1
|
Wegmann R, Bonilla X, Casanova R, Chevrier S, Coelho R, Esposito C, Ficek-Pascual J, Goetze S, Gut G, Jacob F, Jacobs A, Kuipers J, Lischetti U, Mena J, Milani ES, Prummer M, Del Castillo JS, Singer F, Sivapatham S, Toussaint NC, Vilinovszki O, Wildschut MHE, Thavayogarajah T, Malani D, Aebersold R, Bacac M, Beerenwinkel N, Beisel C, Bodenmiller B, Heinzelmann-Schwarz V, Koelzer VH, Levesque MP, Moch H, Pelkmans L, Rätsch G, Tolnay M, Wicki A, Wollscheid B, Manz MG, Snijder B, Theocharides APA. Single-cell landscape of innate and acquired drug resistance in acute myeloid leukemia. Nat Commun 2024; 15:9402. [PMID: 39477946 PMCID: PMC11525670 DOI: 10.1038/s41467-024-53535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Deep single-cell multi-omic profiling offers a promising approach to understand and overcome drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML). Here, we combine single-cell ex vivo drug profiling (pharmacoscopy) with single-cell and bulk DNA, RNA, and protein analyses, alongside clinical data from 21 rrAML patients. Unsupervised data integration reveals reduced ex vivo response to the Bcl-2 inhibitor venetoclax (VEN) in patients treated with both a hypomethylating agent (HMA) and VEN, compared to those pre-exposed to chemotherapy or HMA alone. Integrative analysis identifies both known and unreported mechanisms of innate and treatment-related VEN resistance and suggests alternative treatments, like targeting increased proliferation with the PLK inhibitor volasertib. Additionally, high CD36 expression in VEN-resistant blasts associates with sensitivity to CD36-targeted antibody treatment ex vivo. This study demonstrates how single-cell multi-omic profiling can uncover drug resistance mechanisms and treatment vulnerabilities, providing a valuable resource for future AML research.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Single-Cell Analysis
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Female
- Male
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Aged
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ximena Bonilla
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Ruben Casanova
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Stéphane Chevrier
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Ricardo Coelho
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cinzia Esposito
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Sandra Goetze
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gabriele Gut
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ulrike Lischetti
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emanuela S Milani
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Prummer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | | | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | - Sujana Sivapatham
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nora C Toussaint
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
- Swiss Data Science Center, ETH Zürich, Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Disha Malani
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, USA
| | - Rudolf Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- AI Center at ETH Zurich, Zurich, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | |
Collapse
|
2
|
Soro-Arnáiz I, Fitzgerald G, Cherkaoui S, Zhang J, Gilardoni P, Ghosh A, Bar-Nur O, Masschelein E, Maechler P, Zamboni N, Poms M, Cremonesi A, Garcia-Cañaveras JC, De Bock K, Morscher RJ. GLUD1 determines murine muscle stem cell fate by controlling mitochondrial glutamate levels. Dev Cell 2024:S1534-5807(24)00455-6. [PMID: 39121856 DOI: 10.1016/j.devcel.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Muscle stem cells (MuSCs) enable muscle growth and regeneration after exercise or injury, but how metabolism controls their regenerative potential is poorly understood. We describe that primary metabolic changes can determine murine MuSC fate decisions. We found that glutamine anaplerosis into the tricarboxylic acid (TCA) cycle decreases during MuSC differentiation and coincides with decreased expression of the mitochondrial glutamate deaminase GLUD1. Deletion of Glud1 in proliferating MuSCs resulted in precocious differentiation and fusion, combined with loss of self-renewal in vitro and in vivo. Mechanistically, deleting Glud1 caused mitochondrial glutamate accumulation and inhibited the malate-aspartate shuttle (MAS). The resulting defect in transporting NADH-reducing equivalents into the mitochondria induced compartment-specific NAD+/NADH ratio shifts. MAS activity restoration or directly altering NAD+/NADH ratios normalized myogenesis. In conclusion, GLUD1 prevents deleterious mitochondrial glutamate accumulation and inactivation of the MAS in proliferating MuSCs. It thereby acts as a compartment-specific metabolic brake on MuSC differentiation.
