1
|
Vaškevičius A, Baronas D, Leitans J, Kvietkauskaitė A, Rukšėnaitė A, Manakova E, Toleikis Z, Kaupinis A, Kazaks A, Gedgaudas M, Mickevičiūtė A, Juozapaitienė V, Schiöth HB, Jaudzems K, Valius M, Tars K, Gražulis S, Meyer-Almes FJ, Matulienė J, Zubrienė A, Dudutienė V, Matulis D. Targeted anticancer pre-vinylsulfone covalent inhibitors of carbonic anhydrase IX. eLife 2024; 13:RP101401. [PMID: 39688904 DOI: 10.7554/elife.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
We designed novel pre-drug compounds that transform into an active form that covalently modifies particular His residue in the active site, a difficult task to achieve, and applied to carbonic anhydrase (CAIX), a transmembrane protein, highly overexpressed in hypoxic solid tumors, important for cancer cell survival and proliferation because it acidifies tumor microenvironment helping invasion and metastases processes. The designed compounds have several functionalities: (1) primary sulfonamide group recognizing carbonic anhydrases (CA), (2) high-affinity moieties specifically recognizing CAIX among all CA isozymes, and (3) forming a covalent bond with the His64 residue. Such targeted covalent compounds possess both high initial affinity and selectivity for the disease target protein followed by complete irreversible inactivation of the protein via covalent modification. Our designed prodrug candidates bearing moderately active pre-vinylsulfone esters or weakly active carbamates optimized for mild covalent modification activity to avoid toxic non-specific modifications and selectively target CAIX. The lead inhibitors reached 2 pM affinity, the highest among known CAIX inhibitors. The strategy could be used for any disease drug target protein bearing a His residue in the vicinity of the active site.
Collapse
Affiliation(s)
- Aivaras Vaškevičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Denis Baronas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Janis Leitans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Agnė Kvietkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Audronė Rukšėnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elena Manakova
- Department of Protein - DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Zigmantas Toleikis
- Sector of Biocatalysis, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vaida Juozapaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Saulius Gražulis
- Sector of Crystallography and Chemical Informatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany
| | - Jurgita Matulienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Dudutienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Qiao H, Wang Z, Yang H, Xia M, Yang G, Bai F, Wang J, Fang P. Specific glycine-dependent enzyme motion determines the potency of conformation selective inhibitors of threonyl-tRNA synthetase. Commun Biol 2024; 7:867. [PMID: 39014102 PMCID: PMC11252418 DOI: 10.1038/s42003-024-06559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
The function of proteins depends on their correct structure and proper dynamics. Understanding the dynamics of target proteins facilitates drug design and development. However, dynamic information is often hidden in the spatial structure of proteins. It is important but difficult to identify the specific residues that play a decisive role in protein dynamics. Here, we report that a critical glycine residue (Gly463) dominates the motion of threonyl-tRNA synthetase (ThrRS) and the sensitivity of the enzyme to antibiotics. Obafluorin (OB), a natural antibiotic, is a novel covalent inhibitor of ThrRS. The binding of OB induces a large conformational change in ThrRS. Through five crystal structures, biochemical and biophysical analyses, and computational simulations, we found that Gly463 plays an important role in the dynamics of ThrRS. Mutating this flexible residue into more rigid residues did not damage the enzyme's three-dimensional structure but significantly improved the thermal stability of the enzyme and suppressed its ability to change conformation. These mutations cause resistance of ThrRS to antibiotics that are conformationally selective, such as OB and borrelidin. This work not only elucidates the molecular mechanism of the self-resistance of OB-producing Pseudomonas fluorescens but also emphasizes the importance of backbone kinetics for aminoacyl-tRNA synthetase-targeting drug development.
Collapse
Affiliation(s)
- Hang Qiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zilu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Guang Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China.
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China.
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China.
| | - Jing Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, 510006, Guangzhou, China.
| |
Collapse
|
3
|
Zhou J, Xia M, Huang Z, Qiao H, Yang G, Qian Y, Li P, Zhang Z, Gao X, Jiang L, Wang J, Li W, Fang P. Structure-guided conversion from an anaplastic lymphoma kinase inhibitor into Plasmodium lysyl-tRNA synthetase selective inhibitors. Commun Biol 2024; 7:742. [PMID: 38890421 PMCID: PMC11189516 DOI: 10.1038/s42003-024-06455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.
