1
|
Toma AI, Shah D, Roth D, Piña JO, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Accelerating Oral Wound Healing Using Bilayer Biomaterial Delivery of FTY720 Immunotherapy. Adv Healthc Mater 2024:e2401480. [PMID: 39388502 DOI: 10.1002/adhm.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Orofacial clefts are the most common congenital craniofacial anomaly. Adverse healing following cleft palate repair can lead to oronasal fistula (ONF), a persistent connection between the oral and nasal cavities. Although human allograft tissues are currently the gold standard for ONF repair, these methods carry risks of infection and rejection, often requiring surgical revision. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. An FDA-approved immunomodulatory drug, FTY720, is repurposed to reduce lymphocyte egress and induce immune cell fate switching toward pro-regenerative phenotypes. In this study, a bilayer biomaterial system is engineered using Tegaderm to secure and control the delivery of FTY720-nanofiber scaffolds (FTY720-NF). The release kinetics of the bilayer FTY720-NF is optimized to maintain drug release for up to 7 days, ensuring safe transdermal absorption and tissue biodistribution. The comprehensive immunophenotyping results demonstrate a regenerative state transition in hybrid immune cells recruited to the wound site. Further, histological evaluations reveal a significant ONF closure in mice by day 7 following bilayer FTY720-NF implantation. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options in pediatric patients.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| | - Daniel Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Daniela Roth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lauren Hymel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Thomas Turner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Archana Kamalakar
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| | - Ken Liu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Perry Bartsch
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Leon Jacobs
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Rena D'Souza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dennis Liotta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Edward Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| |
Collapse
|
2
|
Turner TC, Pittman FS, Zhang H, Hymel LA, Zheng T, Behara M, Anderson SE, Harrer JA, Link KA, Ahammed MA, Maner-Smith K, Liu X, Yin X, Lim HS, Spite M, Qiu P, García AJ, Mortensen LJ, Jang YC, Willett NJ, Botchwey EA. Improving Functional Muscle Regeneration in Volumetric Muscle Loss Injuries by Shifting the Balance of Inflammatory and Pro-Resolving Lipid Mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611741. [PMID: 39314313 PMCID: PMC11418947 DOI: 10.1101/2024.09.06.611741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Severe tissue loss resulting from extremity trauma, such as volumetric muscle loss (VML), poses significant clinical challenges for both general and military populations. VML disrupts the endogenous tissue repair mechanisms, resulting in acute and unresolved chronic inflammation and immune cell presence, impaired muscle healing, scar tissue formation, persistent pain, and permanent functional deficits. The aberrant healing response is preceded by acute inflammation and immune cell infiltration which does not resolve. We analyzed the biosynthesis of inflammatory and specialized pro-resolving lipid mediators (SPMs) after VML injury in two different models; muscle with critical-sized defects had a decreased capacity to biosynthesize SPMs, leading to dysregulated and persistent inflammation. We developed a modular poly(ethylene glycol)-maleimide hydrogel platform to locally release a stable isomer of Resolvin D1 (AT-RvD1) and promote endogenous pathways of inflammation resolution in the two muscle models. The local delivery of AT-RvD1 enhanced muscle regeneration, improved muscle function, and reduced pain sensitivity after VML by promoting molecular and cellular resolution of inflammation. These findings provide new insights into the pathogenesis of VML and establish a pro-resolving hydrogel therapeutic as a promising strategy for promoting functional muscle regeneration after traumatic injury.
Collapse
|
3
|
Whitaker R, Sung S, Tylek T, Risser G, O'Brien E, Chua PE, Li T, Petrie RJ, Han L, Binder-Markey B, Spiller KL. Effects of injury size on local and systemic immune cell dynamics in volumetric muscle loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609702. [PMID: 39253495 PMCID: PMC11383310 DOI: 10.1101/2024.08.26.609702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We took a systems approach to the analysis of macrophage phenotype in regenerative and fibrotic volumetric muscle loss outcomes in mice together with analysis of systemic inflammation and of other leukocytes in the muscle, spleen, and bone marrow. Macrophage dysfunction in the fibrotic group occurred as early as day 1, persisted to at least day 28, and was associated with increased numbers of leukocytes in the muscle and bone marrow, increased pro-inflammatory marker expression in splenic macrophages, and changes in the levels of pro-inflammatory cytokines in the blood. The most prominent differences were in muscle neutrophils, which were much more abundant in fibrotic outcomes compared to regenerative outcomes at day 1 after injury. However, neutrophil depletion had little to no effect on macrophage phenotype or on muscle repair outcomes. Together, these results suggest that the entire system of immune cell interactions must be considered to improve muscle repair outcomes.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Tina Tylek
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Gregory Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Erin O'Brien
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Phoebe Ellin Chua
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Thomas Li
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Ryan J Petrie
- Department of Biology, College of Arts & Sciences, Drexel University, Philadelphia, PA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Benjamin Binder-Markey
- Department of Physical Therapy & Rehabilitation Sciences, College of Nursing and Health Professions, Drexel University, Philadelphia, PA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| |
Collapse
|
4
|
Cai CW, Grey JA, Hubmacher D, Han WM. Biomaterial-Based Regenerative Strategies for Volumetric Muscle Loss: Challenges and Solutions. Adv Wound Care (New Rochelle) 2024. [PMID: 38775429 DOI: 10.1089/wound.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Significance: Volumetric muscle loss (VML) is caused by the loss of significant amounts of skeletal muscle tissue. VML cannot be repaired by intrinsic regenerative processes, resulting in permanent loss of muscle function and disability. Current rehabilitative-focused treatment strategies lack efficacy and do not restore muscle function, indicating the need for the development of effective regenerative strategies. Recent Advances: Recent developments implicate biomaterial-based approaches for promoting muscle repair and functional restoration post-VML. Specifically, bioscaffolds transplanted in the injury site have been utilized to mimic endogenous cues of the ablated tissue to promote myogenic pathways, increase neo-myofiber synthesis, and ultimately restore contractile function to the injured unit. Critical Issues: Despite the development and preclinical testing of various biomaterial-based regenerative strategies, effective therapies for patients are not available. The unique challenges posed for biomaterial-based treatments of VML injuries, including its scalability and clinical applicability beyond small-animal models, impede progress. Furthermore, production of tissue-engineered constructs is technically demanding, with reproducibility issues at scale and complexities in achieving vascularization and innervation of large constructs. Future Directions: Biomaterial-based regenerative strategies designed to comprehensively address the pathophysiology of VML are needed. Considerations for clinical translation, including scalability and regulatory compliance, should also be considered when developing such strategies. In addition, an integrated approach that combines regenerative and rehabilitative strategies is essential for ensuring functional improvement.