Collapse
Affiliation(s)
- Inés Soro-Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Schwerzenbach, 8603 Zurich, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Schwerzenbach, 8603 Zurich, Switzerland; Pediatric Cancer Metabolism Laboratory, Children's Research Center, University of Zurich, 8032 Zurich, Switzerland; Division of Oncology, University Children's Hospital Zurich and Children's Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Sarah Cherkaoui
- Pediatric Cancer Metabolism Laboratory, Children's Research Center, University of Zurich, 8032 Zurich, Switzerland; Division of Oncology, University Children's Hospital Zurich and Children's Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Schwerzenbach, 8603 Zurich, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Schwerzenbach, 8603 Zurich, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603 Zurich, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8032 Zurich, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603 Zurich, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Schwerzenbach, 8603 Zurich, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1211 Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8049 Zurich, Switzerland
| | - Martin Poms
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | | | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Schwerzenbach, 8603 Zurich, Switzerland.
| | - Raphael Johannes Morscher
- Pediatric Cancer Metabolism Laboratory, Children's Research Center, University of Zurich, 8032 Zurich, Switzerland; Division of Oncology, University Children's Hospital Zurich and Children's Research Center, University of Zurich, 8032 Zurich, Switzerland; Division of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Sidorina A, Catesini G, Sacchetti E, Rizzo C, Dionisi-Vici C. Propionic Acidemia, Methylmalonic Acidemia, and Cobalamin C Deficiency: Comparison of Untargeted Metabolomic Profiles. Metabolites 2024; 14:428. [PMID: 39195524 DOI: 10.3390/metabo14080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Methylmalonic acidemia (MMA), propionic acidemia (PA), and cobalamin C deficiency (cblC) share a defect in propionic acid metabolism. In addition, cblC is also involved in the process of homocysteine remethylation. These three diseases produce various phenotypes and complex downstream metabolic effects. In this study, we used an untargeted metabolomics approach to investigate the biochemical differences and the possible connections among the pathophysiology of each disease. The significantly changed metabolites in the untargeted urine metabolomic profiles of 21 patients (seven MMA, seven PA, seven cblC) were identified through statistical analysis (p < 0.05; log2FC > |1|) and then used for annotation. Annotated features were associated with different metabolic pathways potentially involved in the disease's development. Comparative statistics showed markedly different metabolomic profiles between MMA, PA, and cblC, highlighting the characteristic species for each disease. The most affected pathways were related to the metabolism of organic acids (all diseases), amino acids (all diseases), and glycine and its conjugates (in PA); the transsulfuration pathway; oxidative processes; and neurosteroid hormones (in cblC). The untargeted metabolomics study highlighted the presence of significant differences between the three diseases, pointing to the most relevant contrast in the cblC profile compared to MMA and PA. Some new biomarkers were proposed for PA, while novel data regarding the alterations of steroid hormone profiles and biomarkers of oxidative stress were obtained for cblC disease. The elevation of neurosteroids in cblC may indicate a potential connection with the development of ocular and neuronal deterioration.
