1
|
Dinari M, Golshadi Z, Asadi P, Norton AE, Reid KR, Karimi B. Recent Progress on Covalent Organic Frameworks Supporting Metal Nanoparticles as Promising Materials for Nitrophenol Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1458. [PMID: 39269120 PMCID: PMC11397240 DOI: 10.3390/nano14171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
With the utilization of nitrophenols in manufacturing various materials and the expansion of industry, nitrophenols have emerged as water pollutants that pose significant risks to both humans and the environment. Therefore, it is imperative to convert nitrophenols into aminophenols, which are less toxic. This conversion process is achieved through the use of noble metal nanoparticles, such as gold, silver, copper, and palladium. The primary challenge with noble metal nanoparticles lies in their accumulation and deactivation, leading to a decrease in catalyst activity. Covalent organic frameworks (COFs) are materials characterized by a crystalline structure, good stability, and high porosity with active sites. These properties make them ideal substrates for noble metal nanoparticles, enhancing catalytic activity. This overview explores various articles that focus on the synthesis of catalysts containing noble metal nanoparticles attached to COFs as substrates to reduce nitrophenols to aminophenols.
Collapse
Affiliation(s)
- Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zaynab Golshadi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amie E Norton
- Department of Entomology, Kansas State University, 123 W Waters Hall, 1603 Old Claflin Place, Manhattan, KS 66503, USA
| | - Katelyn R Reid
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Benson Karimi
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
2
|
Sánchez M, Baltrusaitis J, Vasquez-Ríos MG, Campillo-Alvarado G, MacGillivray LR, Höpfl H. Nanoscale Dodecahedral and Fullerene-Type Organoboroxine and Borazine Cages from Planar Building Units. NANO LETTERS 2024; 24:5824-5830. [PMID: 38712765 PMCID: PMC11100284 DOI: 10.1021/acs.nanolett.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Boroxine- and borazine-cage analogs to C20, C60, and C70 were calculated and compared in terms of structure, strain indicators, and physical properties relevant to nanoscale applications. The results show C60 and C70 type cages are less strained than the smaller congener, primarily due to minimized bending in the B-arylene-B segments. The smallest cage calculated has a diameter of 2.4 nm, which increases up to 4.9 nm by either variation of the polyhedron (C20 < C60 < C70-type cage) or organic spacer elongation between boron centers. All calculated cages are porous (apertures ranging from 0.6 to 1.9 nm). Molecular electrostatic potential and Hirshfeld population analysis revealed both nucleophilic and electrophilic sites in the interior and exterior cage surfaces. HOMO-LUMO gaps range from 3.98 to 4.89 eV and 5.10-5.18 eV for the boroxine- and borazine-cages, respectively. Our findings provide insights into the design and properties of highly porous boroxine and borazine cages for nanoscience.
Collapse
Affiliation(s)
- Mario Sánchez
- Centro
de Investigación en Materiales Avanzados, S.C., Alianza Norte
202, Parque de Investigación en Innovación
Tecnológica (PIIT), Carretera Monterrey-Aeropuerto Km 11, Apodaca 66628, Nuevo León, México
| | - Jonas Baltrusaitis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Research Drive 111, Bethlehem, Pennsylvania 18015, United States
| | | | | | | | - Herbert Höpfl
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| |
Collapse
|
3
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
5
|
S S, Rajamohan N, S S, R A, M R. Sustainable remediation of pesticide pollutants using covalent organic framework - A review on material properties, synthesis methods and application. ENVIRONMENTAL RESEARCH 2024; 246:118018. [PMID: 38199472 DOI: 10.1016/j.envres.2023.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Covalent organic frameworks (COF) have emerged as a potential class of materials for a variety of applications in a wide number of sectors including power storage, environmental services, and biological applications due to their ordered and controllable porosity, large surface area, customizable structure, remarkable stability, and diverse electrical characteristics. COF have received a lot of attention in recent years in the field of environmental remediation, It also find its way to eliminate the emerging pollutant from the environment notably pesticide from polluted water. This review more concentrated on the application of COF in pesticide removal by modifying COF structure, COF synthesis and material properties. To increase the adsorption ability and selectivity of the material towards certain pesticides removal, the synthesis of COF involves organic linkers with various functional groups such as amine, carboxylic acid groups etc. The COF have a high degree of stability and endurance make them suitable for intermittent usage in water treatment applications. This review manifests the novel progress where modified COFs employed in a prominent manner to remove pesticides from polluted water. Some examples of COF application in the eradication of pesticides are triformyl phenylene framework functionalized with amine groups has capacity to remove up to 50 mg/l of Organophosphorus - chlorpyrifos. COF modified to improve their photocatalytic capacity to breakdown the pesticide under visible light irradiation. COF tetraphenyl ethylene linked with carboxylic acid group shows efficient photocatalytic degradation of 90% of organochlorine insecticide endosulfan when subjected to visible light. Atrazine and imidacloprid are reduced from 100 ppm to 1 ppm in aqueous solutions by COF based on high adsorption capacity. In addition, the strategies, technique, synthesis and functional group modification design of COF are discussed.
Collapse
Affiliation(s)
- Sujatha S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | - Sanjay S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Abhishek R
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
6
|
Llauradó-Capdevila G, Veciana A, Guarducci MA, Mayoral A, Pons R, Hertle L, Ye H, Mao M, Sevim S, Rodríguez-San-Miguel D, Sorrenti A, Jang B, Wang Z, Chen XZ, Nelson BJ, Matheu R, Franco C, Pané S, Puigmartí-Luis J. Tailored Design of a Water-Based Nanoreactor Technology for Producing Processable Sub-40 Nm 3D COF Nanoparticles at Atmospheric Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306345. [PMID: 38146105 DOI: 10.1002/adma.202306345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Indexed: 12/27/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.
