1
|
Patil BR, Patel HM. Catalytic Lysine745 targeting strategy in fourth-generation EGFR tyrosine kinase inhibitors to address C797S mutation resistance. Eur J Med Chem 2025; 283:117140. [PMID: 39681043 DOI: 10.1016/j.ejmech.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Overcoming resistance to third-generation tyrosine kinase inhibitors (TKIs) such as Osimertinib, particularly due to the emergence of the C797S mutation, remains a key challenge in non-small cell lung cancer (NSCLC) therapy. This review highlights recent advancements in the development of fourth-generation EGFR inhibitors that specifically target the catalytic Lys745 residue, aiming to overcome resistance associated with Osimertinib. Both covalent and non-covalent inhibitors targeting Lys745 were explored, using warheads like sulfonyl fluoride, phosphine oxides, esters, and trisubstituted imidazoles. Sulfonyl fluoride was particularly effective in forming covalent bonds with Lys745, while non-covalent analogues demonstrated flexibility with reduced off-target effects. The manuscript highlights the importance of warhead design, molecular docking, protein XRD study and structure-activity relationships (SAR) for optimizing Lys745-targeting inhibitors. The study suggests that hybrid scaffolds combining key pharmacophoric features from Osimertinib and Brigatinib along with Lys745 targeting warheads, could enhance selectivity and potency. Future efforts should focus on refining bioavailability, identifying new scaffolds by employing drug design strategies. Fourth-generation TKIs targeting Lys745 offer a novel therapeutic avenue, potentially overcoming mutation-induced resistance and improving NSCLC treatment outcomes. This approach represents a critical advancement toward durable clinical responses in patients with drug-resistant cancer.
Collapse
Affiliation(s)
- Bhatu R Patil
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India
| | - Harun M Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India.
| |
Collapse
|
2
|
Cora D, Al-Soufi W, Novo M. Amyloid capture and aggregation inhibition by human serum albumin. Int J Biol Macromol 2025; 301:140367. [PMID: 39880225 DOI: 10.1016/j.ijbiomac.2025.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) aggregation, primarily involving the peptides Aβ40 and Aβ42. Human serum albumin (HSA) has emerged as a potential therapeutic agent due to its ability to bind Aβ, inhibit aggregation, and promote disaggregation. This study quantitatively examined the interactions of HSA with both monomeric and aggregated forms of Aβ40 and Aβ42 using fluorescence techniques, including bulk steady-state fluorescence, fluorescence anisotropy, time-resolved fluorescence, and Fluorescence Correlation Spectroscopy (FCS). The binding constants determined from these methods were 4.45 × 104 M-1 for Aβ42 and 1.8 × 104M-1 for Aβ40, indicating strong but differential affinities. FCS demonstrated that HSA effectively dissociates Aβ aggregates, shifting the equilibrium toward monomeric states, with the disaggregation capacity positively correlated with HSA concentration. These findings support HSA's utility in therapies like plasma exchange to reduce the cerebral Aβ burden, providing critical insights into its mechanistic role and therapeutic potential.
Collapse
Affiliation(s)
- Diego Cora
- Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Wajih Al-Soufi
- Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Mercedes Novo
- Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
3
|
Tantipanjaporn A, Deng JR, Chan KHA, Kung KYK, Wong MK. Ethynylbenzaldehydes as novel reaction-based “turn-on” fluorescent probes for primary amine detection in solution, vapor, food, proteins, and live cells. SENSORS AND ACTUATORS B: CHEMICAL 2025; 422:136673. [DOI: 10.1016/j.snb.2024.136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Cai Y. Conjugation of primary amine groups in targeted proteomics. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39229771 DOI: 10.1002/mas.21906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Primary amines, in the form of unmodified N-terminus of peptide/protein and unmodified lysine residue, are perhaps the most important functional groups that can serve as the starting points in proteomic analysis, especially via mass spectrometry-based approaches. A variety of multifunctional probes that conjugate primary amine groups through covalent bonds have been developed and employed to facilitate protein/protein complex characterization, including identification, quantification, structure and localization elucidation, protein-protein interaction investigation, and so forth. As an integral part of more accurate peptide quantification in targeted proteomics, isobaric stable isotope-coded primary amine labeling approaches eventually facilitated protein/peptide characterization at the single-cell level, paving the way for single-cell proteomics. The development and advances in the field can be reviewed in terms of key components of a multifunctional probe: functional groups and chemistry for primary amine conjugation; hetero-bifunctional moiety for separation/enrichment of conjugated protein/protein complex; and functionalized linker/spacer. Perspectives are primarily focused on optimizing primary amine conjugation under physiological conditions to improve characterization of native proteins, especially those associated with the surface of living cells/microorganisms.
