1
|
Han W, Ding J, Qiao B, Yu Y, Sun H, Crespy D, Landfester K, Mao X, Jiang S. Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415030. [PMID: 39797479 DOI: 10.1002/adma.202415030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/09/2024] [Indexed: 01/13/2025]
Abstract
Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system. Within the space-confined nanoreactor, biofuel glucose is converted to hydrogen peroxide (H2O2) which enhances luminol-based chemiluminescence (CL), consequently driving the generation of photochemical singlet oxygen (1O2) via chemiluminescence resonance energy transfer. Meanwhile, hemoglobin functions as a synchronized oxygen supplier for both glucose oxidation and PDT, while also exhibiting peroxidase-like activity to produce hydroxyl radicals (·OH). Crucially, the nanoreactor keeps switching off in normal tissues, with on-demand activation in tumors through toehold-mediated strand displacement. These findings demonstrate that this nanoreactor, which is self-sufficient in light and oxygen and precise in striking tumors, presents a promising paradigm for managing highly metastatic cancers.
Collapse
Affiliation(s)
- Wenshuai Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Ocean University of China, Qingdao, 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Jiayi Ding
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Ocean University of China, Qingdao, 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Bo Qiao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Ocean University of China, Qingdao, 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Yingjie Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Ocean University of China, Qingdao, 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Hao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Ocean University of China, Qingdao, 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, Ocean University of China, Qingdao, 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Ocean University of China, Qingdao, 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P. R. China
| |
Collapse
|
2
|
Zhang S, Gong L, Sun Y, Zhang F, Gao W. An ultra-long-acting L-asparaginase synergizes with an immune checkpoint inhibitor in starvation-immunotherapy of metastatic solid tumors. Biomaterials 2025; 312:122740. [PMID: 39096839 DOI: 10.1016/j.biomaterials.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.
Collapse
Affiliation(s)
- Sanke Zhang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Like Gong
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Yuanzi Sun
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Fan Zhang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Weiping Gao
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Zhang L, Hu H, Cai W, Chen S, Sheng P, Fu X. CaCO 3-complexed pH-responsive nanoparticles encapsulating mitoxantrone and celastrol enhance tumor chemoimmunotherapy. Int J Pharm 2024; 667:124860. [PMID: 39461678 DOI: 10.1016/j.ijpharm.2024.124860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Modulating the immunosuppressive tumor microenvironment (TME) while enhancing antitumor immune responses is a promising strategy. In this study, we designed an acid-sensitive nanosystem (MCCaNPs) to demonstrate effective immunotherapy against cancer through the systemic delivery of immune-stimulating chemotherapy combinations. A pH-responsive nanoplatform containing CaCO3 was prepared by the double emulsion method, and mitoxantrone (MIT) and celastrol (CEL) were simultaneously encapsulated as immunogenic cell death (ICD) inducers. Due to the acid responsiveness of CaCO3, the nanoparticles rapidly consume H+ to relieve the acidic tumor microenvironment and explosively release CEL and MIT, showing inherent immunomodulatory activity in collaborative tumor chemoimmunotherapy. MIT and CEL synergistically trigger stronger ICD by inducing tumor cells to release calreticulin (CRT), high mobility group box 1 protein (HMGB1). Following the intravenous administration of MCCaNPs, the local tumor microenvironment(TME) was reprogrammed in mice-bearing tumors. This reprogramming was characterized by a significant increase in the density of tumor-infiltrating cytotoxic T lymphocytes(CTLs), ultimately prolonging survival. Therefore, this research proposes a promising approach to trigger immunogenic cell death collaboratively, aiming to boost the tumor CTLs infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Liang Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Huiqiang Hu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Wan Cai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Shungen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Ping Sheng
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China.
| | - Xiaomei Fu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; FAN Cuisheng Studio of National Famous TCM, Nanchang 330006, China.
| |
Collapse
|
4
|
Sui X, Gao B, Zhang L, Wang Y, Ma J, Wu X, Zhou C, Liu M, Zhang L. Scutellaria barbata D.Don and Hedyotis diffusa Willd herb pair combined with cisplatin synergistically inhibits ovarian cancer progression through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway. J Ovarian Res 2024; 17:246. [PMID: 39702302 DOI: 10.1186/s13048-024-01570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cisplatin (DDP) is one of the most effective anticancer drugs, commonly used to treat advanced ovarian cancer (OC). However, DDP has significant limitations of platinum-based drugs, including chemical resistance and high-dose toxic side effects. Traditional Chinese medicines (TCMs) often presented in the form of formula, in which the herb pair was the basic unit. Scutellaria barbata D.Don and Hedyotis diffusa Willd (SB-HD) are famous TCMs herb pair that have been shown to help treat multiple types of cancers. However, the synergistic effects and mechanism of combination of SB-HD and DDP to enhance DDP chemosensitivity in OC are still unknown. RESULTS In vitro, we found that the optimal proportion of SB-HD to inhibit the proliferation of OC cells was 2:1, SB-HD and DDP were shown to synergistically reduce the viability of OC cells, inhibit the colony formation, promote cell cycle arrest and apoptosis, as well as inhibit cell migration and invasion. In vivo, combination treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice and reduced the toxic side effects of DDP. Mechanistically, SB-HD and DDP combination treatment significantly promoted oxidative stress response, decreased MMP, inhibited ATP production, decreased ROS levels and increased SOD activity, increased the expression of NRF2, HO-1, ATG5 and LC3, decreased the expression of p62 and FTH1 both in OC cells and tumor tissue of mice. Inhibitor 3-MA (Methyladenine, autophagy inhibitor) and Fer-1 (Ferrostatin-1, iron ion inhibitor) can effectively reverse the expression changes of the key target proteins, but not ZnPP (Zinc protoporphyrin, HO-1 inhibitor). Through bioinformatics analysis, it was found that the abnormal expression level of NRF2 and FTH1 mRNA has a high prognostic value, at the same time, the other four key proteins respectively or interacting with NRF2 and FTH1, also play important roles in the occurrence and development of OC. CONCLUSION Our findings uncover a synergistic effect of SB-HD and DDP against OC through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway, which may provide an important theoretical foundation for the use of SB-HD and a new strategy for enhancing DDP chemosensitivity as well as reducing toxic side effects.
Collapse
Affiliation(s)
- Xue Sui
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Bingqing Gao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- School of Pharmacy, Anhui Xinhua University, Hefei, 230088, China
| | - Liu Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Department of Dermatology, Dalian Lvshunkou District Hospital of Traditional Chinese Medicine, Dalian, 116041, China
| | - Yanmin Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Junnan Ma
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xingchen Wu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Chenyu Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
5
|
Miranda I, Jahan N, Shevde LA. The metastatic cascade through the lens of therapeutic inhibition. Cell Rep Med 2024:101872. [PMID: 39706193 DOI: 10.1016/j.xcrm.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/23/2024]
Abstract
Metastasis is a main cause of cancer-related death, and a deeper understanding of the metastatic process will inform more targeted and mechanistic approaches that can abrogate challenges in treatment efficacy and toxicity. Several steps throughout the metastatic cascade, from angiogenesis to secondary tumor formation, offer specific vulnerabilities to therapies that can lead to the decline or cessation of metastatic progression. A deeper understanding of the metastatic cascade also allows combination systemic therapies to be used synergistically. In this review, we describe current treatment modalities in the context of multiple steps of the metastatic cascade. We highlight their mechanisms and present their efficacy across multiple cancers. This work also presents targets within the metastatic cascade in need of more research that can advance the landscape of treatments and lead to the goal of metastatic cancer remission.
Collapse
Affiliation(s)
- Ian Miranda
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nusrat Jahan
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Wang Z, Ma L, Xu J, Jiang C. Editorial: Genetic and cellular heterogeneity in tumors. Front Cell Dev Biol 2024; 12:1519539. [PMID: 39717843 PMCID: PMC11663938 DOI: 10.3389/fcell.2024.1519539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Zishan Wang
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunjie Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Baumann Z, Wiethe C, Vecchi CM, Richina V, Lopes T, Bentires-Alj M. Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. CELL REPORTS METHODS 2024; 4:100885. [PMID: 39481389 PMCID: PMC11705587 DOI: 10.1016/j.crmeth.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The lung immune system consists of both resident and circulating immune cells that communicate intricately. The immune system is activated by exposure to bacteria and viruses, when cancer initiates in the lung (primary lung cancer), or when metastases of other cancer types, including breast cancer, spread to and develop in the lung (secondary lung cancer). Thus, in these pathological situations, a comprehensive and quantitative assessment of changes in the lung immune system is of paramount importance for understanding mechanisms of infectious diseases, lung cancer, and metastasis but also for developing efficacious treatments. Unfortunately, lung tissue exhibits high autofluorescence, and this high background signal makes high-parameter flow cytometry analysis complicated. Here, we provide an optimized 30-parameter antibody panel for the analysis of all major immune cell types and states in normal and metastatic murine lungs using spectral flow cytometry.
Collapse
Affiliation(s)
- Zora Baumann
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | | | - Cinja M Vecchi
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Veronica Richina
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Telma Lopes
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland.
| |
Collapse
|
9
|
Zhang X, Xiao K, Wen Y, Wu F, Gao G, Chen L, Zhou C. Multi-omics with dynamic network biomarker algorithm prefigures organ-specific metastasis of lung adenocarcinoma. Nat Commun 2024; 15:9855. [PMID: 39543109 PMCID: PMC11564768 DOI: 10.1038/s41467-024-53849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Efficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism. Furthermore, an integrated neural network model based on the filtered scRNA-seq data is successfully constructed and validated to predict the metastatic state trajectory of cancer cells. Overall, our study provides an insight to locate the pre-metastasis status of lung cancer and primarily examines its clinical application value, contributing to the early detection of lung cancer metastasis in a more feasible and efficacious way.