Collapse
Affiliation(s)
- Gemma Llauradó-Capdevila
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Andrea Veciana
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Maria Aurora Guarducci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, 00185, Italy
| | - Alvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Ramon Pons
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, 08034, Spain
| | - Lukas Hertle
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Hao Ye
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Minmin Mao
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Semih Sevim
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | | | - Alessandro Sorrenti
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Bumjin Jang
- Department of Robotics, Hanyang University ERICA Campus, Ansan-si, 15588, Republic of Korea
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, P. R. China
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Roc Matheu
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Carlos Franco
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
7
|
Puthukkudi A, Nath S, Shee P, Dutta A, Rajput CV, Bommakanti S, Mohapatra J, Samal M, Anwar S, Pal S, Biswal BP. Terahertz Conductivity of Free-Standing 3D Covalent Organic Framework Membranes Fabricated via Triple-Layer-Dual Interfacial Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312960. [PMID: 38146892 DOI: 10.1002/adma.202312960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Processable covalent organic framework membranes (COFM) are emerging as potential semiconducting materials for device applications. Nevertheless, the fabrication of crystalline and free-standing 3D COFMs is challenging. In this work, a unique time and solvent-efficient triple-layer-dual interfacial (TLDI) approach for the simultaneous synthesis of two 3D COFMs from a single system is developed. Besides, for the first time, the optical conductivity of these free-standing 3D COFMs is analyzed using terahertz (THz) spectroscopy in transmission mode. Interestingly, these membranes show excellent transmittance at THz frequencies with very high intrinsic THz conductivities. The evaluated scattering time and plasma frequency of the free carriers of the COFMs are highly promising for future applications in optoelectronic devices in THz frequencies.
Collapse
Affiliation(s)
- Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Payel Shee
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Arpita Dutta
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chetan V Rajput
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Mahalaxmi Samal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Sharmistha Anwar
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, Odisha, India
| | - Shovon Pal
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| |
Collapse
|
8
|
Koner K, Mohata S, Ogaeri Y, Nishiyama Y, Addicoat MA, Banerjee R. Enhancing the Crystallinity of Keto-enamine-Linked Covalent Organic Frameworks through an in situ Protection-Deprotection Strategy. Angew Chem Int Ed Engl 2024; 63:e202316873. [PMID: 38324467 DOI: 10.1002/anie.202316873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
β-Keto-enamine-linked 2D covalent organic frameworks (COFs) have emerged as highly robust materials, showing significant potential for practical applications. However, the exclusive reliance on 1,3,5-triformylphloroglucinol (Tp aldehyde) in the design of such COFs often results in the production of non-porous amorphous polymers when combined with certain amine building blocks. Attempts to adjust the crystallinity and porosity by a modulator approach are inefficient because Tp aldehyde readily forms stable β-keto-enamine-linked monomers/oligomers with various aromatic amines through an irreversible keto-enol tautomerization process. Our research employed a unique protection-deprotection strategy to enhance the crystallinity and porosity of β-keto-enamine-linked squaramide-based 2D COFs. Advanced solid-state NMR studies, including 1D 13 C CPMAS, 1 H fast MAS, 15 N CPMAS, 2D 13 C-1 H correlation, 1 H-1 H DQ-SQ, and 14 N-1 H HMQC NMR were used to establish the atomic-level connectivity within the resultant COFs. The TpOMe -Sqm COFs synthesized utilizing this strategy have a surface area of 487 m2 g-1 , significantly higher than similar COFs synthesized using Tp aldehyde. Furthermore, detailed time-dependent PXRD, solid-state 13 C CPMAS NMR, and theoretical DFT studies shed more light on the crystallization and linkage conversion processes in these 2D COFs. Ultimately, we applied this protection-deprotection method to construct novel keto-enamine-linked highly porous organic polymers with a surface area of 1018 m2 g-1 .
Collapse
Affiliation(s)
- Kalipada Koner
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| | - Shibani Mohata
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| | - Yutaro Ogaeri
- JEOL Ltd. Musashino, Akishima, Tokyo, 196-8558, Japan
| | | | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, UK
| | - Rahul Banerjee
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| |
Collapse
|
9
|
Li Z, Xu G, Zhang C, Ma S, Jiang Y, Xiong H, Tian G, Wu Y, Wei Y, Chen X, Yang Y, Wei F. Synthesis of 12-Connected Three-Dimensional Covalent Organic Framework with lnj Topology. J Am Chem Soc 2024; 146:4327-4332. [PMID: 38277433 DOI: 10.1021/jacs.3c12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The structural exploration of three-dimensional covalent organic frameworks (3D COFs) is of great significance to the development of COF materials. Different from structurally diverse MOFs, which have a variety of connectivity (3-24), now the valency of 3D COFs is limited to only 4, 6, and 8. Therefore, the exploration of organic building blocks with higher connectivity is a necessary path to broaden the scope of 3D COF structures. Herein, for the first time, we have designed and synthesized a 12-connected triptycene-based precursor (triptycene-12-CHO) with 12 symmetrical distributions of aldehyde groups, which is also the highest valency reported until now. Based on this unique 12-connected structure, we have successfully prepared a novel 3D COF with lnj topology (termed 3D-lnj-COF). The as-synthesized 3D COF exhibits honeycomb main pores and permanent porosity with a Brunauer-Emmett-Teller surface area of 1159.6 m2 g-1. This work not only provides a strategy for synthesizing precursors with a high connectivity but also provides inspiration for enriching the variety of 3D COFs.
Collapse
Affiliation(s)
- Zonglong Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guojie Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
| | - Shuan Ma
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Yaxin Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| |
Collapse
|
10
|
Chen X, Yu C, Yusran Y, Qiu S, Fang Q. Breaking Dynamic Behavior in 3D Covalent Organic Framework with Pre-Locked Linker Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:329. [PMID: 38392702 PMCID: PMC10891907 DOI: 10.3390/nano14040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Due to their large surface area and pore volume, three-dimensional covalent organic frameworks (3D COFs) have emerged as competitive porous materials. However, structural dynamic behavior, often observed in imine-linked 3D COFs, could potentially unlock their potential application in gas storage. Herein, we showed how a pre-locked linker strategy introduces breaking dynamic behavior in 3D COFs. A predesigned planar linker-based 3,8-diamino-6-phenylphenanthridine (DPP) was prepared to produce non-dynamic 3D JUC-595, as the benzylideneamine moiety in DPP locked the linker flexibility and restricted the molecular bond rotation of the imine linkages. Upon solvent inclusion and release, the PXRD profile of JUC-595 remained intake, while JUC-594 with a flexible benzidine linker experienced crystal transformation due to framework contraction-expansion. As a result, the activated JUC-595 achieved higher surface areas (754 m2 g-1) than that of JUC-594 (548 m2 g-1). Furthermore, improved CO2 and CH4 storages were also seen in JUC-595 compared with JUC-594. Impressively, JUC-595 recorded a high normalized H2 storage capacity that surpassed other reported high-surface area 3D COFs. This works shows important insights on manipulating the structural properties of 3D COF to tune gas storage performance.
