that 28 SNPs significantly associated with pH reached the level of genomic significance. The candidate gene associated with pH45min was identified as the CCDC92 gene by gene annotation and a search of the literature. Candidate genes related to pH24h were KDM4C, TGFB2 and GOT2 genes. The candidate genes related to pH48h were MMP12 and MMP13 genes. The candidate genes related to pH72h were HILPDA and FAT1 genes. Further bioinformatics analyses showed 24 gene ontology terms and five signaling pathways that were significantly enriched (p ≤ 0.05). Many terms and pathways were related to cellular components, processes of protein modification, the activity of protein dimerization and hydrolase activity. These identified SNPs and genes could provide useful information about meat and the storage/shelf life of meat, thereby extending the storage/shelf life and quality of meat.
Collapse
Affiliation(s)
- Yilong Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Xinjiang Agricultural Vocational and Technical College, Changji 831100, China
| | - Sangang He
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | | | - Mingjun Liu
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| |
Collapse
|
8
|
Li R, Gong M, Zhang X, Wang F, Liu Z, Zhang L, Yang Q, Xu Y, Xu M, Zhang H, Zhang Y, Dai X, Gao Y, Zhang Z, Fang W, Yang Y, Fu W, Cao C, Yang P, Ghanatsaman ZA, Negari NJ, Nanaei HA, Yue X, Song Y, Lan X, Deng W, Wang X, Pan C, Xiang R, Ibeagha-Awemu EM, Heslop-Harrison PJS, Rosen BD, Lenstra JA, Gan S, Jiang Y. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Res 2023; 33:463-477. [PMID: 37310928 PMCID: PMC10078295 DOI: 10.1101/gr.277372.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Structural variations (SVs) are a major contributor to genetic diversity and phenotypic variations, but their prevalence and functions in domestic animals are largely unexplored. Here we generated high-quality genome assemblies for 15 individuals from genetically diverse sheep breeds using Pacific Biosciences (PacBio) high-fidelity sequencing, discovering 130.3 Mb nonreference sequences, from which 588 genes were annotated. A total of 149,158 biallelic insertions/deletions, 6531 divergent alleles, and 14,707 multiallelic variations with precise breakpoints were discovered. The SV spectrum is characterized by an excess of derived insertions compared to deletions (94,422 vs. 33,571), suggesting recent active LINE expansions in sheep. Nearly half of the SVs display low to moderate linkage disequilibrium with surrounding single-nucleotide polymorphisms (SNPs) and most SVs cannot be tagged by SNP probes from the widely used ovine 50K SNP chip. We identified 865 population-stratified SVs including 122 SVs possibly derived in the domestication process among 690 individuals from sheep breeds worldwide. A novel 168-bp insertion in the 5' untranslated region (5' UTR) of HOXB13 is found at high frequency in long-tailed sheep. Further genome-wide association study and gene expression analyses suggest that this mutation is causative for the long-tail trait. In summary, we have developed a panel of high-quality de novo assemblies and present a catalog of structural variations in sheep. Our data capture abundant candidate functional variations that were previously unexplored and provide a fundamental resource for understanding trait biology in sheep.
Collapse
Affiliation(s)
- Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinmiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qimeng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengsi Xu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Huanhuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanpeng Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenwen Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuta Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunna Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Zeinab Amiri Ghanatsaman
- Department of Animal Science, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Shiraz 7155863511, Iran
| | | | | | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruidong Xiang
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, 3052 Victoria, Australia
| | - Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec J1M 0C8, Canada
| | - Pat J S Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3508 TD, The Netherlands
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, China;
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China;
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Dachs N, Upadhyay M, Hannemann E, Hauser A, Krebs S, Seichter D, Russ I, Gehrke LJ, Thaller G, Medugorac I. Quantitative trait locus for calving traits on Bos taurus autosome 18 in Holstein cattle is embedded in a complex genomic region. J Dairy Sci 2023; 106:1925-1941. [PMID: 36710189 DOI: 10.3168/jds.2021-21625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/10/2022] [Indexed: 01/31/2023]
Abstract
Although the quantitative trait locus (QTL) on chromosome 18 (BTA18) associated with paternal calving ease and stillbirth in Holstein Friesian cattle and its cross has been known for over 20 years, to our knowledge, the exact causal genetic sequence has yet escaped identification. The aim of this study was to re-examine the region of the published QTL on BTA18 and to investigate the possible reasons behind this elusiveness. For this purpose, we carried out a combined linkage disequilibrium and linkage analysis using genotyping data of 2,697 German Holstein Friesian (HF) animals and subsequent whole-genome sequencing (WGS) data analyses and genome assembly of HF samples. We confirmed the known QTL in the 95% confidence interval of 1.089 Mbp between 58.34 and 59.43 Mbp on BTA18. Additionally, these 4 SNPs in the near-perfect linkage disequilibrium with the QTL haplotype were identified: rs381577268 (on 57,816,137 bp, C/T), rs381878735 (on 59,574,329 bp, A/T), rs464221818 (on 59,329,176 bp, C/T), and rs472502785 (on 59,345,689 bp, T/C). Search for the causal mutation using short and long-read sequences, and methylation data of the BTA18 QTL region did not reveal any candidates though. The assembly showed problems in the region, as well as an abundance of segmental duplications within and around the region. Taking the QTL of BTA18 in Holstein cattle as an example, the data presented in this study comprehensively characterize the genomic features that could also be relevant for other such elusive QTL in various other cattle breeds and livestock species as well.
Collapse
Affiliation(s)
- Nina Dachs
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany; Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Elisabeth Hannemann
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Andreas Hauser
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Doris Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany; Vereinigte Informationssysteme Tierhaltung w.V. (vit) Verden, Heinrich-Schröder-Weg 1, 27283 Verden (Aller), Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany.
| |
Collapse
|
10
|
Kalds P, Huang S, Chen Y, Wang X. Ovine HOXB13: expanding the gene repertoire of sheep tail patterning and implications in genetic improvement. Commun Biol 2022; 5:1196. [DOI: 10.1038/s42003-022-04199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|