Collapse
Affiliation(s)
- Xiaoshen Zhang
- School of Medicine, Tongji University, 200092, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
- Department of Respiratory Medicine, Shanghai Sixth People's hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Kai Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201100, Shanghai, China
| | - Yaokai Wen
- School of Medicine, Tongji University, 200092, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201100, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 310024, Hangzhou, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
10
|
Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol Immunol 2024; 21:1215-1230. [PMID: 39402302 PMCID: PMC11527989 DOI: 10.1038/s41423-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Ziqing Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
11
|
Kwon WA, Song YS, Lee MK. Strategic Advances in Combination Therapy for Metastatic Castration-Sensitive Prostate Cancer: Current Insights and Future Perspectives. Cancers (Basel) 2024; 16:3187. [PMID: 39335158 PMCID: PMC11430187 DOI: 10.3390/cancers16183187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The contemporary treatment for metastatic castration-sensitive prostate cancer (mCSPC) has evolved significantly, building on successes in managing metastatic castration-resistant prostate cancer (mCRPC). Although androgen deprivation therapy (ADT) alone has long been the cornerstone of mCSPC treatment, combination therapies have emerged as the new standard of care based on recent advances, offering improved survival outcomes. Landmark phase 3 trials demonstrated that adding chemotherapy (docetaxel) and androgen receptor pathway inhibitors to ADT significantly enhances overall survival, particularly for patients with high-volume, high-risk, or de novo metastatic disease. Despite these advancements, a concerning gap between evidence-based guidelines and real-world practice remains, with many patients not receiving recommended combination therapies. The challenge in optimizing therapy sequences, considering both disease control and treatment burdens, and identifying clinical and biological subgroups that could benefit from personalized treatment strategies persists. The advent of triplet therapy has shown promise in extending survival, but the uro-oncology community must narrow the gap between evidence and practice to deliver the most effective care. Current research is focused on refining treatment approaches and utilizing biomarkers to guide therapy selection, aiming to offer more personalized and adaptive strategies for mCSPC management. Thus, aligning clinical practices with the evolving evidence is urgently needed to improve outcomes for patients facing this incurable disease.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Min-Kyung Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| |
Collapse
|
12
|
Zhang YM, Li T, Xu CC, Qian JY, Guo H, Zhang X, Zhan ZJ, Lu JJ. Uncover the anticancer potential of lycorine. Chin Med 2024; 19:121. [PMID: 39245716 PMCID: PMC11382518 DOI: 10.1186/s13020-024-00989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Natural products have a long history in drug discovery. Lycorine is an alkaloid derived from Amaryllidaceae plants, demonstrating significant pharmacological potential. Lycorine and its hydrochloride salt, lycorine hydrochloride, have shown outstanding anticancer effects both in vitro and in vivo. PURPOSE This review aims to comprehensively summarize recent research advancements regarding the anticancer potential of lycorine and lycorine hydrochloride. It intends to elucidate current research limitations, optimization strategies, and future research directions to guide clinical translation. METHODS Various databases, e.g., Web of Science, PubMed, and Chinese National Knowledge Infrastructure, are systematically searched for relevant articles using keywords such as lycorine, cancer, pharmacokinetics, and toxicity. The retrieved literature is then categorized and summarized to provide an overview of the research advancements in the anticancer potential of lycorine and lycorine hydrochloride. RESULTS Lycorine and lycorine hydrochloride demonstrate significant anticancer activities against various types of cancer both in vitro and in vivo, employing diverse mechanisms such as inducing cell cycle arrest, triggering cellular senescence, regulating programmed cell death, inhibiting angiogenesis, suppressing metastasis, and modulating immune system. Furthermore, pharmacokinetic profiles and toxicity data are summarized. Additionally, this review discusses the druggability, limitations, optimization strategies, and target identification of lycorine, offering insights for future preclinical studies. CONCLUSION The anticancer effects and safety profile of lycorine and lycorine hydrochloride suggest promising potential for clinical applications. Further research on their in-depth mechanisms and optimization strategies targeting their limitations will enhance the understanding and druggability of lycorine and lycorine hydrochloride.
Collapse
Affiliation(s)
- Yan-Ming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Chun-Cao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jia-Yu Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
13
|
Datta N, Vp S, Parvathy K, A S S, Maliekal TT. ALDH1A1 as a marker for metastasis initiating cells: A mechanistic insight. Exp Cell Res 2024; 442:114213. [PMID: 39173941 DOI: 10.1016/j.yexcr.2024.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property. That subset of metastatic cells possessing CSC property are referred to as metastasis initiating cells (MICs). Among the different cellular intermediates regulating metastasis in response to hypoxia by inducing EMT and self-renewal property, ALDH1A1 is a critical molecule, which can be used as a marker for MICs in a wide variety of malignancies. The cytosolic ALDHs can irreversibly convert retinal to retinoic acid (RA), which initiates RA signaling, important for self-renewal and EMT. The metastasis permissive tumor microenvironment increases the expression of ALDH1A1, primarily through HIF1α, and leads to metabolic reprograming through OXPHOS regulation. The ALDH1A1 expression and its high activity can reprogram the cancer cells with the transcriptional upregulation of several genes, involved in EMT through RA signaling to manifest hybrid EMT or Hybrid E/M phenotype, which is important for acquiring the characteristics of MICs. Thus, the review on this topic highlights the use of ALDH1A1 as a marker for MICs, and reporters for the marker can be effectively used to trace the population in mouse models, and to screen drugs that target MICs.
Collapse
Affiliation(s)
- Nandini Datta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Snijesh Vp
- Division of Molecular Medicine, St. John's Research Institute, St John's National Academy of Health Sciences, Bangalore, 560034, India
| | - K Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Sneha A S
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
14
|
Wang X, Liu X, Xiao R, Fang Y, Zhou F, Gu M, Luo X, Jiang D, Tang Y, You L, Zhao Y. Histone lactylation dynamics: Unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer. Cancer Lett 2024; 598:217117. [PMID: 39019144 DOI: 10.1016/j.canlet.2024.217117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells rewire metabolism to sculpt the immune tumor microenvironment (TME) and propel tumor advancement, which intricately tied to post-translational modifications. Histone lactylation has emerged as a novel player in modulating protein functions, whereas little is known about its pathological role in pancreatic ductal adenocarcinoma (PDAC) progression. Employing a multi-omics approach encompassing bulk and single-cell RNA sequencing, metabolomics, ATAC-seq, and CUT&Tag methodologies, we unveiled the potential of histone lactylation in prognostic prediction, patient stratification and TME characterization. Notably, "LDHA-H4K12la-immuno-genes" axis has introduced a novel node into the regulatory framework of "metabolism-epigenetics-immunity," shedding new light on the landscape of PDAC progression. Furthermore, the heightened interplay between cancer cells and immune counterparts via Nectin-2 in liver metastasis with elevated HLS unraveled a positive feedback loop in driving immune evasion. Simultaneously, immune cells exhibited altered HLS and autonomous functionality across the metastatic cascade. Consequently, the exploration of innovative combination strategies targeting the metabolism-epigenetics-immunity axis holds promise in curbing distant metastasis and improving survival prospects for individuals grappling with challenges of PDAC.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| |
Collapse
|
15
|
Yang X, Xu Z, Shu F, Xiao J, Zeng Y, Lu X, Yu F, Xi L, Cheng F, Gao B, Chen H. Bioorthogonal targeted cell membrane vesicles/cell-sheet composites reduce postoperative tumor recurrence and scar formation of melanoma. J Control Release 2024; 372:372-385. [PMID: 38901733 DOI: 10.1016/j.jconrel.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
While surgical resection is the predominant clinical strategy in the treatment of melanoma, postoperative recurrence and undetectable metastasis are both pernicious drawbacks to this otherwise highly successful approach. Furthermore, the deep cavities result from tumor excision can leave long lasting wounds which are slow to heal and often leave visible scars. These unmet needs are addressed in the present work through the use of a multidimensional strategy, and also promotes wound healing and scar reduction. In the first phase, cell membrane-derived nanovesicles (NVs) are engineered to show PD-1 and dibenzocyclooctyne (DBCO). These are capable of reactivating T cells by blocking the PD-1/PD-L1 pathway. In the second phase, azido (N3) labeled mesenchymal stem cells (MSCs) are cultured into cell sheets using tissue engineering, then apply directly to surgical wounds to enhance tissue repair. Owing to the complementary association between DBCO and N3 groups, PD-1 NVs were accumulated at the site of excision. This strategy can inhibit postoperative tumor recurrence and metastasis, whilst also promoting wound healing and reducing scar formation. The results of this study set a precedent for a new and innovative multidimensional therapeutic strategy in the postoperative treatment of melanoma.