Collapse
Affiliation(s)
- Xiaohong Chen
- College of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Chengyang Yu
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yusran Yusran
- College of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shilun Qiu
- College of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Qianrong Fang
- College of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Mukherjee A, Ghosh G. Light-regulated morphology control in supramolecular polymers. NANOSCALE 2024; 16:2169-2184. [PMID: 38206133 DOI: 10.1039/d3nr04989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Stimuli-responsive materials have gained significant recent interest owing to their versatility and wide applications in fields ranging from materials science to biology. In the majority of examples, external stimuli, including light, act as a remote source of energy to depolymerize/deconstruct certain nanostructures or provide energy for exploring their functional features. However, there is little emphasis on the creation and precise control of these materials. Although significant progress has been made in the last few decades in understanding the pros and cons of various directional non-covalent interactions and their specific molecular recognition ability, it is only in the recent past that the focus has shifted toward controlling the dimension, dispersity, and other macroscopic properties of supramolecular assemblies. Control over the morphology of supramolecular polymers is extremely crucial not only for material properties they manifest but also for effective interactions with biological systems for their potential application in the field of biomedicine. This could effectively be achieved using photoirradiation which has been demonstrated by some recent reports. The concept as such offers a broad scope for designing versatile stimuli-responsive supramolecular materials with precise structure-property control. However, there has not yet been a compilation that focuses on the present subject of employing light to impact and regulate the morphology of supramolecular polymers or categorize the functional motif for easy understanding. In this review, we have collated recent examples of how light irradiation can tune the morphology and nanostructures of supramolecular polymers and categorized them based on their chemical transformation such as cis-trans isomerization, cycloaddition, and photo-cleavage. We have also established a direct correlation among the structures of the building blocks, mesoscopic properties and functional behavior of such materials and suggested future directions.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149 Münster, Germany
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
| |
Collapse
|
12
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
13
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
14
|
Ajay Rakkesh R, Naveen TB, Durgalakshmi D, Balakumar S. Covalent organic frameworks: Pioneering remediation solutions for organic pollutants. CHEMOSPHERE 2024; 346:140655. [PMID: 37949178 DOI: 10.1016/j.chemosphere.2023.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Covalent Organic Frameworks (COFs) have emerged as a promising class of crystalline porous materials with customizable structures, high surface areas, and tunable functionalities. Their unique properties make them attractive candidates for addressing environmental contamination caused by pharmaceuticals, pesticides, industrial chemicals, persistent organic pollutants (POPs), and endocrine disruptors (EDCs). This review article provides a comprehensive overview of recent advancements and applications of COFs in removing and remedying various environmental contaminants. We delve into the synthesis, properties, and performance of COFs and their potential limitations and future prospects.
Collapse
Affiliation(s)
- R Ajay Rakkesh
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India.
| | - T B Naveen
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India
| | - D Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600 025, TN, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 600 025, TN, India
| |
Collapse
|
15
|
Zhang L, Zhang X, Han D, Zhai L, Mi L. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries. SMALL METHODS 2023; 7:e2300687. [PMID: 37568245 DOI: 10.1002/smtd.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Covalent organic frameworks (COFs) are acknowledged as a new generation of crystalline organic materials and have garnered tremendous attention owing to their unique advantages of structural tunability, frameworks diversity, functional versatility, and diverse applications in drug delivery, adsorption/separation, catalysis, optoelectronics, and sensing, etc. Recently, COFs is proven to be promising candidates for electrochemical energy storage materials. Their chemical compositions and structures can be precisely tuned and functionalized at the molecular level, allowing a comprehensive understanding of COFs that helps to make full use of their features and addresses the inherent drawback based on the components and functions of the devices. In this review, the working mechanisms and the distinguishing advantages of COFs as electrodes for rechargeable Li-ion batteries are discussed in detail. Especially, principles and strategies for the rational design of COFs as advanced electrode materials in Li-ion batteries are systematically summarized. Finally, this review is structured to cover recent explorations and applications of COF electrode materials in other rechargeable metal-ion batteries.
Collapse
Affiliation(s)
- Lin Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiaofei Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
16
|
Yin Y, Zhang Y, Zhou X, Gui B, Cai G, Sun J, Wang C. Single-Crystal Three-Dimensional Covalent Organic Framework Constructed from 6-Connected Triangular Prism Node. J Am Chem Soc 2023; 145:22329-22334. [PMID: 37792489 DOI: 10.1021/jacs.3c08712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The limited structural diversity of three-dimensional covalent organic frameworks (3D COFs) greatly restricts their application exploration. Therefore, there is an urgent need to expand their library of molecular building blocks, such as the development of highly connected (>4 reaction sites) polyhedral nodes. Herein, by precisely controlling the precursor conformation, we rationally designed a new 6-connected triangular prism node derived from the triphenylbenzene molecule and further used it to construct a novel 3D COF (3D-TMTAPB-COF) via imine condensation reaction. Surprisingly, without the addition of competing reagents, 3D-TMTAPB-COF crystallized directly into single crystals of ∼15 μm in size and was determined to adopt a rare 6-fold interpenetrated (Class IIIa interpenetration) acs topology. In addition, 3D-TMTAPB-COF showed a high SF6 adsorption capacity (60.9 cm3 g-1) and good SF6/N2 selectivity (335) at 298 K and 1 bar, superior to those of most crystalline porous materials. This work not only confirms the possibility of growing large-size single-crystal 3D COFs formed with strong covalent bonds by a solvothermal method in the absence of modulators, but also reports a novel triangular prism node for future construction of 3D COFs with interesting applications.