Collapse
Affiliation(s)
- Jintong Zhou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Hang Qiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guang Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Peifeng Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhaolun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Xinai Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jing Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Pengfei Fang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Bobrovs R, Bolsakova J, Buitrago JAR, Varaceva L, Skvorcova M, Kanepe I, Rudnickiha A, Parisini E, Jirgensons A. Structure-based identification of salicylic acid derivatives as malarial threonyl tRNA-synthetase inhibitors. PLoS One 2024; 19:e0296995. [PMID: 38558084 PMCID: PMC10984466 DOI: 10.1371/journal.pone.0296995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024] Open
Abstract
Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Threonyl t-RNA synthetase (ThrRS) is one of the enzymes involved in this pathway, and it has been validated as an anti-malarial drug target. Here, we present 9 structurally diverse low micromolar Plasmodium falciparum ThrRS inhibitors that were identified using high-throughput virtual screening (HTVS) and were verified in a FRET enzymatic assay. Salicylic acid-based compound (LE = 0.34) was selected as a most perspective hit and was subjected to hit-to-lead optimisation. A total of 146 hit analogues were synthesised or obtained from commercial vendors and were tested. Structure-activity relationship study was supported by the crystal structure of the complex of a salicylic acid analogue with a close homologue of the plasmodium target, E. coli ThrRS (EcThrRS). Despite the availability of structural information, the hit identified via virtual screening remained one of the most potent PfThrRS inhibitors within this series. However, the compounds presented herein provide novel scaffolds for ThrRS inhibitors, which could serve as starting points for further medicinal chemistry projects targeting ThrRSs or structurally similar enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Iveta Kanepe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
| | | |
Collapse
|
5
|
Bolsakova J, Bobrovs R, Varacheva L, Rudnickiha A, Kanepe I, Parisini E, Jirgensons A. Discovery of Malarial Threonyl tRNA Synthetase Inhibitors by Screening of a Focused Fragment Library. ACS Med Chem Lett 2024; 15:76-80. [PMID: 38229753 PMCID: PMC10789136 DOI: 10.1021/acsmedchemlett.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
While Plasmodium falciparum threonyl tRNA synthetase (PfThrRS) has clearly been validated as a prospective antimalarial drug target, the number of known inhbitors of this enzyme is still limited. In order to expand the chemotypes acting as inhibitors of PfThrRS, a set of fragments were designed which incorporated bioisosteres of the N-acylphosphate moiety of the aminoacyladenylate as an intermediate of an enzymatic reaction. N-Acyl sulfamate- and N-acyl benzenethiazolsulfonamide-based fragments 9a and 9k were identified as inhibitors of the PfThrRSby biochemical assay at 100 μM concentration. These fragments were then developed into potent PfThrRS inhibitors (10a,b and 11) by linking them with an amino pyrimidine as a bioisostere of adenine in the enzymatic reaction intermediate.
Collapse
Affiliation(s)
| | - Raitis Bobrovs
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | | | - Iveta Kanepe
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Emilio Parisini
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
- Department
of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | | |
Collapse
|
6
|
Batey SFD, Davie MJ, Hems ES, Liston JD, Scott TA, Alt S, Francklyn CS, Wilkinson B. The catechol moiety of obafluorin is essential for antibacterial activity. RSC Chem Biol 2023; 4:926-941. [PMID: 37920400 PMCID: PMC10619133 DOI: 10.1039/d3cb00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 11/04/2023] Open
Abstract
Obafluorin is a Pseudomonas fluorescens antibacterial natural product that inhibits threonyl-tRNA synthetase (ThrRS). It acts as a broad-spectrum antibiotic against a range of clinically relevant pathogens and comprises a strained β-lactone ring decorated with catechol and 4-nitro-benzyl moieties. The catechol moiety is widespread in nature and its role in the coordination of ferric iron has been well-characterised in siderophores and Trojan horse antibiotics. Here we use a combination of mutasynthesis, bioassays, enzyme assays and metal binding studies to delineate the role of the catechol moiety in the bioactivity of obafluorin. We use P. fluorescens biosynthetic mutants to generate obafluorin analogues with modified catechol moieties. We demonstrate that an intact catechol is required for both antibacterial activity and inhibition of the ThrRS molecular target. Although recent work showed that the obafluorin catechol coordinates Zn2+ in the ThrRS active site, we find that obafluorin is a weak Zn2+ binder in vitro, contrasting with a strong, specific 1 : 1 interaction with Fe3+. We use bioassays with siderophore transporter mutants to probe the role of the obafluorin catechol in Fe3+-mediated uptake. Surprisingly, obafluorin does not behave as a Trojan horse antibiotic but instead exhibits increased antibacterial activity in the presence of Fe3+. We further demonstrate that Fe3+ binding prevents the hydrolytic breakdown of the β-lactone ring, revealing a hitherto unreported function for the catechol moiety in natural product bioactivity.
Collapse
Affiliation(s)
- Sibyl F D Batey
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| | - Melissa J Davie
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| | - Jonathon D Liston
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| | - Thomas A Scott
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| | - Silke Alt
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| | - Christopher S Francklyn
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington Vermont 05405 USA
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
7
|
Buitrago JAR, Leitis G, Kaņepe-Lapsa I, Rudnickiha A, Parisini E, Jirgensons A. Synthesis and evaluation of an agrocin 84 toxic moiety (TM84) analogue as a malarial threonyl tRNA synthetase inhibitor. Org Biomol Chem 2023. [PMID: 37335076 DOI: 10.1039/d3ob00670k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
An analogue of a toxic moiety (TM84) of natural product agrocin 84 containing threonine amide instead of 2,3-dihydroxy-4-methylpentanamide was prepared and evaluated as a putative Plasmodium falciparum threonyl t-RNA synthetase (PfThrRS) inhibitor. This TM84 analogue features submicromolar inhibitory potency (IC50 = 440 nM) comparable to that of borrelidin (IC50 = 43 nM) and therefore complements chemotypes known to inhibit malarial PfThrRS, which are currently limited to borrelidin and its analogues. The crystal structure of the inhibitor in complex with the E. coli homologue enzyme (EcThrRS) was obtained, revealing crucial ligand-protein interactions that will pave the way for the design of novel ThrRS inhibitors.
Collapse
Affiliation(s)
| | - Gundars Leitis
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | | | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy.
| | | |
Collapse
|