Collapse
Affiliation(s)
- Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China; Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Jiangwei Xiao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510550, China
| | - Yuqing Zeng
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Xingyu Lu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Fei Yu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Lifang Xi
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510550, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| |
Collapse
|
16
|
Li M, Li S, Guo Y, Hu P, Shi J. Magnetothermal-activated gene editing strategy for enhanced tumor cell apoptosis. J Nanobiotechnology 2024; 22:450. [PMID: 39080645 PMCID: PMC11287911 DOI: 10.1186/s12951-024-02734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
Precise and effective initiation of the apoptotic mechanism in tumor cells is one of the most promising approaches for the treatment of solid tumors. However, current techniques such as high-temperature ablation or gene editing suffer from the risk of damage to adjacent normal tissues. This study proposes a magnetothermal-induced CRISPR-Cas9 gene editing system for the targeted knockout of HSP70 and BCL2 genes, thereby enhancing tumor cell apoptosis. The magnetothermal nanoparticulate platform is composed of superparamagnetic ZnCoFe2O4@ZnMnFe2O4 nanoparticles and the modified polyethyleneimine (PEI) and hyaluronic acid (HA) on the surface, on which plasmid DNA can be effectively loaded. Under the induction of a controllable alternating magnetic field, the mild magnetothermal effect (42℃) not only triggers dual-genome editing to disrupt the apoptosis resistance mechanism of tumor cells but also sensitizes tumor cells to apoptosis through the heat effect itself, achieving a synergistic therapeutic effect. This strategy can precisely regulate the activation of the CRISPR-Cas9 system for tumor cell apoptosis without inducing significant damage to healthy tissues, thus providing a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Mingyuan Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siqian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - YueDong Guo
- Shanghai Tenth People's Hospital, Medical School of Tongji University, 38 Yun-xin Road, Shanghai, 200435, P.R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
- Shanghai Tenth People's Hospital, Medical School of Tongji University, 38 Yun-xin Road, Shanghai, 200435, P.R. China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
17
|
Chen X, Liu J, Zhang Y, Gao X, Su D. Site-Specific Cascade-Activatable Fluorogenic Nanomicelles Enable Precision and Accuracy Imaging of Pulmonary Metastatic Tumor. JACS AU 2024; 4:2606-2616. [PMID: 39055141 PMCID: PMC11267558 DOI: 10.1021/jacsau.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The precise localization of metastatic tumors with subtle growth is crucial for timely intervention and improvement of tumor prognosis but remains a paramount challenging. To date, site-specific activation of fluorogenic probes for single-stimulus-based diagnosis typically targets an occult molecular event in a complex biosystem with limited specificity. Herein, we propose a highly specific site-specific cascade-activated strategy to enhance detection accuracy, aiming to achieve the accurate detection of breast cancer (BC) lung metastasis in a cascade manner. Specifically, cascade-activatable NIR fluorogenic nanomicelles HPNs were constructed using ultra-pH-sensitive (UPS) block copolymers as carriers and nitroreductase (NTR)-activated fluorogenic reporters. HPNs exhibit programmable cascade response characteristics by first instantaneous dissociating under in situ tumor acidity, facilitating deep tumor penetration followed by selective fluorescence activation through NTR-mediated enzymatic reaction resulting in high fluorescence ON/OFF contrast. Notably, this unique feature of HPNs enables high-precision diagnosis of orthotopic BC as well as its lung metastases with a remarkable signal-to-background ratio (SBR). This proposed site-specific cascade activation strategy will offer opportunities for a specific diagnosis with high signal fidelity of various insidious metastatic lesions in situ across different diseases.
Collapse
Affiliation(s)
- Xueqian Chen
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jiatian Liu
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yong Zhang
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xueyun Gao
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| | - Dongdong Su
- Center of Excellence for
Environmental Safety and Biological Effects, Beijing Key Laboratory
for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
18
|
Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Therapeutic targeting of voltage-gated sodium channel Na V1.7 for cancer metastasis. Front Pharmacol 2024; 15:1416705. [PMID: 39045054 PMCID: PMC11263763 DOI: 10.3389/fphar.2024.1416705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
This review focuses on the expression and function of voltage-gated sodium channel subtype NaV1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented. Despite the lack of clarity on the precise mechanism by which NaV1.7 contributes to cancer progression and metastasis; many studies have suggested a connection between NaV1.7 and proteins involved in multiple signaling pathways such as PKA and EGF/EGFR-ERK1/2. Moreover, the functional activity of NaV1.7 appears to elevate the expression levels of MACC1 and NHE-1, which are controlled by p38 MAPK activity, HGF/c-MET signaling and c-Jun activity. This cascade potentially enhances the secretion of extracellular matrix proteases, such as MMPs which play critical roles in cell migration and invasion activities. Furthermore, the NaV1.7 activity may indirectly upregulate Rho GTPases Rac activity, which is critical for cytoskeleton reorganization, cell adhesion, and actin polymerization. The relationship between NaV1.7 and cancer progression has prompted researchers to investigate the therapeutic potential of targeting NaV1.7 using inhibitors. The positive outcome of such studies resulted in the discovery of several inhibitors with the ability to reduce cancer cell migration, invasion, and tumor growth underscoring the significance of NaV1.7 as a promising pharmacological target for attenuating cancer cell proliferation and metastasis. The research findings summarized in this review suggest that the regulation of NaV1.7 expression and function by small molecules and/or by genetic engineering is a viable approach to discover novel therapeutics for the prevention and treatment of metastasis of cancers with elevated NaV1.7 expression.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
19
|
Gao N, Huang Y, Jing S, Zhang M, Liu E, Qiu L, Huang J, Muhitdinov B, Huang Y. Environment-responsive dendrobium polysaccharide hydrogel embedding manganese microsphere as a post-operative adjuvant to boost cascaded immune cycle against melanoma. Theranostics 2024; 14:3810-3826. [PMID: 38994034 PMCID: PMC11234272 DOI: 10.7150/thno.94354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Surgical resection is a primary treatment for solid tumors, but high rates of tumor recurrence and metastasis post-surgery present significant challenges. Manganese (Mn2+), known to enhance dendritic cell-mediated cancer immunotherapy by activating the cGAS-STING pathway, has potential in post-operative cancer management. However, achieving prolonged and localized delivery of Mn2+ to stimulate immune responses without systemic toxicity remains a challenge. Methods: We developed a post-operative microenvironment-responsive dendrobium polysaccharide hydrogel embedded with Mn2+-pectin microspheres (MnP@DOP-Gel). This hydrogel system releases Mn2+-pectin microspheres (MnP) in response to ROS, and MnP shows a dual effect in vitro: promoting immunogenic cell death and activating immune cells (dendritic cells and macrophages). The efficacy of MnP@DOP-Gel as a post-surgical treatment and its potential for immune activation were assessed in both subcutaneous and metastatic melanoma models in mice, exploring its synergistic effect with anti-PD1 antibody. Result: MnP@DOP-Gel exhibited ROS-responsive release of MnP, which could exert dual effects by inducing immunogenic cell death of tumor cells and activating dendritic cells and macrophages to initiate a cascade of anti-tumor immune responses. In vivo experiments showed that the implanted MnP@DOP-Gel significantly inhibited residual tumor growth and metastasis. Moreover, the combination of MnP@DOP-Gel and anti-PD1 antibody displayed superior therapeutic potency in preventing either metastasis or abscopal brain tumor growth. Conclusions: MnP@DOP-Gel represents a promising drug-free strategy for cancer post-operative management. Utilizing this Mn2+-embedding and ROS-responsive delivery system, it regulates surgery-induced immune responses and promotes sustained anti-tumor responses, potentially increasing the effectiveness of surgical cancer treatments.
Collapse
Affiliation(s)
- Nan Gao
- School of Pharmacy, Guizhou Medical University, Guizhou 561113, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Yiran Huang
- School of Pharmacy, Guizhou Medical University, Guizhou 561113, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Shisuo Jing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Lu Qiu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Jing Huang
- School of Pharmacy, Guizhou Medical University, Guizhou 561113, China
| | - Bahtiyor Muhitdinov
- Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Yongzhuo Huang
- School of Pharmacy, Guizhou Medical University, Guizhou 561113, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
20
|
Yu H, Chen Q, Zheng M, Wang R, Wang H, Cheng L, Hu Y, Dai M, Du C, Luo W, Tan M, Cao Y, Guo Y, Ran H. Combination of MHI148 Targeted Photodynamic Therapy and STING Activation Inhibits Tumor Metastasis and Recurrence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29672-29685. [PMID: 38813586 DOI: 10.1021/acsami.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Metastasis and recurrence are notable contributors to mortality associated with breast cancer. Although immunotherapy has shown promise in mitigating these risks after conventional treatments, its effectiveness remains constrained by significant challenges, such as impaired antigen presentation by dendritic cells (DCs) and inadequate T cell infiltration into tumor tissues. To address these limitations, we developed a multifunctional nanoparticle platform, termed GM@P, which consisted of a hydrophobic shell encapsulating the photosensitizer MHI148 and a hydrophilic core containing the STING agonist 2'3'-cGAMP. This design elicited robust type I interferon responses to activate antitumor immunity. The GM@P nanoparticles loaded with MHI148 specifically targeted breast cancer cells. Upon exposure to 808 nm laser irradiation, the MHI148-loaded nanoparticles produced toxic reactive oxygen species (ROS) to eradicate tumor cells through photodynamic therapy (PDT). Notably, PDT stimulated immunogenic cell death (ICD) to foster the potency of antitumor immune responses. Furthermore, the superior photoacoustic imaging (PAI) capabilities of MHI148 enabled the simultaneous visualization of diagnostic and therapeutic procedures. Collectively, our findings uncovered that the combination of PDT and STING activation facilitated a more conducive immune microenvironment, characterized by enhanced DC maturation, infiltration of CD8+ T cells, and proinflammatory cytokine release. This strategy stimulated local immune responses to augment systemic antitumor effects, offering a promising approach to suppress tumor growth, inhibit metastasis, and prevent recurrence.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Qiaoqi Chen
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Min Zheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Ruoyao Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haiyang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
- Department of Abdominal Wall, Hernia and Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Long Cheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yaqin Hu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mingyuan Dai
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Chier Du
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Wenpei Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Mixiao Tan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yuan Guo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
21
|
Li F, Ding J, Li Z, Rong Y, He C, Chen X. ROS-responsive thermosensitive polypeptide hydrogels for localized drug delivery and improved tumor chemoimmunotherapy. Biomater Sci 2024; 12:3100-3111. [PMID: 38712522 DOI: 10.1039/d4bm00241e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, we developed a ROS-responsive thermosensitive poly(ethylene glycol)-polypeptide hydrogel loaded with a chemotherapeutic drug, doxorubicin (Dox), an antiviral imidazoquinoline, resiquimod (R848), and antibody targeting programmed cell death protein 1 (aPD-1) for local chemoimmunotherapy. The hydrogel demonstrated controllable degradation and sustained drug release behavior according to the concentration of ROS in vitro. Following intratumoral injection into mice bearing B16F10 melanoma, the Dox/R848/aPD-1 co-loaded hydrogel effectively inhibited tumor growth, prolonged animal survival time and promoted anti-tumor immune responses with low systemic toxicity. In the postoperative model, the Dox/R848/aPD-1 co-loaded hydrogel exhibited enhanced tumor recurrence prevention and long-term immune memory effects. Thus, the hydrogel-based local chemoimmunotherapy system demonstrates potential for effective anti-tumor treatment and suppression of tumor recurrence.