Collapse
Affiliation(s)
- Ying Yin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ya Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xu Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guohong Cai
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
18
|
Zhang S, Zhu YL, Ren S, Li C, Chen XB, Li Z, Han Y, Shi Z, Feng S. Covalent Organic Framework with Multiple Redox Active Sites for High-Performance Aqueous Calcium Ion Batteries. J Am Chem Soc 2023; 145:17309-17320. [PMID: 37525440 DOI: 10.1021/jacs.3c04657] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Organic materials are promising for cation storage in calcium ion batteries (CIBs). However, the high solubility of organic materials in an electrolyte and low electronic conductivity remain the key challenges for high-performance CIBs. Herein, a nitrogen-rich covalent organic framework with multiple carbonyls (TB-COF) is designed as an aqueous anode to address those obstacles. TB-COF demonstrates a high reversible capacity of 253 mAh g-1 at 1.0 A g-1 and long cycle life (0.01% capacity decay per cycle at 5 A g-1 after 3000 cycles). The redox mechanism of Ca2+/H+ co-intercalated in COF and chelating with C═O and C═N active sites is validated. In addition, a novel C═C active site was identified for Ca2+ ion storage. Both computational and empirical results reveal that per TB-COF repetitive unit, up to nine Ca2+ ions are stored after three staggered intercalation steps, involving three distinct Ca2+ ion storage sites. Finally, the evolution process of radical intermediates further elucidates the C═C reaction mechanism.
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Siyuan Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton VIC 3053, Australia
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266042, People's Republic of China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
19
|
Soni V, Patial S, Kumar A, Singh P, Thakur VK, Ahamad T, Van Le Q, Luque R, Raizada P, Nguyen VH. Covalent organic frameworks (COFs) core@shell nanohybrids: Novel nanomaterial support towards environmental sustainability applications. ENVIRONMENTAL RESEARCH 2023; 232:116353. [PMID: 37295591 DOI: 10.1016/j.envres.2023.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) based on core@shell nanohybrids have recently received significant attention and have become one of the most promising strategies for improving the stability and catalytic activity of COFs. Compared with traditional core@shell, COF-based core@shell hybrids own remarkable advantages, including size-selective reactions, bifunctional catalysis, and integration of multiple functions. These properties could enhance the stability and recyclability, resistance to sintering, and maximize the electronic interaction between the core and the shell. The activity and selectivity of COF-based core@shell could be simultaneously improved by taking benefit of the existing synergy between the functional encapsulating shell and the covered core material. Considering that, we have highlighted various topological diagrams and the role of COFs in COF-based core@shell hybrid for activity and selectivity enhancement. This concept article provides all-inclusive advances in the design and catalytic applications of COF-based core@shell hybrids. Various synthetic techniques have been developed for the facile tailoring of functional core@shell hybrids, including novel seed growth, in-situ, layer-by-layer, and one-pot method. Importantly, charge dynamics and structure-performance relationships are investigated through different characterization techniques. Different COF-based core@shell hybrids with established synergistic interactions have been detailed, and their influence on stability and catalytic efficiency for various applications is explained and discussed in this contribution. A comprehensive discussion on the remaining challenges associated with COF-based core@shell nanoparticles and research directions has also been provided to deliver insightful ideas for additional future developments.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
20
|
Zhu D, Zhu Y, Chen Y, Yan Q, Wu H, Liu CY, Wang X, Alemany LB, Gao G, Senftle TP, Peng Y, Wu X, Verduzco R. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat Commun 2023; 14:2865. [PMID: 37208348 DOI: 10.1038/s41467-023-38538-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.
Collapse
Affiliation(s)
- Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Han Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lawrence B Alemany
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaowei Wu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Fujian Institute of Research on the Structure of Matter, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA.
| |
Collapse
|
21
|
Gui B, Xin J, Cheng Y, Zhang Y, Lin G, Chen P, Ma JX, Zhou X, Sun J, Wang C. Crystallization of Dimensional Isomers in Covalent Organic Frameworks. J Am Chem Soc 2023; 145:11276-11281. [PMID: 37167629 DOI: 10.1021/jacs.3c01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Dimensional isomers, defined in reticular chemistry as frameworks consisting of identical molecular building blocks but extended in two or three dimensions (2D or 3D), are an important type of framework isomers that have never been isolated. Herein, we report the crystallization of dimensional isomers in covalent organic frameworks (COFs) for the first time. By polymerization of the same molecular building blocks at different temperatures, both 2D and 3D COFs were successfully constructed due to the temperature-induced conformational changes of precursors from planar to tetrahedral. In addition, the non-fluorescent 2D COF can be gradually converted into the fluorescent 3D COF by increasing the temperature under solvothermal conditions. Therefore, it is reasonable to crystallize the dimensional isomers of reticular materials by controlling the conformation of molecular building blocks, and more examples can be expected. Since the obtained dimensional isomers show different properties and functions, this work will definitely motivate us to design reticular materials for target applications in the future.
Collapse
Affiliation(s)
- Bo Gui
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yuanpeng Cheng
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yufei Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guiqing Lin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Xin Ma
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xu Zhou
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Ji W, Kim DM, Posson BM, Carlson KJ, Chew AC, Chew AJ, Hossain M, Mojica AF, Ottoes SM, Tran DV, Greenberg MW, Hamachi LS. COF-300 synthesis and colloidal stabilization with substituted benzoic acids. RSC Adv 2023; 13:14484-14493. [PMID: 37188250 PMCID: PMC10176042 DOI: 10.1039/d3ra02202a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
Colloidal covalent organic framework (COF) synthesis enables morphological control of crystallite size and shape. Despite numerous examples of 2D COF colloids with various linkage chemistries, 3D imine-linked COF colloids are more challenging synthetic targets. Here we report a rapid (15 min-5 day) synthesis of hydrated COF-300 colloids ranging in length (251 nm-4.6 μm) with high crystallinity and moderate surface areas (150 m2 g-1). These materials are characterized by pair distribution function analysis, which is consistent with the known average structure for this material alongside different degrees of atomic disorder at different length scales. Additionally, we investigate a series of para-substituted benzoic acid catalysts, finding that 4-cyano and 4-fluoro substituted benzoic acids produce the largest COF-300 crystallites with lengths of 1-2 μm. In situ dynamic light scattering experiments are used to assess time to nucleation in conjunction with 1H NMR model compound studies to probe the impact of catalyst acidity on the imine condensation equilibrium. We observe cationically stabilized colloids with a zeta potential of up to +14.35 mV in benzonitrile as a result of the carboxylic acid catalyst protonating surface amine groups. We leverage these surface chemistry insights to synthesize small COF-300 colloids using sterically hindered diortho-substituted carboxylic acid catalysts. This fundamental study of COF-300 colloid synthesis and surface chemistry will provide new insights into the role of acid catalysts both as imine condensation catalysts and as colloid stabilizing agents.