Collapse
Affiliation(s)
- Yang Cai
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Hu M, Liu J, Gan Y, Zhu H, Han R, Liu K, Liu Y, Zhao M, Li X, Xue Z. N-terminal truncated phospholipase A1 accessory protein PlaS from Serratia marcescens alleviates inhibitory on host cell growth and enhances PlaA1 enzymatic activity. BIORESOUR BIOPROCESS 2024; 11:61. [PMID: 38916814 PMCID: PMC11199421 DOI: 10.1186/s40643-024-00777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Phospholipase A1 (PLA1) is a kind of specific phospholipid hydrolase widely used in food, medical, textile. However, limitations in its expression and enzymatic activity have prompted the investigation of the phospholipase-assisting protein PlaS. In this study, we elucidate the role of PlaS in enhancing the expression and activity of PlaA1 through N-terminal truncation. Our research demonstrates that truncating the N-terminal region of PlaS effectively overcomes its inhibitory effect on host cells, resulting in improved cell growth and increased protein solubility of the protein. The yeast two-hybrid assay confirms the interaction between PlaA1 and N-terminal truncated PlaS (∆N27 PlaS), highlighting their binding capabilities. Furthermore, in vitro studies using Biacore analysis reveal a concentration-dependent and specific binding between PlaA1 and ∆N27 PlaS, exhibiting high affinity. Molecular docking analysis provides insights into the hydrogen bond interactions between ∆N27 PlaS and PlaA1, identifying key amino acid residues crucial for their binding. Finally, the enzyme activity of PLA1 was boost to 8.4 U/mL by orthogonal test. Study significantly contributes to the understanding of the interaction mechanism between PlaS and PlaA1, offering potential strategies for enhancing PlaA1 activity through protein engineering approaches.
Collapse
Affiliation(s)
- Mengkai Hu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Jun Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Yufei Gan
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Hao Zhu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Rumeng Han
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Kun Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Yan Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Ming Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China
| | - Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
| | - Zhenglian Xue
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu, 241000, China.
| |
Collapse
|
6
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Sawazaki T, Sasaki D, Sohma Y. Catalysis driven by an amyloid-substrate complex. Proc Natl Acad Sci U S A 2024; 121:e2314704121. [PMID: 38691589 PMCID: PMC11087796 DOI: 10.1073/pnas.2314704121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Amine modification through nucleophilic attack of the amine functionality is a very common chemical transformation. Under biorelevant conditions using acidic-to-neutral pH buffer, however, the nucleophilic reaction of alkyl amines (pKa ≈ 10) is not facile due to the generation of ammonium ions lacking nucleophilicity. Here, we disclose a unique molecular transformation system, catalysis driven by amyloid-substrate complex (CASL), that promotes amine modifications in acidic buffer. Ammonium ions attached to molecules with amyloid-binding capability were activated through deprotonation due to the close proximity to the amyloid catalyst formed by Ac-Asn-Phe-Gly-Ala-Ile-Leu-NH2 (NL6), derived from islet amyloid polypeptide (IAPP). Under the CASL conditions, alkyl amines underwent various modifications, i.e., acylation, arylation, cyclization, and alkylation, in acidic buffer. Crystallographic analysis and chemical modification studies of the amyloid catalysts suggested that the carbonyl oxygen of the Phe-Gly amide bond of NL6 plays a key role in activating the substrate amine by forming a hydrogen bond. Using CASL, selective conversion of substrates possessing equivalently reactive amine functionalities was achieved in catalytic reactions using amyloids. CASL provides a unique method for applying nucleophilic conversion reactions of amines in diverse fields of chemistry and biology.