Collapse
Affiliation(s)
- Fujiang Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhenyu Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Yang Y, Zhou X, Deng H, Chen L, Zhang X, Wu S, Song A, Liang F. The role of O-GlcNAcylation in bone metabolic diseases. Front Physiol 2024; 15:1416967. [PMID: 38915778 PMCID: PMC11194333 DOI: 10.3389/fphys.2024.1416967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
O-GlcNAcylation, as a post-translational modification, can modulate cellular activities such as kinase activity, transcription-translation, protein degradation, and insulin signaling by affecting the function of the protein substrate, including cellular localization of proteins, protein stability, and protein/protein interactions. Accumulating evidence suggests that dysregulation of O-GlcNAcylation is associated with disease progression such as cancer, neurodegeneration, and diabetes. Recent studies suggest that O-GlcNAcylation is also involved in the regulation of osteoblast, osteoclast and chondrocyte differentiation, which is closely related to the initiation and development of bone metabolic diseases such as osteoporosis, arthritis and osteosarcoma. However, the potential mechanisms by which O-GlcNAcylation regulates bone metabolism are not fully understood. In this paper, the literature related to the regulation of bone metabolism by O-GlcNAcylation was summarized to provide new potential therapeutic strategies for the treatment of orthopedic diseases such as arthritis and osteoporosis.
Collapse
Affiliation(s)
- Yajing Yang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Medicine, Xiamen University, Xiamen, China
| | - HuiLi Deng
- School of Medicine, Xiamen University, Xiamen, China
| | - Li Chen
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Xiaolin Zhang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Song Wu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Aiqun Song
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Fengxia Liang
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| |
Collapse
|
23
|
Ding J, Gu H, Yang Z, Lu Y, Guo G. Breast metastasis from lung adenocarcinoma: a case report and review of the literature. Front Oncol 2024; 14:1370453. [PMID: 38841167 PMCID: PMC11150669 DOI: 10.3389/fonc.2024.1370453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Lung cancer (LC) is one of the most lethal and most prevalent malignant tumors, and lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Breast cancer (BC) is the most common cancer worldwide, but metastases to the breast from extramammary neoplasms are rare, especially from the lung. Early diagnosis and differentiation of primary from metastatic breast carcinoma are essential. Here, we present a case of metastases to the breast from lung adenocarcinoma, the treatment options varied according to disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Guilong Guo
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Cao J, Qing J, Zhu L, Chen Z. Role of TIM-1 in the development and treatment of tumours. Front Cell Dev Biol 2024; 12:1307806. [PMID: 38831760 PMCID: PMC11144867 DOI: 10.3389/fcell.2024.1307806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
T-cell immunoglobulin and mucin structural domain 1 (TIM-1, also known as hepatitis A virus cell receptor 1) is a co-stimulatory molecule that is expressed predominantly on the surface of T cells. TIM-1 promotes the activation and proliferation of T cells, cytokine secretion, and can also be overexpressed in various types of cancer. Upregulation of TIM-1 expression may be associated with the development and progression of cancer. After reviewing the literature, we propose that TIM-1 affects tumour development mainly through two pathways. In the Direct pathway: overexpression in tumours activates tumour-related signaling pathways, mediates the proliferation, apoptosis, invasion and metastasis, and directly affects tumour development directly. In the indirect pathway: In addition to changing the tumour microenvironment and influencing the growth of tumours, TIM-1 binds to ligands to encourage the activation, proliferation, and generation of cytokines by immune cells. This review examines how TIM-1 stimulates the development of tumours in direct and indirect ways, and how TIM-1 is exploited as a target for cancer therapy.
Collapse
Affiliation(s)
- Jinmeng Cao
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- School of Clinical Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Liya Zhu
- Graduate school, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhizhong Chen
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| |
Collapse
|
25
|
Lake KE, Colonnetta MM, Smith CA, Saunders K, Martinez-Algarin K, Mohta S, Pena J, McArthur HL, Reddy SM, Roussos Torres ET, Chen EH, Chan IS. Digital droplet PCR analysis of organoids generated from mouse mammary tumors demonstrates proof-of-concept capture of tumor heterogeneity. Front Cell Dev Biol 2024; 12:1358583. [PMID: 38827528 PMCID: PMC11140600 DOI: 10.3389/fcell.2024.1358583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications (CNA). CNA are genetic alterations that are increasingly becoming relevant to breast oncology clinical practice. Here we identify CNA in metastatic breast tumor samples using publicly available datasets and characterize their expression and function using a metastatic mouse model of breast cancer. Our findings demonstrate that our organoid generation can be implemented to study clinically relevant features that reflect the genetic heterogeneity of individual tumors.
Collapse
Affiliation(s)
- Katherine E. Lake
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Megan M. Colonnetta
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Clayton A. Smith
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kaitlyn Saunders
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kenneth Martinez-Algarin
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sakshi Mohta
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jacob Pena
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Heather L. McArthur
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sangeetha M. Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Evanthia T. Roussos Torres
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Elizabeth H. Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
26
|
Xiao Q, Huang J, Wang X, Chen Z, Zhang W, Liu F, Li J, Yang Z, Zhan J, Cai Y. Supramolecular Peptide Amphiphile Nanospheres Reprogram Tumor-associated Macrophage to Reshape the Immune Microenvironment for Enhanced Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307390. [PMID: 38100300 DOI: 10.1002/smll.202307390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Tumor immunotherapy has become a research hotspot in cancer treatment, with macrophages playing a crucial role in tumor development. However, the tumor microenvironment restricts macrophage functionality, limiting their therapeutic potential. Therefore, modulating macrophage function and polarization is essential for enhancing tumor immunotherapy outcomes. Here, a supramolecular peptide amphiphile drug-delivery system (SPADS) is utilized to reprogram macrophages and reshape the tumor immune microenvironment (TIM) for immune-based therapies. The approach involved designing highly specific SPADS that selectively targets surface receptors of M2-type macrophages (M2-Mφ). These targeted peptides induced M2-Mφ repolarization into M1-type macrophages by dual inhibition of endoplasmic reticulum and oxidative stresses, resulting in improved macrophagic antitumor activity and immunoregulatory function. Additionally, TIM reshaping disrupted the immune evasion mechanisms employed by tumor cells, leading to increased infiltration, and activation of immune cells. Furthermore, the synergistic effect of macrophage reshaping and anti-PD-1 antibody (aPD-1) therapy significantly improved the immune system's ability to recognize and eliminate tumor cells, thereby enhancing tumor immunotherapy efficacy. SPADS utilization also induced lung metastasis suppression. Overall, this study demonstrates the potential of SPADS to drive macrophage reprogramming and reshape TIM, providing new insights, and directions for developing more effective immunotherapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Qiuqun Xiao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinyan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zehong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiqi Zhang
- Department of General Surgery, Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, P. R. China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhimou Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
27
|
Carvalho TMA, Audero MM, Greco MR, Ardone M, Maggi T, Mallamaci R, Rolando B, Arpicco S, Ruffinatti FA, Pla AF, Prevarskaya N, Koltai T, Reshkin SJ, Cardone RA. Tumor Microenvironment Modulates Invadopodia Activity of Non-Selected and Acid-Selected Pancreatic Cancer Cells and Its Sensitivity to Gemcitabine and C18-Gemcitabine. Cells 2024; 13:730. [PMID: 38727266 PMCID: PMC11083398 DOI: 10.3390/cells13090730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.
Collapse
Affiliation(s)
- Tiago M. A. Carvalho
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (T.M.A.C.); (M.R.G.); (M.A.); (T.M.); (R.M.); (S.J.R.)
| | - Madelaine Magalì Audero
- U1003 PHYCEL Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, 59000 Lille, France; (M.M.A.); (A.F.P.); (N.P.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (T.M.A.C.); (M.R.G.); (M.A.); (T.M.); (R.M.); (S.J.R.)
| | - Marilena Ardone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (T.M.A.C.); (M.R.G.); (M.A.); (T.M.); (R.M.); (S.J.R.)
| | - Teresa Maggi
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (T.M.A.C.); (M.R.G.); (M.A.); (T.M.); (R.M.); (S.J.R.)
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (T.M.A.C.); (M.R.G.); (M.A.); (T.M.); (R.M.); (S.J.R.)