Collapse
Affiliation(s)
- Woojung Ji
- Department of Chemistry, University of Michigan Ann Arbor 48109 MI USA
| | - Dean M Kim
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
| | - Brendan M Posson
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
| | - Kyla J Carlson
- Department of Materials Engineering, California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Alison C Chew
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
- Department of Materials Engineering, California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Alyssa J Chew
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
| | - Meherin Hossain
- Department of Chemistry and Biochemistry, Bard College Annandale-on-Hudson NY 12504 USA
| | - Alexis F Mojica
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
| | - Sachi M Ottoes
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
| | - Donna V Tran
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
| | - Matthew W Greenberg
- Department of Chemistry and Biochemistry, Bard College Annandale-on-Hudson NY 12504 USA
| | - Leslie S Hamachi
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo 93407 CA USA
| |
Collapse
|
23
|
Tran QN, Lee HJ, Tran N. Covalent Organic Frameworks: From Structures to Applications. Polymers (Basel) 2023; 15:polym15051279. [PMID: 36904520 PMCID: PMC10007052 DOI: 10.3390/polym15051279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Three-dimensional covalent organic frameworks possess hierarchical nanopores, enormous surface areas with high porosity, and open positions. The synthesis of large crystals of three-dimensional covalent organic frameworks is a challenge, since different structures are generated during the synthesis. Presently, their synthesis with new topologies for promising applications has been developed by the use of building units with varied geometries. Covalent organic frameworks have multiple applications: chemical sensing, fabrication of electronic devices, heterogeneous catalysts, etc. We have presented the techniques for the synthesis of three-dimensional covalent organic frameworks, their properties, and their potential applications in this review.
Collapse
Affiliation(s)
- Quang Nhat Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Correspondence: (Q.N.T.); (N.T.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Ngo Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (Q.N.T.); (N.T.)
| |
Collapse
|
24
|
Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers (Basel) 2023; 15:polym15040887. [PMID: 36850171 PMCID: PMC9959482 DOI: 10.3390/polym15040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Covalent organic frameworks are porous crystals of polymers with two categories based on their covalent linkages: layered structures with two dimensions and networks with three-dimensional structures. Three-dimensional covalent organic frameworks are porous, have large surface areas, and have highly ordered structures. Since covalent bonds are responsible for the formation of three-dimensional covalent organic frameworks, their synthesis has been a challenge and different structures are generated during the synthesis. Moreover, initially, their topologies have been limited to dia, ctn, and bor which are formed by the condensation of triangular or linear units with tetrahedral units. There are very few building units available for their synthesis. Finally, the future perspective of 3D COFs has been designated for the future development of three-dimensional covalent organic frameworks.
Collapse
|
25
|
Jin F, Lin E, Wang T, Geng S, Hao L, Zhu Q, Wang Z, Chen Y, Cheng P, Zhang Z. Rationally Fabricating Three-Dimensional Covalent Organic Frameworks for Propyne/Propylene Separation. J Am Chem Soc 2022; 144:23081-23088. [DOI: 10.1021/jacs.2c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fazheng Jin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ting Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Liqin Hao
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qianqian Zhu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Zhang CR, Cui WR, Yi SM, Niu CP, Liang RP, Qi JX, Chen XJ, Jiang W, Liu X, Luo QX, Qiu JD. An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO 4- or 99TcO 4. Nat Commun 2022; 13:7621. [PMID: 36494388 PMCID: PMC9734744 DOI: 10.1038/s41467-022-35435-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The synthesis of ionic olefin linked three-dimensional covalent organic frameworks (3D COFs) is greatly challenging given the hardness of the formation of stable carbon-carbon double bonds (-C = C-). Herein, we report a general strategy for designing porous positively charged sp2 carbon-linked 3D COFs through the Aldol condensation promoted by quaternization. The obtained 3D COFs, namely TFPM-PZI and TAPM-PZI, showed impressive chemical stability. Furthermore, the positively charged frameworks with regular porosity endow 3D ionic COFs with selective capture radioactive ReO4-/TcO4- and great removal efficiency in simulated Hanford waste. This research not only broadens the category of 3D COFs but also promotes the application of COFs as efficient functional materials.
Collapse
Affiliation(s)
- Cheng-Rong Zhang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei-Rong Cui
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Shun-Mo Yi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Cheng-Peng Niu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jia-Xin Qi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xiao-Juan Chen
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Qiu-Xia Luo
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China.
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 330013, Nanchang, China.
| |
Collapse
|
27
|
Progress and perspective on rechargeable magnesium-ion batteries. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Xu X, Cai P, Chen H, Zhou HC, Huang N. Three-Dimensional Covalent Organic Frameworks with she Topology. J Am Chem Soc 2022; 144:18511-18517. [PMID: 36170014 DOI: 10.1021/jacs.2c07733] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reticular chemistry allows the control of crystalline frameworks at atomic precision according to the predesigned topological structures. However, only a limited number of topological structures of three-dimensional (3D) covalent organic frameworks (COFs) have been established. In this work, we developed a series of 3D COFs with an unprecedented she topology, which were constructed with D3d- and D4h-symmetric building blocks. The resulting COFs crystallize in a space group of Im3̅m, in which each D3d unit connects with six D4h units to form a noninterpenetrated network with a uniform pore size of 2.0 nm. In addition, these COFs exhibited high crystallinity, excellent porosity, and good chemical and thermal stability. The crystalline structures, composition, and physicochemical properties of these networks were unambiguously characterized. Notably, the inbuilt porphyrin units render these COFs as efficient catalysts for photoredox C-C bond forming and photocatalytic carbon dioxide reduction reactions. Thus, this work constitutes a new approach for the construction of 3D she-net COFs and also enhances the structural diversity and complexity of COFs.