Collapse
Affiliation(s)
- Charlene W Cai
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Biology, The College of New Jersey, Ewing, New Jersey, USA
| | - Josh A Grey
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Hubmacher
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Woojin M Han
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Ngo TB, Josyula A, DeStefano S, Fertil D, Faust M, Lokwani R, Sadtler K. Intersection of Immunity, Metabolism, and Muscle Regeneration in an Autoimmune-Prone MRL Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306961. [PMID: 38192168 PMCID: PMC10953568 DOI: 10.1002/advs.202306961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, the differences between the responses of MRL/MpJ versus C57BL/6 strain are evaluated in volumetric muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury is robust adipogenesis within the muscle. This is associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there are fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model can provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and material implantation.
Collapse
Affiliation(s)
- Tran B. Ngo
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Aditya Josyula
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Sabrina DeStefano
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Daphna Fertil
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Mondreakest Faust
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Ravi Lokwani
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| | - Kaitlyn Sadtler
- Section on ImmunoengineeringCenter for Biomedical Engineering and Technology AccelerationNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20814USA
| |
Collapse
|
6
|
Toma AI, Shah D, Roth D, Oliver Piña J, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Harnessing Bilayer Biomaterial Delivery of FTY720 as an Immunotherapy to Accelerate Oral Wound Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573096. [PMID: 38187740 PMCID: PMC10769397 DOI: 10.1101/2023.12.22.573096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Orofacial clefts are the most common craniofacial congenital anomaly. Following cleft palate repair, up to 60% of surgeries have wound healing complications leading to oronasal fistula (ONF), a persistent connection between the roof of the mouth and the nasal cavity. The current gold standard methods for ONF repair use human allograft tissues; however, these procedures have risks of graft infection and/or rejection, requiring surgical revisions. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. We utilized a repurposed FDA-approved immunomodulatory drug, FTY720, to reduce the egress of lymphocytes and induce immune cell fate switching toward pro-regenerative phenotypes. Here, we engineered a bilayer biomaterial system using Tegaderm™, a liquid-impermeable wound dressing, to secure and control the delivery of FTY720- nanofiber scaffolds (FTY720-NF). We optimized release kinetics of the bilayer FTY720-NF to sustain drug release for up to 7d with safe, efficacious transdermal absorption and tissue biodistribution. Through comprehensive immunophenotyping, our results illustrate a pseudotime pro-regenerative state transition in recruited hybrid immune cells to the wound site. Additional histological assessments established a significant difference in full thickness ONF closure in mice on Day 7 following treatment with bilayer FTY720-NF, compared to controls. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options for pediatric patients. One Sentence Summary Local delivery of bilayer FTY720-nanofiber scaffolds in an ONF mouse model promotes complete wound closure through modulation of pro-regenerative immune and stromal cells.
Collapse
|
7
|
Ngo TB, Josyula A, DeStefano S, Fertil D, Faust M, Lokwani R, Sadtler K. Ectopic adipogenesis in response to injury and material implantation in an autoimmune mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561105. [PMID: 37986843 PMCID: PMC10659416 DOI: 10.1101/2023.10.05.561105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, we evaluated the differences between the responses of MRL/MpJ versus C57BL/6 strain in traumatic muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury was a robust adipogenesis within the muscle. This was associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there were fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model could provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and materials implantation.
Collapse
Affiliation(s)
- Tran B. Ngo
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Aditya Josyula
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Sabrina DeStefano
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Daphna Fertil
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Mondreakest Faust
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Ravi Lokwani
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Kaitlyn Sadtler
- Section on Immunoengineering, Center for Biomedical Engineering and Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| |
Collapse
|