Collapse
Affiliation(s)
- Taka Sawazaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Daisuke Sasaki
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Youhei Sohma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| |
Collapse
|
8
|
Machida H, Kanemoto K. N-Terminal-Specific Dual Modification of Peptides through Copper-Catalyzed [3+2] Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202320012. [PMID: 38282290 DOI: 10.1002/anie.202320012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Site-specific introduction of multiple components into peptides is greatly needed for the preparation of densely functionalized and structurally uniform peptides. In this regard, N-terminal-specific peptide modification is attractive, but it can be difficult due to the presence of highly nucleophilic lysine ϵ-amine. In this work, we developed a method for the N-terminal-specific dual modification of peptides through a three-component [3+2] cycloaddition with aldehydes and maleimides under mild copper catalysis. This approach enables exclusive functionalization at the glycine N-terminus of iminopeptides, regardless of the presence of lysine ϵ-amine, thus affording the cycloadducts in excellent yields. Tolerating a broad range of functional groups and molecules, the present method provides the opportunity to rapidly construct doubly functionalized peptides using readily accessible aldehyde and maleimide modules.
Collapse
Affiliation(s)
- Haruka Machida
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kazuya Kanemoto
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
9
|
Wang X, Chang W, Khosraviani M, Phung W, Peng L, Cohen S, Andrews BT, Sun Y, Davies CW, Koerber JT, Yang J, Song A. Application of N-Terminal Site-Specific Biotin and Digoxigenin Conjugates to Clinical Anti-drug Antibody Assay Development. Bioconjug Chem 2024; 35:174-186. [PMID: 38050929 DOI: 10.1021/acs.bioconjchem.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Biotin- and digoxigenin (DIG)-conjugated therapeutic drugs are critical reagents used for the development of anti-drug antibody (ADA) assays for the assessment of immunogenicity. The current practice of generating biotin and DIG conjugates is to label a therapeutic antibody with biotin or DIG via primary amine groups on lysine or N-terminal residues. This approach modifies lysine residues nonselectively, which can impact the ability of an ADA assay to detect those ADAs that recognize epitopes located at or near the modified lysine residue(s). The impact of the lysine modification is considered greater for therapeutic antibodies that have a limited number of lysine residues, such as the variable heavy domain of heavy chain (VHH) antibodies. In this paper, for the first time, we report the application of site-specifically conjugated biotin- and DIG-VHH reagents to clinical ADA assay development using a model molecule, VHHA. The site-specific conjugation of biotin or DIG to VHHA was achieved by using an optimized reductive alkylation approach, which enabled the majority of VHHA molecules labeled with biotin or DIG at the desirable N-terminus, thereby minimizing modification of the protein after labeling and reducing the possibility of missing detection of ADAs. Head-to-head comparison of biophysical characterization data revealed that the site-specific biotin and DIG conjugates demonstrated overall superior quality to biotin- and DIG-VHHA prepared using the conventional amine coupling method, and the performance of the ADA assay developed using site-specific biotin and DIG conjugates met all acceptance criteria. The approach described here can be applied to the production of other therapeutic-protein- or antibody-based critical reagents that are used to support ligand binding assays.
Collapse
Affiliation(s)
- Xiangdan Wang
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Wenping Chang
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Mehraban Khosraviani
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Wilson Phung
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, California 94080, United States
| | - Lingling Peng
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Sivan Cohen
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Benjamin T Andrews
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Yonglian Sun
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - Christopher W Davies
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - James T Koerber
- Antibody Engineering, Genentech, South San Francisco, California 94080, United States
| | - Jihong Yang
- BioAnalytical Sciences, Genentech, South San Francisco, California 94080, United States
| | - Aimin Song
- Department of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, Tang C, Yu P. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. Biofactors 2024; 50:33-57. [PMID: 37646383 DOI: 10.1002/biof.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.
Collapse
Affiliation(s)
- Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangnan Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
11
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Chiang CW, Li HL, Lin TJ, Chen HC, Chou YH, Chou CJ. Versatile Synthesis of Symmetric and Unsymmetric Imines via Photoelectrochemical Catalysis: Application to N-Terminal Modification of Phenylalanine. Chemistry 2023; 29:e202301379. [PMID: 37434348 DOI: 10.1002/chem.202301379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
A strategy that combines electrochemical synthesis and photoredox catalysis was reported for the efficient synthesis of imines. This approach was demonstrated to be highly versatile in producing various types of imines, including symmetric and unsymmetric imines, by exploring the impact of different substituents on the benzene ring of the arylamine. Additionally, the method was specifically applied to modify N-terminal phenylalanine residues and was found to be successful in the photoelectrochemical cross-coupling reaction between NH2 -Phe-OMe and aryl methylamines, leading to the synthesis of phenylalanine-containing imines. Therefore, this technique would present a convenient and efficient platform for synthesizing imines, with promising applications in chemical biology, drug development, and organic synthesis.