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (B.R.); (S.A.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (B.R.); (S.A.)
| | - Federico Alessandro Ruffinatti
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Alessandra Fiorio Pla
- U1003 PHYCEL Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, 59000 Lille, France; (M.M.A.); (A.F.P.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Natalia Prevarskaya
- U1003 PHYCEL Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, 59000 Lille, France; (M.M.A.); (A.F.P.); (N.P.)
| | - Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (T.M.A.C.); (M.R.G.); (M.A.); (T.M.); (R.M.); (S.J.R.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125 Bari, Italy; (T.M.A.C.); (M.R.G.); (M.A.); (T.M.); (R.M.); (S.J.R.)
| |
Collapse
|
28
|
Fonseca P, Cui W, Struyf N, Tong L, Chaurasiya A, Casagrande F, Zhao H, Fernando D, Chen X, Tobin NP, Seashore-Ludlow B, Lundqvist A, Hartman J, Göndör A, Östling P, Holmgren L. A phenotypic screening approach to target p60AmotL2-expressing invasive cancer cells. J Exp Clin Cancer Res 2024; 43:107. [PMID: 38594748 PMCID: PMC11003180 DOI: 10.1186/s13046-024-03031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.
Collapse
Affiliation(s)
- Pedro Fonseca
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Weiyingqi Cui
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nona Struyf
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Le Tong
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Ayushi Chaurasiya
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Felipe Casagrande
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Honglei Zhao
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Dinura Fernando
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Department of Clinical Molecular Biology, University of Oslo, Akershus Universitetssykehus, 1478, Lørenskog, Oslo, Norway
| | - Päivi Östling
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23a, 171 65, Stockholm, Sweden
| | - Lars Holmgren
- Department of Oncology and Pathology, Karolinska Institutet, U2, Bioclinicum J6:20, Solnavägen 30, 171 64, Solna, Stockholm, Sweden.
| |
Collapse
|
29
|
Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, Batlle E, Steglich B, Kempski J, Agalioti T, Nawrocki M, Xu Y, Riecken K, Liebold I, Brockmann L, Konczalla L, Bosurgi L, Mercanoglu B, Seeger P, Küsters N, Lykoudis PM, Heumann A, Arck PC, Fehse B, Busch P, Grotelüschen R, Mann O, Izbicki JR, Hackert T, Flavell RA, Gagliani N, Giannou AD, Huber S. IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol 2024; 80:634-644. [PMID: 38160941 PMCID: PMC10964083 DOI: 10.1016/j.jhep.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND & AIMS The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.
Collapse
Affiliation(s)
- Ahmad Mustafa Shiri
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany; University Children's Hospital, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonella Fazio
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Siwen Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniele V F Tauriello
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Babett Steglich
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Mikołaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Imke Liebold
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Leonie Brockmann
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Lidia Bosurgi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Natalie Küsters
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Panagis M Lykoudis
- 3rd Department of Surgery, National & Kapodistrian University of Athens, Greece; Division of Surgery & Interventional Science, University College London (UCL), UK
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Petra C Arck
- University Children's Hospital, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Philipp Busch
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Rainer Grotelüschen
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nicola Gagliani
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
30
|
Yin Y, de Haas RJ, Alves N, Pennings JP, Ruiter SJS, Kwee TC, Yakar D. Machine learning-based radiomic analysis and growth visualization for ablation site recurrence diagnosis in follow-up CT. Abdom Radiol (NY) 2024; 49:1122-1131. [PMID: 38289352 PMCID: PMC10955006 DOI: 10.1007/s00261-023-04178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Detecting ablation site recurrence (ASR) after thermal ablation remains a challenge for radiologists due to the similarity between tumor recurrence and post-ablative changes. Radiomic analysis and machine learning methods may show additional value in addressing this challenge. The present study primarily sought to determine the efficacy of radiomic analysis in detecting ASR on follow-up computed tomography (CT) scans. The second aim was to develop a visualization tool capable of emphasizing regions of ASR between follow-up scans in individual patients. MATERIALS AND METHODS Lasso regression and Extreme Gradient Boosting (XGBoost) classifiers were employed for modeling radiomic features extracted from regions of interest delineated by two radiologists. A leave-one-out test (LOOT) was utilized for performance evaluation. A visualization method, creating difference heatmaps (diff-maps) between two follow-up scans, was developed to emphasize regions of growth and thereby highlighting potential ASR. RESULTS A total of 55 patients, including 20 with and 35 without ASR, were included in the radiomic analysis. The best performing model was achieved by Lasso regression tested with the LOOT approach, reaching an area under the curve (AUC) of 0.97 and an accuracy of 92.73%. The XGBoost classifier demonstrated better performance when trained with all extracted radiomic features than without feature selection, achieving an AUC of 0.93 and an accuracy of 89.09%. The diff-maps correctly highlighted post-ablative liver tumor recurrence in all patients. CONCLUSIONS Machine learning-based radiomic analysis and growth visualization proved effective in detecting ablation site recurrence on follow-up CT scans.
Collapse
Affiliation(s)
- Yunchao Yin
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Robbert J de Haas
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Natalia Alves
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Jan Pieter Pennings
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Simeon J S Ruiter
- Department of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Thomas C Kwee
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Derya Yakar
- Department of Radiology, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Wei Y, Zhu P. Long non-coding RNA TINCR suppresses growth and epithelial-mesenchymal transition by inhibiting Wnt/ β-catenin signaling pathway in human pancreatic cancer PANC-1 cells: Insights from in vitro and in vivo studies. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:131-147. [PMID: 38554384 DOI: 10.2478/acph-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/01/2024]
Abstract
There is increasing evidence that long non-coding RNAs (lncRNAs) play a crucial role in the development and progression of malignant tumors, particularly pancreatic cancer. In this study, the influence of the lncRNA TINCR on the behavior of human pancreatic cancer cells was investigated with the aim of deciphering its role in growth, migration, and invasion. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to investigate TINCR expression in pancreatic cancer cells. Ectopic expression of TINCR in PANC-1 cells was induced to evaluate the effects on cell viability and apoptosis, examining the apoptotic genes Bax and Bcl-2. Migration and invasion assays were used to measure the impact of TINCR on these cellular processes. In vivo studies using a xenograft mouse model examined the effects of TINCR on tumor growth, epithelial-to-mesenchymal transition (EMT) markers, and the Wnt/β-catenin signaling pathway. PANC-1 cells showed strikingly low TINCR expression compared to other pancreatic cancer cell lines. Ectopic TINCR expression reduced the viability of PANC-1 cells primarily by inducing apoptosis, as evidenced by increased Bax and decreased Bcl-2 expression. Overexpression of TINCR significantly increased the percentage of apoptotic cells. It also decreased the migration and invasion ability of PANC-1 cells, as demonstrated in wound healing and transwell assays. In addition, overexpression of TINCR-suppressed proteins is associated with the Wnt/β-catenin signaling pathway in PANC-1 cells. In the xenograft mouse model, overexpression of TINCR inhibited tumor growth, EMT markers, and proteins associated with the Wnt/β-catenin pathway. This study sheds light on the tumour-suppressive role of TINCR in PANC-1 cells and suggests its potential as a therapeutic target. These results shed light on the molecular mechanisms underlying the impact of TINCR on pancreatic cancer and offer promising opportunities for innovative therapeutic strategies to improve outcomes in this serious malignancy.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Endoscopy Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute Shenyang, Liaoning Province China
| | - Ping Zhu
- Department of Endoscopy Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute Shenyang, Liaoning Province China
| |
Collapse
|
32
|
Domínguez-Chavarría JA, García A, Romo-Mancillas A, Reyes-Melo KY, Chávez-Villareal KG, Vázquez-Ramírez AL, Ávalos-Alanís FG, Cabral-Romero C, Hernández-Delgadillo R, García-Cuellar CM, Del Rayo Camacho-Corona M. Cytotoxicity Activity of Some meso-Dihydroguaiaretic Acid Derivatives and Mode of Action of the Most Active Compound. Chem Biodivers 2024; 21:e202301930. [PMID: 38216544 DOI: 10.1002/cbdv.202301930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
The aim of this study was to screen sixteen meso-1 semi-synthetic derivatives bearing ether, esther, carbamate, phosphate or aminoether functional groups against five cancer cell lines: MCF-7 (breast), A549 (lung), HepG2 (liver), HeLa (cervix), and DU145 (prostate) at 25 μM using the MTT assay. Results from the screening showed that two derivatives had the lowest percentage of cell viability at 25 μM, the aminoether derivative meso-11 and the esther derivative meso-20 against A549 (44.15±0.78 %) and MCF-7 (41.60±0.92 %), respectively. Then, it was determined the IC50 value of each compound against their most sensitive cancer cell line. Results showed that aminoether derivative meso-11 showed potent cytotoxicity against A549 (IC50 =17.11±2.11 μM), whereas it resulted more cytotoxic against the LL-47 lung normal cell line (IC50 =9.49±1.19 μM) having a Selective Index (SI) of 0.55. On the other hand, the esther derivative meso-20 exhibited potent activity against MCF-7 (IC50 =18.20±1.98 μM), whereas it displayed moderate cytotoxicity against the MCF-10 breast normal cell line (IC50 =41.22±2.17 μM) with a SI of 2.2. Finally, studies on the mechanism of action of meso-20 indicated disruption of MCF-7 plasma membrane in vitro and the AMPK activation in silico.