Collapse
Affiliation(s)
- Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Zhang M, Lai C, Xu F, Huang D, Liu S, Fu Y, Li L, Yi H, Qin L, Chen L. Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. NATURE NANOTECHNOLOGY 2022; 17:911-923. [PMID: 35995854 DOI: 10.1038/s41565-022-01168-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this Review we survey the molecular sieving behaviour of metal-organic framework (MOF) and covalent organic framework (COF) membranes, which is different from that of classical zeolite membranes. The nature of MOFs as inorganic-organic hybrid materials and COFs as purely organic materials is powerful and disruptive for the field of gas separation membranes. The possibility of growing neat MOFs and COFs on membrane supports, while also allowing successful blending into polymer-filler composites, has a huge advantage over classical zeolite molecular sieves. MOFs and COFs allow synthetic access to more than 100,000 different structures and tailor-made molecular gates. Additionally, soft evacuation below 100 °C is often enough to achieve pore activation. Therefore, a huge number of synthetic methods for supported MOF and COF membrane thin films, such as solvothermal synthesis, seed-mediated growth and counterdiffusion, exist. Among them, methods with high scale-up potential, for example, layer-by-layer dip- and spray-coating, chemical and physical vapour deposition, and electrochemical methods. Additionally, physical methods have been developed that involve external stimuli, such as electric fields and light. A particularly important point is their ability to react to stimuli, which has allowed the 'drawbacks' of the non-ideality of the molecular sieving properties to be exploited in a completely novel research direction. Controllable gas transport through membrane films is a next-level property of MOFs and COFs, leading towards adaptive process deviation. MOF and COF particles are highly compatible with polymers, which allows for mixed-matrix membranes. However, these membranes are not simple MOF-polymer blends, as they require improved polymer-filler interactions, such as cross-linking or surface functionalization.
Collapse
Affiliation(s)
- A Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany.
| | - J Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
31
|
Wang F, Lv W, Zhang Y, Niu X, Wu X, Chen H, Chen X. Synthesis of spherical three-dimensional covalent organic frameworks and in-situ preparation of capillaries coated with them for capillary electrochromatographic separation. J Chromatogr A 2022; 1681:463463. [DOI: 10.1016/j.chroma.2022.463463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
32
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022; 61:e202203584. [DOI: 10.1002/anie.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
33
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
34
|
Jin F, Lin E, Wang T, Geng S, Wang T, Liu W, Xiong F, Wang Z, Chen Y, Cheng P, Zhang Z. Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. J Am Chem Soc 2022; 144:5643-5652. [PMID: 35313103 DOI: 10.1021/jacs.2c01058] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Developing cost-/energy-efficient separation techniques for purifying ethylene from an ethylene/ethane mixture is highly important but very challenging in the industrial process. Herein, using a bottom-up [8 + 2] construction approach, we rationally designed and synthesized three three-dimensional covalent organic frameworks (COFs) with 8-connected bcu networks, which can selectively remove ethane from an ethylene/ethane mixture with high efficiency. These COF materials, which are fabricated by the condensation reaction of a customer-designed octatopic aldehyde monomer with linear diamino linkers, possess high crystallinity, good structural robustness, and high porosity. Attributed to the well-organized micro-sized pores with a nonpolar/inert pore environment, these COFs display high ethane adsorption capacity and good selectivity over ethylene, making them among the best ethane-selective adsorbents for ethylene purification. Their excellent ethylene/ethane separation performance is validated by dynamic breakthrough experiments with high-purity ethylene (>99.99%) produced through a single adsorption process. The separation performance surpasses all reported C2H6-selective COFs and even some benchmark metal-organic frameworks. This work provides important guidance for the design of new adsorbents for value-added gas purification.
Collapse
Affiliation(s)
- Fazheng Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - En Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Tonghai Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Wansheng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Fanhao Xiong
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.,Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Yu C, Li H, Wang Y, Suo J, Guan X, Wang R, Valtchev V, Yan Y, Qiu S, Fang Q. Three-Dimensional Triptycene-Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angew Chem Int Ed Engl 2022; 61:e202117101. [PMID: 35072318 DOI: 10.1002/anie.202117101] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Owing to the finite building blocks and difficulty in structural identification, it remains a tremendous challenge to elaborately design and synthesize three-dimensional covalent organic frameworks (3D COFs) with predetermined topologies. Herein, we report the first two cases of 3D COFs with the non-interpenetrated hea net, termed JUC-596 and JUC-597, by using the combination of tetrahedral and triangular prism building units. Due to the presence of triptycene functional groups and fluorine atoms, JUC-596 exhibits an exceptional performance in the H2 adsorption up to 305 cm3 g-1 (or 2.72 wt%) at 77 K and 1 bar, which is higher than previous benchmarks from porous organic materials reported so far. Furthermore, the strong interaction between H2 and COF materials is verified through the DFT theoretical calculations. This work represents a captivating example of rational design of functional COFs based on a reticular chemistry guide and demonstrates its promising application in clean energy storage.