Collapse
Affiliation(s)
- Chien-Wei Chiang
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Li Li
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Ting-Jun Lin
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Chi Chen
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Yi-Hsien Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Chih-Ju Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| |
Collapse
|
13
|
Esteve F, Rahmatova F, Lehn JM. Supramolecular multivalency effects enhance imine formation in aqueous medium allowing for dynamic modification of enzymatic activity. Chem Sci 2023; 14:10249-10257. [PMID: 37772124 PMCID: PMC10530293 DOI: 10.1039/d3sc04128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Imine formation under physiological conditions represents a challenging reaction due to the strong propensity of aldimines to be hydrolyzed. Herein we disclose the remarkable effect of supramolecular multivalency on increasing imine stability. A family of reactive aldehydes was synthesized bearing supramolecularly-active sites within their structure. The imine formation activity for such aldehydes was evaluated and compared with model aldehydes. The reaction of the best-performing species - containing two carboxylate groups-with a set of amines showed a significant decrease in imine yields as the degree of supramolecular multivalency between sidechains decreased. The reversible conjugation of amino acid derivatives and small peptides was also assayed, with excellent selectivities for the imine formation at the Nα position even in substrates containing competing sites. Preliminary results on protein bioconjugation revealed that a model enzyme could be dynamically inhibited upon reaction with the aldehyde, with its native activity being recovered by displacing the imine bonds with a suitable chemical effector (i.e., acylhydrazide).
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Fidan Rahmatova
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
14
|
Teng S, Ng EWH, Zhang Z, Soon CN, Xu H, Li R, Hirao H, Loh TP. Alkynone β-trifluoroborates: A new class of amine-specific biocompatible click reagents. SCIENCE ADVANCES 2023; 9:eadg4924. [PMID: 37126553 PMCID: PMC10132755 DOI: 10.1126/sciadv.adg4924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amine-targeting reactions that work under biocompatible conditions or in water are green processes that are extremely useful for the synthesis of functional materials and biotherapeutics. Unfortunately, despite the usefulness of this reaction, there are very few good amine-specific click methods reported thus far. Here, we report an amine-specific click reagent using alkynone β-trifluoroborates as the electrophiles. These boron-containing alkynyl reagents exhibit extremely high chemoselectivity toward amines even in the presence of thiols. The resulting oxaboracycle products are bench-stable, displaying the reactivities of both organoborates and enaminones. Intrinsic advantages of this methodology include benign reaction conditions, operational simplicity, remarkable product stability, and excellent chemoselectivity, which satisfy the criteria of click chemistry and demonstrate the high potential in bioconjugation. Hence, this water-based chemical approach is also applicable to the modification of native amino acids, peptides, and proteins. Ultimately, the essential role of water during the reaction was elucidated.
Collapse
Affiliation(s)
- Shenghan Teng
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Elvis Wang Hei Ng
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Zhenguo Zhang
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chee Ning Soon
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hailun Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruifang Li
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Teck-Peng Loh
- 100 Lianhua Street, Zhongyuan District, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
O WY, Cui JF, Yu Q, Kung KKY, Chung SF, Leung YC, Wong MK. Isoindolium-Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202218038. [PMID: 36670048 DOI: 10.1002/anie.202218038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.