Collapse
Affiliation(s)
- José Antonio Domínguez-Chavarría
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Abraham García
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Antonio Romo-Mancillas
- Universidad Autónoma de Querétaro, Facultad de Química, Centro Universitario, Cerro de las Campanas S/N, CP 76010, Querétaro, Qro., México
| | - Karen Y Reyes-Melo
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Karen G Chávez-Villareal
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Ana L Vázquez-Ramírez
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Francisco G Ávalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Claudio Cabral-Romero
- Universidad Autónoma de Nuevo León, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Aguirre Pequeño y Silao S/N; Col. Mitras Centro, C.P., 64460, Monterrey, Nuevo León, México
| | - Rene Hernández-Delgadillo
- Universidad Autónoma de Nuevo León, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Aguirre Pequeño y Silao S/N; Col. Mitras Centro, C.P., 64460, Monterrey, Nuevo León, México
| | - Claudia María García-Cuellar
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, Av. San Fernando 22, Belisario Domínguez Secc. 16, Tlalpan C.P., 14080, Ciudad de México, CDMX, México
| | - María Del Rayo Camacho-Corona
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| |
Collapse
|
33
|
Pandey P, Khan F, Singh M, Verma A, Kumar H, Mazumder A, Rakhra G. Study Deciphering the Crucial Involvement of Notch Signaling Pathway in Human Cancers. Endocr Metab Immune Disord Drug Targets 2024; 24:1241-1253. [PMID: 37997805 DOI: 10.2174/0118715303261691231107113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
In recent years, dysregulation of the notch pathway has been associated with the development and progression of various cancers. Notch signaling is involved in several cellular processes, such as proliferation, differentiation, apoptosis, and angiogenesis, and its abnormal activation can lead to uncontrolled cell growth and tumorigenesis. In various human cancers, the Notch pathway has been shown to have both tumor-promoting and tumor-suppressive effects, depending on the context and stage of cancer development. Notch signaling has been implicated in tumor initiation, cancer cell proliferation, cell migration and maintenance of cancer stem cells in several human cancers, including leukemia, breast, pancreatic and lung cancer. Understanding the role of the Notch pathway in cancer development and progression may provide new opportunities for the development of potent targeted therapies for cancer treatment. Several drugs targeting the Notch pathway are currently in preclinical or clinical development and may hold promise for anticancer therapy in the future.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Megha Singh
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Aditi Verma
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Hariom Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Avijit Mazumder
- Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Gurmeen Rakhra
- Department of Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
34
|
Li J, Wang X, Shi L, Liu B, Sheng Z, Chang S, Cai X, Shan G. A Mammalian Conserved Circular RNA CircLARP1B Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305902. [PMID: 37953462 PMCID: PMC10787103 DOI: 10.1002/advs.202305902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiaolin Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Liang Shi
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Boqiang Liu
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Zhiyong Sheng
- School of Life ScienceBengbu Medical CollegeBengbu233030China
| | - Shuhui Chang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiujun Cai
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Ge Shan
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
35
|
Aydemir E, Arslan İİ, Görkay AH. The Application of Electromagnetic Fields in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:103-120. [PMID: 37755661 DOI: 10.1007/5584_2023_788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The use of nonionizing electromagnetic fields (EMFs) has attracted interest in cancer research during the past few decades due to its noninvasive therapeutic successes in the treatment of cancer. Some epidemiological studies suggest that there may be a link between exposure to EMF and developing malignancies (such as leukemia and gliomas) or neurodegenerative diseases since EMF has a variety of biological effects such as altering reactive oxygen species (ROS)-regulated pathways. EMF exposure, however, has the potential to cause cancer cells to undergo a period of regulated cell death. Therefore, it is important to thoroughly investigate how EMF might influence cellular processes such as proliferation, differentiation, and apoptosis - processes that are targeted in cancer treatment. In this chapter, we give a thorough summary of the most recent studies on the potential use of various EMF applications with adjustable settings to treat different forms of cancer.
Collapse
Affiliation(s)
- Esra Aydemir
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey.
| | - İsmail İshak Arslan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| | - Ahmet Hakan Görkay
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Turkey
| |
Collapse
|
36
|
Zhang X, Zhao Y, Yiminniyaze R, Zhu N, Zhang Y, Wumaier G, Xia J, Dong L, Zhou D, Wang J, Li C, Zhang Y, Li S. CDK10 suppresses metastasis of lung adenocarcinoma through inhibition of the ETS2/c-Raf/p-MEK/p-ERK signaling loop. Mol Carcinog 2024; 63:61-74. [PMID: 37737453 DOI: 10.1002/mc.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
The repertoire of aberrant signaling underlying the pathogenesis of lung adenocarcinoma remains largely uncharacterized, which precludes an efficient therapy for these patients, especially when distant metastasis occurs. Cyclin-dependent kinase 10 (CDK10) has been reported to modulate the progression of malignant tumors; however, contradictory effects have been found among different types of malignant tumors. In the present study, we found that CDK10 was downregulated in lung adenocarcinoma compared with the paired adjacent normal lung tissue, and lower expression level of CDK10 was associated with more frequent N2 staged lymph node and distant metastasis, higher TNM stage, and shorter overall survival. Further study indicated that CDK10 inhibited the migration and invasion abilities with no impact on the proliferation of lung adenocarcinoma cells. Mechanistically, CDK10 could bind to and promote the degradation of ETS2, a transcription factor for C-RAF and MMP2/9, thereby inactivating the downstream c-Raf/p-MEK/p-ERK pathway that drives epithelial-mesenchymal transition and impairing the expression of matrix metalloproteinases involved in cell invasion. In addition, the p-MEK/p-ERK pathway conducts a positive feedback regulation on the expression of ETS2. Knockdown of CDK10 in human lung adenocarcinoma cells significantly promoted the formation of metastatic foci in lungs in a xenograft mouse model. In conclusion, CDK10 suppresses metastasis of lung adenocarcinoma by disrupting the ETS2/c-Raf/p-MEK/p-ERK/ETS2 signaling and MMP2/9, providing a new therapeutic target for the treatment of lung adenocarcinoma with metastasis.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhao
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruzetuoheti Yiminniyaze
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Daibing Zhou
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Youzhi Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Xie D, Tian Y, Hu D, Wang Y, Yang Y, Zhou B, Zhang R, Ren Z, Liu M, Xu J, Dong C, Zhao B, Yang L. Oncolytic adenoviruses expressing checkpoint inhibitors for cancer therapy. Signal Transduct Target Ther 2023; 8:436. [PMID: 38016957 PMCID: PMC10684539 DOI: 10.1038/s41392-023-01683-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
Despite the remarkable success of immune checkpoint inhibitors (ICIs), primary resistance to ICIs causes only subsets of patients to achieve durable responses due to the complex tumor microenvironment (TME). Oncolytic viruses (OVs) can overcome the immunosuppressive TME and promote systemic antitumor immunity in hosts. Engineered OVs armed with ICIs would likely have improved effectiveness as a cancer therapy. According to the diverse immune cell landscapes among different types of tumors, we rationally and precisely generated three recombinant oncolytic adenoviruses (OAds): OAd-SIRPα-Fc, OAd-Siglec10-Fc and OAd-TIGIT-Fc. These viruses were designed to locally deliver SIRPα-Fc, Siglec10-Fc or TIGIT-Fc fusion proteins recognizing CD47, CD24 or CD155, respectively, in the TME to achieve enhanced antitumor effects. Our results suggested that OAd-SIRPα-Fc and OAd-Siglec10-Fc both showed outstanding efficacy in tumor suppression of macrophage-dominated tumors, while OAd-TIGIT-Fc showed the best antitumor immunity in CD8+ T-cell-dominated tumors. Importantly, the recombinant OAds activated an inflammatory immune response and generated long-term antitumor memory. In addition, the combination of OAd-Siglec10-Fc with anti-PD-1 significantly enhanced the antitumor effect in a 4T1 tumor model by remodeling the TME. In summary, rationally designed OAds expressing ICIs tailored to the immune cell landscape in the TME can precisely achieve tumor-specific immunotherapy of cancer.
Collapse
Affiliation(s)
- Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuling Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhixiang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyan Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Binyan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
38
|
Kim H, Kim HT, Jung SH, Han JW, Jo S, Kim IG, Kim RK, Kahm YJ, Choi TI, Kim CH, Lee JH. A Novel Anticancer Peptide Derived from Bryopsis plumosa Regulates Proliferation and Invasion in Non-Small Cell Lung Cancer Cells. Mar Drugs 2023; 21:607. [PMID: 38132928 PMCID: PMC10744475 DOI: 10.3390/md21120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The discovery of new highly effective anticancer drugs with few side effects is a challenge for drug development research. Natural or synthetic anticancer peptides (ACPs) represent a new generation of anticancer agents with high selectivity and specificity. The rapid emergence of chemoradiation-resistant lung cancer has necessitated the discovery of novel anticancer agents as alternatives to conventional therapeutics. In this study, we synthesized a peptide containing 22 amino acids and characterized it as a novel ACP (MP06) derived from green sea algae, Bryopsis plumosa. Using the ACP database, MP06 was predicted to possess an alpha-helical secondary structure and functionality. The anti-proliferative and apoptotic effects of the MP06, determined using the cytotoxicity assay and Annexin V/propidium iodide staining kit, were significantly higher in non-small-cell lung cancer (NSCLC) cells than in non-cancerous lung cells. We confirmed that MP06 suppressed cellular migration and invasion and inhibited the expression of N-cadherin and vimentin, the markers of epithelial-mesenchymal transition. Moreover, MP06 effectively reduced the metastasis of tumor xenografts in zebrafish embryos. In conclusion, we suggest considering MP06 as a novel candidate for the development of new anticancer drugs functioning via the ERK signaling pathway.
Collapse
Affiliation(s)
- Heabin Kim
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (H.K.); (S.-H.J.); (J.W.H.); (S.J.)
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea;
| | - Seung-Hyun Jung
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (H.K.); (S.-H.J.); (J.W.H.); (S.J.)
| | - Jong Won Han
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (H.K.); (S.-H.J.); (J.W.H.); (S.J.)
| | - Seonmi Jo
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (H.K.); (S.-H.J.); (J.W.H.); (S.J.)
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea; (I.-G.K.); (R.-K.K.); (Y.-J.K.)
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea; (I.-G.K.); (R.-K.K.); (Y.-J.K.)