Collapse
Affiliation(s)
- Chengyang Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jinqun Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie University, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
36
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Jin F, Nguyen HL, Zhong Z, Han X, Zhu C, Pei X, Ma Y, Yaghi OM. Entanglement of Square Nets in Covalent Organic Frameworks. J Am Chem Soc 2022; 144:1539-1544. [DOI: 10.1021/jacs.1c13468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fangying Jin
- Department of Chemistry, University of California−Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, California 94720, United States
| | - Ha L. Nguyen
- Department of Chemistry, University of California−Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, California 94720, United States
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Zhiye Zhong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xing Han
- Department of Chemistry, University of California−Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, California 94720, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaokun Pei
- Department of Chemistry, University of California−Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, California 94720, United States
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Omar M. Yaghi
- Department of Chemistry, University of California−Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, California 94720, United States
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
38
|
Fang Q, Yu C, Li H, Wang Y, Suo J, Guan X, Wang R, Valtchev V, Yan Y, Qiu S. Three‐Dimensional Triptycene‐Functionalized Covalent Organic Frameworks with hea net for Hydrogen Adsorption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qianrong Fang
- Jilin University Department of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| | | | - Hui Li
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Yujie Wang
- Jilin University College of Chemistry CHINA
| | | | - Xinyu Guan
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Rui Wang
- Jilin University College of Chemistry CHINA
| | - Valentin Valtchev
- Normandie Université: Normandie Universite Laboratoire Catalyse et Spectrochimie FRANCE
| | - Yushan Yan
- University of Delaware Chemical and Biomolecular Engineering UNITED STATES
| | - Shilun Qiu
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| |
Collapse
|
39
|
Hosseini A, Motavalizadehkakhky A, Ghobadi N, Gholamzadeh P. Aza-Diels-Alder reactions in the synthesis of tetrahydroquinoline structures. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Wang CA, Zhao W, Li YW, Han Y, Zhang J, Li Q, Nie K, Chang J, Liu FS. Bulky Pd-PEPPSI-Embedded Conjugated Microporous Polymers-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Chlorides and Arylboronic Acids. Polym Chem 2022. [DOI: 10.1039/d1py01616d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through post-synthesis method, a type of bulky N-heterocyclic carbenes (NHCs) functionalized conjugated microporous polymers to supported the palladium-based molecular catalyst has been developed. The resulting heterogeneous catalyst Pd-PEPPSI-CMP, showing greater...
Collapse
|
41
|
Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography. J Chromatogr A 2021; 1656:462549. [PMID: 34543884 DOI: 10.1016/j.chroma.2021.462549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 01/01/2023]
Abstract
The Schiff-base reaction of 1,3,5-triformylphloroglucinol (Tp) and tetra(4-aminophenyl)methane (TAM) was performed for the synthesis of a three-dimensional covalent organic framework named 3D TpTAM, which was obtained by an ultrasound-assisted method for the first time. The morphology and structure of the synthesized TpTAM were characterized through various methods. Then, TpTAM-coated capillary columns were subsequently prepared by a covalent bonding method within a short time and applied for the separation of fluoroquinolones by capillary electrochromatography (CEC) with good resolution and reproducibility. The intraday relative standard deviations (RSDs) of the retention time and peak areas were 0.88%-0.95% and 2.27%-3.81%, respectively. The interday RSDs of retention time and peak areas were 0.71%-0.89% and 0.88%-3.60%, respectively. The column-to-column RSDs of retention time and peak areas were less than 1.90% and 13.56%, respectively. The interbatch RSDs of retention time and peak areas were less than 3.48% and 3.89%, respectively. The TpTAM-coated capillary columns could be used for no less than 100 runs with no observable changes in the separation efficiency. The separation mechanism was also studied, which indicated that π-π stacking effects, hydrophobic interactions and hydrogen bonding were the main factors. The results revealed that 3D TpTAM should have superior potential as the stationary phase in CEC for chromatographic separation.
Collapse
|
42
|
Nguyen HL. Reticular design and crystal structure determination of covalent organic frameworks. Chem Sci 2021; 12:8632-8647. [PMID: 34257862 PMCID: PMC8246139 DOI: 10.1039/d1sc00738f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Reticular chemistry of covalent organic frameworks (COFs) deals with the linking of discrete organic molecular building units into extended structures adopting various topologies by strong covalent bonds. The past decade has witnessed a rapid development of COF chemistry in terms of both structural diversity and applications. From the structural perspective, irrespective of our subject of concern with regard to COFs, it is inevitable to take into account the structural aspects of COFs in all dimensions from 1D ribbons to 3D frameworks, for which understanding the concepts of reticular chemistry, based mainly on 'reticular design', will seemingly lead to unlimited ways of exploring the exquisiteness of this advanced class of porous, extended, and crystalline materials. A comprehensive discussion and understanding of reticular design, therefore, is of paramount importance so that everyone willing to research on COFs can interpret well and chemically correlate the geometrical structures of this subset of reticular materials and their practical applications. This article lies at the heart of using the conceptual basis of reticular chemistry for designing, modeling, and determination of novel infinite and crystalline structures. Especially, the structure determinations are described by means of chronological advances of discoveries and development of COFs whereby their crystal structures are elucidated by modeling through the topological approach, 3D electron diffraction, single-crystal X-ray diffraction, and powder X-ray diffraction techniques.
Collapse
Affiliation(s)
- Ha L Nguyen
- Department of Chemistry, UAE University Al-Ain 15551 United Arab Emirates
- Joint UAEU-UC Berkeley Laboratories for Materials Innovations, UAE University Al-Ain 15551 United Arab Emirates
- Berkeley Global Science Institute Berkeley California 94720 USA
| |
Collapse
|
43
|
Zhang Y, Li H, Chang J, Guan X, Tang L, Fang Q, Valtchev V, Yan Y, Qiu S. 3D Thioether-Based Covalent Organic Frameworks for Selective and Efficient Mercury Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006112. [PMID: 33605083 DOI: 10.1002/smll.202006112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Developing functionalized 3D covalent organic frameworks (3D COFs) is critical to broaden their potential applications. However, the introduction of specific functionality in 3D COFs remains a great challenge because most of the functional groups are not compatible with the synthesis conditions. Herein, for the first time 3D thioether-based COFs (JUC-570 and JUC-571) for mercury (Hg2+ ) removal from aqueous solution is reported. These 3D thioether-based COFs prepared by the bottom-up approach display high Hg2+ uptakes (972 mg g-1 for JUC-570 and 970 mg g-1 for JUC-571 at pH = 5), fast adsorption kinetics (distribution coefficient Kd value of 2.29 × 107 mL g-1 for JUC-570 and 2.07 × 107 mL g-1 for JUC-571), and favorable selectivity. In particular, JUC-570 is periodically decorated with isopropyl groups around imine bonds that markedly improve its chemical stability and effectively prevent the pore collapse, and thus endows high Hg2+ adsorption capacity (619 mg g-1 ) and excellent cycle performance even at pH = 1. This study not only puts forward a new route to construct stable functionalized 3D COFs, but also promotes their potential applications in areas related to the environment.