Collapse
Affiliation(s)
- Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, 518055, China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Karen Ka-Yan Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
16
|
Chen P, Tang G, Zhu C, Sun J, Wang X, Xiang M, Huang H, Wang W, Li L, Zhang ZM, Gao L, Yao SQ. 2-Ethynylbenzaldehyde-Based, Lysine-Targeting Irreversible Covalent Inhibitors for Protein Kinases and Nonkinases. J Am Chem Soc 2023; 145:3844-3849. [PMID: 36774655 DOI: 10.1021/jacs.2c11595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Lysine-targeting irreversible covalent inhibitors have attracted growing interests in recent years, especially in the fields of kinase research. Despite encouraging progress, few chemistries are available to develop inhibitors that are exclusively lysine-targeting, selective, and cell-active. We report herein a 2-ethynylbenzaldehyde (EBA)-based, lysine-targeting strategy to generate potent and selective small-molecule inhibitors of ABL kinase by selectively targeting the conserved catalytic lysine in the enzyme. We showed the resulting compounds were cell-active, capable of covalently engaging endogenous ABL kinase in K562 cells with long-residence time and few off-targets. We further validated the generality of this strategy by developing EBA-based irreversible inhibitors against EGFR (a kinase) and Mcl-1 (a nonkinase) that covalently reacted with the catalytic and noncatalytic lysine within each target.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
17
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
18
|
Mikkelsen JH, Gustafsson MBF, Skrydstrup T, Jensen KB. Selective N-Terminal Acylation of Peptides and Proteins with Tunable Phenol Esters. Bioconjug Chem 2022; 33:625-633. [PMID: 35320668 DOI: 10.1021/acs.bioconjchem.2c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective modification of peptides and proteins is of foremost importance for the development of biopharmaceuticals and exploring biochemical pathways, as well as other applications. Here, we present a study on the development of a general and easily applicable selective method for N-terminal acylation of biomolecules, applying a new type of phenol esters. Key to the success was the development of highly tunable phenol activators bearing in the ortho-position, sulfonic acid or sulfonamide, acting as a steric shield for hydrolysis, and electron-withdrawing groups in the other ortho- and para-position for controlling the reactivity of the activated phenol esters. A library of heptapeptides, testing all 20 natural amino acids positioned at the N-terminal, were acylated in a selective manner at the N-terminus. The majority showed high conversion and excellent Nα-selectivity. Several biologically relevant biomolecules, including DesB30 insulin and human growth hormone, could also be modified at the N-terminal in a highly selective way, exemplified by either a fluorophore or a fatty acid sidechain. Finally, taking advantage of the possibility to accurately adjust the reactivity of the phenol esters, we present a potential strategy for the construction of dual active biopharmaceuticals through the employment of a bifunctional acylation linker and demonstrate its use in the creation of a GLP-1 insulin analogue, coupled through the lysine residue of GLP-1 and the N-terminal PheB1 amine of DesB30 insulin.
Collapse
Affiliation(s)
- Jesper H Mikkelsen
- Global Research Technologies, Novo Nordisk Research Park, 2760 Måløv, Denmark.,Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk Research Park, 2760 Måløv, Denmark
| |
Collapse
|
19
|
Kung KKY, Xu CF, O WY, Yu Q, Chung SF, Tam SY, Leung YC, Wong MK. Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins. RSC Adv 2022; 12:6248-6254. [PMID: 35424586 PMCID: PMC8981741 DOI: 10.1039/d1ra08329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.
Collapse
Affiliation(s)
- Karen Ka-Yan Kung
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Cai-Fung Xu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Wa-Yi O
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Suet-Ying Tam
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
20
|
Jiang H, Chen W, Wang J, Zhang R. Selective N-terminal modification of peptides and proteins: Recent progresses and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021. [DOI: 10.3390/catal11121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical reactions can be performed to covalently modify specific residues in proteins. When applied to native enzymes, these chemical modifications can greatly expand the available set of building blocks for the development of biocatalysts. Nucleophilic canonical amino acid sidechains are the most readily accessible targets for such endeavors. A rich history of attempts to design enhanced or novel enzymes, from various protein scaffolds, has paved the way for a rapidly developing field with growing scientific, industrial, and biomedical applications. A major challenge is to devise reactions that are compatible with native proteins and can selectively modify specific residues. Cysteine, lysine, N-terminus, and carboxylate residues comprise the most widespread naturally occurring targets for enzyme modifications. In this review, chemical methods for selective modification of enzymes will be discussed, alongside with examples of reported applications. We aim to highlight the potential of such strategies to enhance enzyme function and create novel semisynthetic biocatalysts, as well as provide a perspective in a fast-evolving topic.