- Department of Radiation Science and Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea; (I.-G.K.); (R.-K.K.); (Y.-J.K.)
- Department of Radiation Science and Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea; (T.-I.C.); (C.-H.K.)
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea; (T.-I.C.); (C.-H.K.)
| | - Jei Ha Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (H.K.); (S.-H.J.); (J.W.H.); (S.J.)
| |
Collapse
|
39
|
Stransky N, Ganser K, Quintanilla-Martinez L, Gonzalez-Menendez I, Naumann U, Eckert F, Koch P, Huber SM, Ruth P. Efficacy of combined tumor irradiation and K Ca3.1-targeting with TRAM-34 in a syngeneic glioma mouse model. Sci Rep 2023; 13:20604. [PMID: 37996600 PMCID: PMC10667541 DOI: 10.1038/s41598-023-47552-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The intermediate-conductance calcium-activated potassium channel KCa3.1 has been proposed to be a new potential target for glioblastoma treatment. This study analyzed the effect of combined irradiation and KCa3.1-targeting with TRAM-34 in the syngeneic, immune-competent orthotopic SMA-560/VM/Dk glioma mouse model. Whereas neither irradiation nor TRAM-34 treatment alone meaningfully prolonged the survival of the animals, the combination significantly prolonged the survival of the mice. We found an irradiation-induced hyperinvasion of glioma cells into the brain, which was inhibited by concomitant TRAM-34 treatment. Interestingly, TRAM-34 did neither radiosensitize nor impair SMA-560's intrinsic migratory capacities in vitro. Exploratory findings hint at increased TGF-β1 signaling after irradiation. On top, we found a marginal upregulation of MMP9 mRNA, which was inhibited by TRAM-34. Last, infiltration of CD3+, CD8+ or FoxP3+ T cells was not impacted by either irradiation or KCa3.1 targeting and we found no evidence of adverse events of the combined treatment. We conclude that concomitant irradiation and TRAM-34 treatment is efficacious in this preclinical glioma model.
Collapse
Affiliation(s)
- Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076, Tübingen, Germany
- Faculty of Medicine University, Gene and RNA Therapy Center (GRTC), Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University Vienna, AKH, Wien, Austria
| | - Pierre Koch
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
40
|
Nolan E, Kang Y, Malanchi I. Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041326. [PMID: 36987584 PMCID: PMC10626265 DOI: 10.1101/cshperspect.a041326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
41
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Huang ZG, Chen Y, Wu T, Yin BT, Feng X, Li SH, Li DM, Chen G, Cheng JW, He J. What should be the future direction of development in the field of prostate cancer with lung metastasis? World J Clin Oncol 2023; 14:420-439. [PMID: 37970109 PMCID: PMC10631347 DOI: 10.5306/wjco.v14.i10.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Since the start of the 21st century, prostate cancer with lung metastasis (PCLM) has accumulated significant scientific research output. However, a systematic knowledge framework for PCLM is still lacking. AIM To reconstruct the global knowledge system in the field of PCLM, sort out hot research directions, and provide reference for the clinical and mechanism research of PCLM. METHODS We retrieved 280 high-quality papers from the Web of Science Core Collection and conducted a bibliometric analysis of keywords, publication volume, and citation frequency. Additionally, we selected differentially expressed genes from global high-throughput datasets and performed enrichment analysis and protein-protein interaction analysis to further summarize and explore the mechanisms of PCLM. RESULTS PCLM has received extensive attention over the past 22 years, but there is an uneven spatial distribution in PCLM research. In the clinical aspect, the treatment of PCLM is mainly based on chemotherapy and immunotherapy, while diagnosis relies on methods such as prostate-specific membrane antigen positron emission tomography/computed tomography. In the basic research aspect, the focus is on cell adhesion molecules and signal transducer and activator of transcription 3, among others. Traditional treatments, such as chemotherapy, remain the mainstay of PCLM treatment, while novel approaches such as immunotherapy have limited effectiveness in PCLM. This study reveals for the first time that pathways related to coronavirus disease 2019, cytokine-cytokine receptor interaction, and ribosome are closely associated with PCLM. CONCLUSION Future research should focus on exploring and enhancing mechanisms such as cytokine-cytokine receptor interaction and ribosome and improve existing mechanisms like cadherin binding and cell adhesion molecules.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bin-Tong Yin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao Feng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Ming Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ji-Wen Cheng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
43
|
Shah S, Philipp LM, Giaimo S, Sebens S, Traulsen A, Raatz M. Understanding and leveraging phenotypic plasticity during metastasis formation. NPJ Syst Biol Appl 2023; 9:48. [PMID: 37803056 PMCID: PMC10558468 DOI: 10.1038/s41540-023-00309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Cancer metastasis is the process of detrimental systemic spread and the primary cause of cancer-related fatalities. Successful metastasis formation requires tumor cells to be proliferative and invasive; however, cells cannot be effective at both tasks simultaneously. Tumor cells compensate for this trade-off by changing their phenotype during metastasis formation through phenotypic plasticity. Given the changing selection pressures and competitive interactions that tumor cells face, it is poorly understood how plasticity shapes the process of metastasis formation. Here, we develop an ecology-inspired mathematical model with phenotypic plasticity and resource competition between phenotypes to address this knowledge gap. We find that phenotypically plastic tumor cell populations attain a stable phenotype equilibrium that maintains tumor cell heterogeneity. Considering treatment types inspired by chemo- and immunotherapy, we highlight that plasticity can protect tumors against interventions. Turning this strength into a weakness, we corroborate current clinical practices to use plasticity as a target for adjuvant therapy. We present a parsimonious view of tumor plasticity-driven metastasis that is quantitative and experimentally testable, and thus potentially improving the mechanistic understanding of metastasis at the cell population level, and its treatment consequences.
Collapse
Affiliation(s)
- Saumil Shah
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U30, Entrance 1, 24105, Kiel, Germany
| | - Stefano Giaimo
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U30, Entrance 1, 24105, Kiel, Germany
| | - Arne Traulsen
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Michael Raatz
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| |
Collapse
|
44
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
45
|
Menon U, Gentry-Maharaj A, Burnell M, Ryan A, Singh N, Manchanda R, Kalsi JK, Woolas R, Arora R, Casey L, Dawnay A, Sharma A, Williamson K, Apostolidou S, Fallowfield L, McGuire AJ, Campbell S, Skates SJ, Jacobs IJ, Parmar MKB. Tumour stage, treatment, and survival of women with high-grade serous tubo-ovarian cancer in UKCTOCS: an exploratory analysis of a randomised controlled trial. Lancet Oncol 2023; 24:1018-1028. [PMID: 37657461 PMCID: PMC7616829 DOI: 10.1016/s1470-2045(23)00335-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND In UKCTOCS, there was a decrease in the diagnosis of advanced stage tubo-ovarian cancer but no reduction in deaths in the multimodal screening group compared with the no screening group. Therefore, we did exploratory analyses of patients with high-grade serous ovarian cancer to understand the reason for the discrepancy. METHODS UKCTOCS was a 13-centre randomised controlled trial of screening postmenopausal women from the general population, aged 50-74 years, with intact ovaries. The trial management system randomly allocated (2:1:1) eligible participants (recruited from April 17, 2001, to Sept 29, 2005) in blocks of 32 using computer generated random numbers to no screening or annual screening (multimodal screening or ultrasound screening) until Dec 31, 2011. Follow-up was through national registries until June 30, 2020. An outcome review committee, masked to randomisation group, adjudicated on ovarian cancer diagnosis, histotype, stage, and cause of death. In this study, analyses were intention-to-screen comparisons of women with high-grade serous cancer at censorship (Dec 31, 2014) in multimodal screening versus no screening, using descriptive statistics for stage and treatment endpoints, and the Versatile test for survival from randomisation. This trial is registered with the ISRCTN Registry, 22488978, and ClinicalTrials.gov, NCT00058032. FINDINGS 202 562 eligible women were recruited (50 625 multimodal screening; 50 623 ultrasound screening; 101 314 no screening). 259 (0·5%) of 50 625 participants in the multimodal screening group and 520 (0·5%) of 101 314 in the no screening group were diagnosed with high-grade serous cancer. In the multimodal screening group compared with the no screening group, fewer were diagnosed with advanced stage disease (195 [75%] of 259 vs 446 [86%] of 520; p=0·0003), more had primary surgery (158 [61%] vs 219 [42%]; p<0·0001), more had zero residual disease following debulking surgery (119 [46%] vs 157 [30%]; p<0·0001), and more received treatment including both surgery and chemotherapy (192 [74%] vs 331 [64%]; p=0·0032). There was no difference in the first-line combination chemotherapy rate (142 [55%] vs 293 [56%]; p=0·69). Median follow-up from randomisation of 779 women with high-grade serous cancer in the multimodal and no screening groups was 9·51 years (IQR 6·04-13·00). At censorship (June 30, 2020), survival from randomisation was longer in women with high-grade serous cancer in the multimodal screening group than in the no screening group with absolute difference in survival of 6·9% (95% CI 0·4-13·0; p=0·042) at 18 years (21% [95% CI 15·6-26·2] vs 14% [95% CI 10·5-17·4]). INTERPRETATION To our knowledge, this is the first evidence that screening can detect high-grade serous cancer earlier and lead to improved short-term treatment outcomes compared with no screening. The potential survival benefit for women with high-grade serous cancer was small, most likely due to only modest gains in early detection and treatment improvement, and tumour biology. The cumulative results of the trial suggest that surrogate endpoints for disease-specific mortality should not currently be used in screening trials for ovarian cancer. FUNDING National Institute for Health Research, Medical Research Council, Cancer Research UK, The Eve Appeal.