Collapse
Affiliation(s)
- Yiying Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lingxue Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong, 266101, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, Caen, 14050, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE, 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
44
|
Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications. ENERGIES 2021. [DOI: 10.3390/en14113197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covalent organic frameworks comprise a unique class of functional materials that has recently emerged as a versatile tool for energy-related, photocatalytic, environmental, and electrochromic device applications. A plethora of structures can be designed and implemented through a careful selection of ligands and functional units. On the other hand, porous materials for heavy metal absorption are constantly on the forefront of materials science due to the significant health issues that arise from the release of the latter to aquatic environments. In this critical review, we provide insights on the correlation between the structure of functional covalent organic frameworks and their heavy metal absorption. The elements we selected were Pb, Hg, Cr, Cd, and As metal ions, as well as radioactive elements, and we focused on their removal with functional networks. Finally, we outline their advantages and disadvantages compared to other competitive systems such as zeolites and metal organic frameworks (MOFs), we analyze the potential drawbacks for industrial scale applications, and we provide our outlook on the future of this emerging field.
Collapse
|
45
|
Both AK, Gao Y, Zeng XC, Cheung CL. Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. NANOSCALE 2021; 13:7447-7470. [PMID: 33876814 DOI: 10.1039/d1nr00751c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gas hydrates (clathrate hydrates, clathrates, or hydrates) are crystalline inclusion compounds composed of water and gas molecules. Methane hydrates, the most well-known gas hydrates, are considered a menace in flow assurance. However, they have also been hailed as an alternative energy resource because of their high methane storage capacity. Since the formation of gas hydrates generally requires extreme conditions, developing porous material hosts to synthesize gas hydrates with less-demanding constraints is a topic of great interest to the materials and energy science communities. Though reports of modeling and experimental analysis of bulk gas hydrates are plentiful in the literature, reliable phase data for gas hydrates within confined spaces of nanoporous media have been sporadic. This review examines recent studies of both experiments and theoretical modeling of gas hydrates within four categories of nanoporous material hosts that include porous carbons, metal-organic frameworks, graphene nanoslits, and carbon nanotubes. We identify challenges associated with these porous systems and discuss the prospects of gas hydrates in confined space for potential applications.
Collapse
Affiliation(s)
- Avinash Kumar Both
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Yurui Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Chin Li Cheung
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
46
|
Martínez‐Abadía M, Strutyński K, Lerma‐Berlanga B, Stoppiello CT, Khlobystov AN, Martí‐Gastaldo C, Saeki A, Melle‐Franco M, Mateo‐Alonso A. π‐Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Karol Strutyński
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | | | - Craig T. Stoppiello
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | - Andrei N. Khlobystov
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | | | - Akinori Saeki
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque Basque Foundation for Science Bilbao Spain
| |
Collapse
|
47
|
Martínez‐Abadía M, Strutyński K, Lerma‐Berlanga B, Stoppiello CT, Khlobystov AN, Martí‐Gastaldo C, Saeki A, Melle‐Franco M, Mateo‐Alonso A. π‐Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:9941-9946. [DOI: 10.1002/anie.202100434] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Marta Martínez‐Abadía
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Karol Strutyński
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | | | - Craig T. Stoppiello
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | - Andrei N. Khlobystov
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- The Nanoscale and Microscale Research Centre University of Nottingham University Park Nottingham NG7 2RD UK
| | | | - Akinori Saeki
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Osaka 565-0871 Japan
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque Basque Foundation for Science Bilbao Spain
| |
Collapse
|
48
|
Yan X, Li H, Shang P, Liu H, Liu J, Zhang T, Xing G, Fang Q, Chen L. Facile synthesis of 3D covalent organic frameworks via a two-in-one strategy. Chem Commun (Camb) 2021; 57:2136-2139. [PMID: 33527948 DOI: 10.1039/d0cc08129a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A "two-in-one" strategy was employed to construct 3D-COFs for the first time. Based on this strategy, a 3D-Flu-COF could be readily synthesized in various simplex organic solvents. Benefitting from the non-conjugated structure, the 3D-Flu-COF showcased excellent acidichromic sensing performance with good sensitivity, reversibility and naked eye visibility.
Collapse
Affiliation(s)
- Xiaoli Yan
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Pengna Shang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Huan Liu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Jingjuan Liu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Ting Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guolong Xing
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
49
|
Liu X, Li J, Gui B, Lin G, Fu Q, Yin S, Liu X, Sun J, Wang C. A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. J Am Chem Soc 2021; 143:2123-2129. [PMID: 33481570 DOI: 10.1021/jacs.0c12505] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of three-dimensional covalent organic frameworks (3D COFs) has proven to be very challenging, as their synthetic driving force mainly comes from the formation of covalent bonds. To facilitate the synthesis, rigid building blocks are always the first choice for designing 3D COFs. In principle, it should be very appealing to construct 3D COFs from flexible building blocks, but there are some obstacles blocking the development of such systems, especially for the designed synthesis and structure determination. Herein, we reported a novel highly crystalline 3D COF (FCOF-5) with flexible C-O single bonds in the building block backbone. By merging 17 continuous rotation electron diffraction data sets, we successfully determined the crystal structure of FCOF-5 to be a 6-fold interpenetrated pts topology. Interestingly, FCOF-5 is flexible and can undergo reversible expansion/contraction upon vapor adsorption/desorption, indicating a breathing motion. Moreover, a smart soft polymer composite film with FCOF-5 was fabricated, which can show a reversible vapor-triggered shape transformation. Therefore, 3D COFs constructed from flexible building blocks can exhibit interesting breathing behavior, and finally, a totally new type of soft porous crystals made of pure organic framework was announced.
Collapse
Affiliation(s)
- Xiaoling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.,Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Bo Gui
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guiqing Lin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qiang Fu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Sheng Yin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuefen Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.,Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Cheng Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
50
|
Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem Soc Rev 2021; 50:120-242. [DOI: 10.1039/d0cs00620c] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.
Collapse
|