Collapse
Affiliation(s)
- Anna Sidorina
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Giulio Catesini
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Elisa Sacchetti
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, 00146 Rome, Italy
| |
Collapse
|
4
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Heinken A, El Kouche S, Guéant-Rodriguez RM, Guéant JL. Towards personalized genome-scale modeling of inborn errors of metabolism for systems medicine applications. Metabolism 2024; 150:155738. [PMID: 37981189 DOI: 10.1016/j.metabol.2023.155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Inborn errors of metabolism (IEMs) are a group of more than 1000 inherited diseases that are individually rare but have a cumulative global prevalence of 50 per 100,000 births. Recently, it has been recognized that like common diseases, patients with rare diseases can greatly vary in the manifestation and severity of symptoms. Here, we review omics-driven approaches that enable an integrated, holistic view of metabolic phenotypes in IEM patients. We focus on applications of Constraint-based Reconstruction and Analysis (COBRA), a widely used mechanistic systems biology approach, to model the effects of inherited diseases. Moreover, we review evidence that the gut microbiome is also altered in rare diseases. Finally, we outline an approach using personalized metabolic models of IEM patients for the prediction of biomarkers and tailored therapeutic or dietary interventions. Such applications could pave the way towards personalized medicine not just for common, but also for rare diseases.
Collapse
Affiliation(s)
- Almut Heinken
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France.
| | - Sandra El Kouche
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Rosa-Maria Guéant-Rodriguez
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy F-54000, France
| |
Collapse
|
6
|
Wiedemann A, Oussalah A, Guéant Rodriguez RM, Jeannesson E, Mertens M, Rotaru I, Alberto JM, Baspinar O, Rashka C, Hassan Z, Siblini Y, Matmat K, Jeandel M, Chery C, Robert A, Chevreux G, Lignières L, Camadro JM, Feillet F, Coelho D, Guéant JL. Multiomic analysis in fibroblasts of patients with inborn errors of cobalamin metabolism reveals concordance with clinical and metabolic variability. EBioMedicine 2024; 99:104911. [PMID: 38168585 PMCID: PMC10794925 DOI: 10.1016/j.ebiom.2023.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The high variability in clinical and metabolic presentations of inborn errors of cobalamin (cbl) metabolism (IECM), such as the cblC/epicblC types with combined deficits in methylmalonyl-coA mutase (MUT) and methionine synthase (MS), are not well understood. They could be explained by the impaired expression/activity of enzymes from other metabolic pathways. METHODS We performed metabolomic, genomic, proteomic, and post-translational modification (PTM) analyses in fibroblasts from three cblC cases and one epi-cblC case compared with three cblG cases with specific MS deficits and control fibroblasts. FINDINGS CblC patients had metabolic profilings consistent with altered urea cycle, glycine, and energy mitochondrial metabolism. Metabolomic analysis showed partial disruption and increased glutamate/ketoglutarate anaplerotic pathway of the tricarboxylic acid cycle (TCA), in patient fibroblasts. RNA-seq analysis showed decreased expression of MT-TT (mitochondrial tRNA threonine), MT-TP (mitochondrial tRNA proline), OXCT1 (succinyl CoA:3-oxoacid CoA transferase deficiency), and MT-CO1 (cytochrome C oxidase subunit 1). Proteomic changes were observed for key mitochondrial enzymes, including NADH:ubiquinone oxidoreductase subunit A8 (NDUFA8), carnitine palmitoyltransferase 2 (CPT2), and ubiquinol-cytochrome C reductase, complex III subunit X (UQCR10). Propionaldehyde addition in ornithine aminotransferase was the predominant PTM in cblC cells and could be related with the dramatic cellular increase in propionate and methylglyoxalate. It is consistent with the decreased concentration of ornithine reported in 3 cblC cases. Whether the changes detected after multi-omic analyses underlies clinical features in cblC and cblG types of IECM, such as peripheral and central neuropathy, cardiomyopathy, pulmonary hypertension, development delay, remains to be investigated. INTERPRETATION The omics-related effects of IECM on other enzymes and metabolic pathways are consistent with the diversity and variability of their age-related metabolic and clinical manifestations. PTMs are expected to produce cumulative effects, which could explain the influence of age on neurological manifestations. FUNDING French Agence Nationale de la Recherche (Projects PREDICTS and EpiGONE) and Inserm.