Collapse
Affiliation(s)
- Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK; Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Matthew Burnell
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Andy Ryan
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Ranjit Manchanda
- Department of Gynaecological Oncology, Barts Health NHS Trust, London, UK; Wolfson Institute of Population Health, CRUK Barts Cancer Centre, Queen Mary University of London, London, UK
| | - Jatinderpal K Kalsi
- AGE Research Unit, School of Public Health Imperial College London, London, UK
| | - Robert Woolas
- Department of Gynaecological Oncology, Queen Alexandra Hospital, Portsmouth, UK
| | - Rupali Arora
- Department of Cellular Pathology, University College London Hospitals NHS Trust, London, UK
| | - Laura Casey
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Anne Dawnay
- Department of Clinical Biochemistry, Barts Health NHS Trust, London, UK
| | - Aarti Sharma
- Department of Obstetrics and Gynaecology, University Hospital of Wales, Cardiff, UK
| | - Karin Williamson
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, UK
| | - Sophia Apostolidou
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Lesley Fallowfield
- Sussex Health Outcomes Research and Education in Cancer (SHORE-C), Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | | | - Steven J Skates
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian J Jacobs
- Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Mahesh K B Parmar
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| |
Collapse
|
46
|
Jiang Z, Ju Y, Ali A, Chung PED, Skowron P, Wang DY, Shrestha M, Li H, Liu JC, Vorobieva I, Ghanbari-Azarnier R, Mwewa E, Koritzinsky M, Ben-David Y, Woodgett JR, Perou CM, Dupuy A, Bader GD, Egan SE, Taylor MD, Zacksenhaus E. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat Commun 2023; 14:4313. [PMID: 37463901 PMCID: PMC10354065 DOI: 10.1038/s41467-023-39935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFβ and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ethel Mwewa
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | | | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada.
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Wang X, Wei Z, Hu P, Xia W, Liao Z, Assani I, Yang G, Pan Y. Optimization of Neferine Purification Based on Response Surface Methodology and Its Anti-Metastasis Mechanism on HepG2 Cells. Molecules 2023; 28:5086. [PMID: 37446748 DOI: 10.3390/molecules28135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer continues to be a focus of scientific research due to its low five-year survival rate. One of its main core issues is the high metastasis of cells, for which there is no effective treatment. Neferine was originally isolated from Plumula nelumbinis and demonstrated to have a good antitumor effect. In order to extract high-purity Neferine in a more efficient and environmentally friendly manner, response surface methodology (RSM) was used to optimize the isolation and purification procedures in this study. The extract conditions of a 7:3 ratio for the eluent of dichloromethane: methanol, 1:60 for the mass ratio of the extract amount: silica gel, and 3 mL/min of the elution flow rate were shown to be the optimal conditions. These conditions resulted in the highest yield of 6.13 mg per 66.60 mg of starting material, with productivity of 8.76% and purity of 87.04%. Compared with the previous methods, this method can prepare Neferine in large quantities more quickly. We subsequently evaluated the antitumor activity of the purified Neferine against HepG2 hepatic cancer cells. The purified Neferine was found to inhibit the proliferation of HepG2 cells through the CCK-8 assay, with an IC50 of 33.80 μM in 24 h, 29.47 μM in 48 h, 24.35 μM in 72 h and 2.78 μM in 96 h of treatment. Neferine at a concentration of 3 μM could significantly inhibit the migration and invasion abilities of the HepG2 cells in vitro. We also explored the mechanism of action of Neferine via Western blot. We showed that Neferine could reduce RhoA expression by effectively inhibiting the phosphorylation of MYPT1, thereby effectively exerting anti-metastasis activity against HepG2 cells. Thus, we have optimized the isolation procedures for highly pure Neferine by response surface methodology (RSM) in this study, and purified Neferine is shown to play an essential role in the anti-metastasis process of liver cancer cells. The Neferine purification procedure may make a wide contribution to the follow-up development of other anti-metastasis lead compounds.
Collapse
Affiliation(s)
- Xinzhu Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Weibo Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhixin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
48
|
Liu J, Guo Y, Zhang R, Xu Y, Luo C, Wang R, Xu S, Wei L. Inhibition of TRPV4 remodels single cell polarity and suppresses the metastasis of hepatocellular carcinoma. Cell Death Dis 2023; 14:379. [PMID: 37369706 DOI: 10.1038/s41419-023-05903-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor, frequently causing both intrahepatic and extrahepatic metastases. The overall prognosis of patients with metastatic HCC is poor. Recently, single-cell (sc) polarity is proved to be an innate feature of some tumor cells in liquid phase, and directly involved in the cell adhesion to blood vessel and tumor metastasis. Here, we characterize the maintained sc polarity of HCC cells in a suspension culture, and investigate its roles and regulatory mechanisms during metastasis. We demonstrate that transient receptor potential vanilloid 4 (TRPV4) is a promoting regulator of sc polarity via activating Ca2+-dependent AMPK/MLC/ERM pathway. This attenuates the adhesion of metastatic HCC cells to vascular endothelial cells. The reduction of cancer metastases can result from TRPV4 inhibition, which not only impacts the migration and invasion of tumor cells, but also prevents the adhesion to vascular endothelial cells. Additionally, we discover a brand-new TRPV4 inhibitor called GL-V9 that modifies the degree of sc polarization and significantly decreases the metastatic capacity of HCC cells. Taken together, our data shows that TRPV4 and calcium signal are significant sc polarity regulators in metastatic HCC, and that the pharmacological intervention that results in HCC cells becoming depolarized suggests a promising treatment for cancer metastasis.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, #639 Longmian Dadao, Nanjing, The People's Republic of China
| | - Ruitian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Ye Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Chengju Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China
| | - Shu Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China.
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, The People's Republic of China.
| |
Collapse
|
49
|
Zhang Q, Li B, Zhang S, Huang Q, Zhang M, Liu G. Prognostic impact of tumor size on patients with metastatic colorectal cancer: a large SEER-based retrospective cohort study. Updates Surg 2023:10.1007/s13304-023-01533-4. [PMID: 37202599 DOI: 10.1007/s13304-023-01533-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Given the poor prognosis of metastatic colorectal cancer (mCRC), this research aimed to investigate the correlation between tumor size and prognosis, and develop a novel prediction model to guide individualized treatment. Patients pathologically diagnosed with mCRC were recruited from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015, and were randomly divided (7:3 ratio) into a training cohort (n = 5597) and a validation cohort (n = 2398). Kaplan-Meier curves were used to analyze the relationship between tumor size and overall survival (OS). Univariate Cox analysis was applied to assess the factors associated with the prognosis of mCRC patients in the training cohort, and then multivariate Cox analysis was used to construct a nomogram model. The area under the receiver-operating characteristics curve (AUC) and calibration curve were used to evaluate the predictive ability of the model. Patients with larger tumors had a worse prognosis. While brain metastases were associated with larger tumors compared to liver or lung metastases, bone metastases tended to be associated with smaller tumors. Multivariate Cox analysis revealed that tumor size was an independent prognostic risk factor (HR 1.28, 95% CI 1.19-1.38), in addition to the other ten variables (age, race, primary site, grade, histology, T stage, N stage, chemotherapy, CEA level and metastases site). The 1-, 3-, and 5-year OS nomogram model yielded AUC values of more than 0.70 in both the training and validation cohorts, and its predictive performance was superior to that of the traditional TNM stage. Calibration plots demonstrated a good agreement between the predicted and observed 1-, 3-, and 5-year OS outcomes in both cohorts. The size of primary tumor was found to be significantly associated with prognosis of mCRC, and was also correlated with specific metastatic organ. In this study, we presented the first effort to create and validate a novel nomogram for predicting 1-, 3- and 5-year OS probabilities of mCRC. The prognostic nomogram was demonstrated to have an excellent predictive ability in estimating individualized OS of patients with mCRC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Baosong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Colorectal Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Shiyao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qianpeng Huang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Maorun Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
50
|
Luo Z, He Y, Li M, Ge Y, Huang Y, Liu X, Hou J, Zhou S. Tumor Microenvironment-Inspired Glutathione-Responsive Three-Dimensional Fibrous Network for Efficient Trapping and Gentle Release of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24013-24022. [PMID: 37178127 DOI: 10.1021/acsami.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Detection of circulating tumor cells (CTCs) is important for early cancer diagnosis, prediction of postoperative recurrence, and individualized treatment. However, it is still challenging to achieve efficient capture and gentle release of CTCs from the complex peripheral blood due to their rarity and fragility. Herein, inspired by the three-dimensional (3D) network structure and high glutathione (GSH) level of the tumor microenvironment (TME), a 3D stereo (3D-G@FTP) fibrous network is developed by combining the liquid-assisted electrospinning method, gas foaming technique, and metal-polyphenol coordination interactions to achieve efficient trapping and gentle release of CTCs. Compared with the traditional 2D@FTP fibrous scaffold, the 3D-G@FTP fibrous network could achieve higher capture efficiency (90.4% vs 78.5%) toward cancer cells in a shorter time (30 min vs 90 min). This platform showed superior capture performance toward heterogeneous cancer cells (HepG2, HCT116, HeLa, and A549) in an epithelial cell adhesion molecule (EpCAM)-independent manner. In addition, the captured cells with high cell viability (>90.0%) could be gently released under biologically friendly GSH stimulus. More importantly, the 3D-G@FTP fibrous network could sensitively detect 4-19 CTCs from six kinds of cancer patients' blood samples. We expect this TME-inspired 3D stereo fibrous network integrating efficient trapping, broad-spectrum recognition, and gentle release will promote the development of biomimetic devices for rare cell analysis.
Collapse
Affiliation(s)
- Zhouying Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yang He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Ming Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yumeng Ge
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yisha Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xia Liu
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianwen Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|