Collapse
|
22
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
23
|
Motone K, Cardozo N, Nivala J. Herding cats: Label-based approaches in protein translocation through nanopore sensors for single-molecule protein sequence analysis. iScience 2021; 24:103032. [PMID: 34527891 PMCID: PMC8433247 DOI: 10.1016/j.isci.2021.103032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteins carry out life's essential functions. Comprehensive proteome analysis technologies are thus required for a full understanding of the operating principles of biological systems. While current proteomics techniques suffer from limitations in sensitivity and/or throughput, nanopore technology has the potential to enable de novo protein identification through single-molecule sequencing. However, a significant barrier to achieving this goal is controlling protein/peptide translocation through the nanopore sensor for processive strand analysis. Here, we review recent approaches that use a range of techniques, from oligonucleotide conjugation to molecular motors, aimed at driving protein strands and peptides through protein nanopores. We further discuss site-specific protein conjugation chemistry that could be combined with these translocation approaches as future directions to achieve single-molecule protein detection and sequencing of native proteins.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Kumar M, Reddy NC, Rai V. Chemical technologies for precise protein bioconjugation interfacing biology and medicine. Chem Commun (Camb) 2021; 57:7083-7095. [PMID: 34180471 DOI: 10.1039/d1cc02268g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins provide an excellent means to monitor and regulate biological processes. Hence, a precise chemical toolbox for their modification becomes indispensable. In this perspective, this feature article outlines our efforts to establish the core principles of chemoselectivity, site-selectivity, site-specificity, site-modularity, residue-modularity, and protein-specificity. With the knowledge to systematically regulate these parameters, the field has access to technological platforms that can address multiple challenges at the interface of chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462 066, India.
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462 066, India.
| |
Collapse
|
25
|
Mallek AJ, Pentelute BL, Buchwald SL. Selective N‐Arylation of
p
‐Aminophenylalanine in Unprotected Peptides with Organometallic Palladium Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aaron J. Mallek
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
26
|
Mallek AJ, Pentelute BL, Buchwald SL. Selective N-Arylation of p-Aminophenylalanine in Unprotected Peptides with Organometallic Palladium Reagents. Angew Chem Int Ed Engl 2021; 60:16928-16931. [PMID: 34015170 DOI: 10.1002/anie.202104780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Indexed: 11/11/2022]
Abstract
The selective N-arylation of p-aminophenylalanine in polypeptides with pre-formed palladium oxidative addition complexes is described. The depressed pKa of the aniline NH2 group enables chemoselective C-N bond formation on peptides containing multiple other aliphatic amino groups at lysines or the N-terminus via Curtin-Hammett control under mild conditions. Using palladium complexes derived from electron-poor aryl halides, p-aminophenylalanine is fully arylated in aqueous buffer in as little as one hour at micromolar concentrations. A complementary protocol using the non-nucleophilic, organic base 1,5-diazabicyclo(4.3.0)non-5-ene (DBN), expands the substrate scope to tolerate electron-rich functional groups provides up to 97 % conversion. These procedures enable the chemoselective conjugation of functionally diverse small molecule pharmaceuticals to p-aminophenylalanine containing derivatives of cell-penetrating peptides.
Collapse
Affiliation(s)
- Aaron J Mallek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site-Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021; 60:13757-13777. [PMID: 33258535 PMCID: PMC8248073 DOI: 10.1002/anie.202012034] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Site-selective protein functionalization serves as an invaluable tool for investigating protein structures and functions in complicated cellular environments and accomplishing semi-synthetic protein conjugates such as traceable therapeutics with improved features. Dual functionalization of proteins allows the incorporation of two different types of functionalities at distinct location(s), which greatly expands the features of native proteins. The attachment and crosstalk of a fluorescence donor and an acceptor dye provides fundamental insights into the folding and structural changes of proteins upon ligand binding in their native cellular environments. Moreover, the combination of drug molecules with different modes of action, imaging agents or stabilizing polymers provides new avenues to design precision protein therapeutics in a reproducible and well-characterizable fashion. This review aims to give a timely overview of the recent advancements and a future perspective of this relatively new research area. First, the chemical toolbox for dual functionalization of proteins is discussed and compared. The strengths and limitations of each strategy are summarized in order to enable readers to select the most appropriate method for their envisaged applications. Thereafter, representative applications of these dual-modified protein bioconjugates benefiting from the synergistic/additive properties of the two synthetic moieties are highlighted.
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
28
|
De Rosa L, Di Stasi R, Romanelli A, D’Andrea LD. Exploiting Protein N-Terminus for Site-Specific Bioconjugation. Molecules 2021; 26:3521. [PMID: 34207845 PMCID: PMC8228110 DOI: 10.3390/molecules26123521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy;
| | - Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
29
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site‐Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|