Collapse
Affiliation(s)
- Arnaud Wiedemann
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - Abderrahim Oussalah
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - Rosa-Maria Guéant Rodriguez
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - Elise Jeannesson
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - Marc Mertens
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - Irina Rotaru
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - Jean-Marc Alberto
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Okan Baspinar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Charif Rashka
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Ziad Hassan
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Youssef Siblini
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Karim Matmat
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Manon Jeandel
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Celine Chery
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Aurélie Robert
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Laurent Lignières
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | | | - François Feillet
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - David Coelho
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, F-54000, France; National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, F-54000, France.
| |
Collapse
|
7
|
Smirnov D, Konstantinovskiy N, Prokisch H. Integrative omics approaches to advance rare disease diagnostics. J Inherit Metab Dis 2023; 46:824-838. [PMID: 37553850 DOI: 10.1002/jimd.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Over the past decade high-throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease-causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Nikita Konstantinovskiy
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
8
|
Lucienne M, Gerlini R, Rathkolb B, Calzada-Wack J, Forny P, Wueest S, Kaech A, Traversi F, Forny M, Bürer C, Aguilar-Pimentel A, Irmler M, Beckers J, Sauer S, Kölker S, Dewulf JP, Bommer GT, Hoces D, Gailus-Durner V, Fuchs H, Rozman J, Froese DS, Baumgartner MR, de Angelis MH. Insights into energy balance dysregulation from a mouse model of methylmalonic aciduria. Hum Mol Genet 2023; 32:2717-2734. [PMID: 37369025 PMCID: PMC10460489 DOI: 10.1093/hmg/ddad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.
Collapse
Affiliation(s)
- Marie Lucienne
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology and Children’s Research Center, University Children's Hospital, University of Zurich, 8032 Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Florian Traversi
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Merima Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sven Sauer
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Joseph P Dewulf
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
- Department of Laboratory Medicine, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Daniel Hoces
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - D Sean Froese
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
9
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. Nat Commun 2023; 14:4332. [PMID: 37468522 PMCID: PMC10356863 DOI: 10.1038/s41467-023-40077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. The G-protein, MMAA, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B12-dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the complex assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nano-assembly, which reveals a dramatic 180° rotation of the B12 domain, exposing it to solvent. The complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the MMAA-MMUT interfaces we identify here.
Collapse
Affiliation(s)
- Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harsha Gouda
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalie Heitman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Manoli I, Gebremariam A, McCoy S, Pass AR, Gagné J, Hall C, Ferry S, Van Ryzin C, Sloan JL, Sacchetti E, Catesini G, Rizzo C, Martinelli D, Spada M, Dionisi-Vici C, Venditti CP. Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia. J Inherit Metab Dis 2023; 46:554-572. [PMID: 37243446 PMCID: PMC10330948 DOI: 10.1002/jimd.12636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.
Collapse
Affiliation(s)
- Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abigael Gebremariam
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha McCoy
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra R. Pass
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jack Gagné
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Camryn Hall
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susan Ferry
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Carol Van Ryzin
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer L. Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elisa Sacchetti
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Tranplantation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- European Research Network TransplantChild
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Charles P. Venditti
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
11
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533963. [PMID: 36993209 PMCID: PMC10055420 DOI: 10.1101/2023.03.23.533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. MMAA, a G-protein motor, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B 12 -dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the motor assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nanomotor assembly, which reveals a dramatic 180° rotation of the B 12 domain, exposing it to solvent. The nanomotor complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the newly identified MMAA-MMUT interfaces.
Collapse
|
12
|
Head PE, Venditti CP. Anaplerosis in action. Nat Metab 2023; 5:5-7. [PMID: 36717753 PMCID: PMC10181862 DOI: 10.1038/s42255-022-00724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Investigation of multi-omic changes and their effects on regulation of metabolic pathways confirm anaplerotic deficiencies in methylmalonic acidaemia, strengthening the need for future therapies aimed at replenishing intermediates of the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- PamelaSara E Head
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles P Venditti
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|