1
|
Laurent PA, André F, Bobard A, Deandreis D, Demaria S, Depil S, Eichmüller SB, Fernandez-Palomo C, Foijer F, Galluzzi L, Galon J, Guckenberger M, Harrington KJ, Herrera FG, Huber PE, Italiano A, Karam SD, Kroemer G, Lambin P, Leuschner C, Mantovani A, Meylan E, Mondini M, Pittet MJ, Pouget JP, Remon J, Sørensen CS, Sotiriou C, Vanpouille-Box C, Weichselbaum RR, Welsh JW, Zitvogel L, Formenti SC, Deutsch E. Pushing the boundaries of radiotherapy-immunotherapy combinations: highlights from the 7 th immunorad conference. Oncoimmunology 2025; 14:2432726. [PMID: 39696783 DOI: 10.1080/2162402x.2024.2432726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Over the last decade, the annual Immunorad Conference, held under the joint auspicies of Gustave Roussy (Villejuif, France) and the Weill Cornell Medical College (New-York, USA) has aimed at exploring the latest advancements in the fields of tumor immunology and radiotherapy-immunotherapy combinations for the treatment of cancer. Gathering medical oncologists, radiation oncologists, physicians and researchers with esteemed expertise in these fields, the Immunorad Conference bridges the gap between preclinical outcomes and clinical opportunities. Thus, it paves a promising way toward optimizing radiotherapy-immunotherapy combinations and, from a broader perspective, improving therapeutic strategies for patients with cancer. Herein, we report on the topics developed by key-opinion leaders during the 7th Immunorad Conference held in Paris-Les Cordeliers (France) from September 27th to 29th 2023, and set the stage for the 8th edition of Immunorad which will be held at Weill Cornell Medical College (New-York, USA) in October 2024.
Collapse
Affiliation(s)
- Pierre-Antoine Laurent
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM, U1030 "Molecular Radiotherapy and Therapeutic Innovations", Gustave Roussy, Villejuif, France
| | - Fabrice André
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
- INSERM U981 "Molecular predictors and new targets in oncology", Gustave Roussy, Villejuif, France
- IHU PRISM Precision Medicine Cancer Center, Gustave Roussy, Villejuif, France
| | | | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New-York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New-York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Stephane Depil
- Cancer Research Center of Lyon, Centre Léon Bérard, Université Claude Bernard, Lyon, France
- ErVimmune, Lyon, France
| | - Stefan B Eichmüller
- Research Group GMP & T-cell therapy, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New-York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology; Sorbonne Université; Sorbonne Paris Cité, Université de Paris, Paris, France
- Centre de Recherche des Cordeliers, Paris, France
| | | | - Kevin J Harrington
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, National Institute of Health Research Biomedical Research Centre, London, UK
| | - Fernanda G Herrera
- Radiation Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Peter E Huber
- Department of Radio-oncology and Radiotherapy, University Hospital Heidelberg; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antoine Italiano
- Department of therapeutic innovations (DITEP), Gustave Roussy, Villejuif, France
- Department of Medicine, Institut Bergonié, Bordeaux, France
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Department of Biology, Hôpital Européen Georges Pompidou AP-HP, Paris, France
- Institut du Cancer Paris CARPEM, Paris, France
| | - Philippe Lambin
- Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Carola Leuschner
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
- William Harvey Research Institute, Queen Mary University, London, UK
| | - Etienne Meylan
- Laboratory of Immunobiology, Department of Molecular Biology, Faculty of Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
- Lung Cancer and Immuno-Oncology laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Faculty of Medicine, Université libre de Bruxelles, Bruxelles, Belgium
- ULB Cancer Research Center (U-CRC) and ULB Center for Research in Immunology (U-CRI), Bruxelles, Belgium
| | - Michele Mondini
- INSERM, U1030 "Molecular Radiotherapy and Therapeutic Innovations", Gustave Roussy, Villejuif, France
| | - Mikael J Pittet
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland. Swiss Cancer Center Leman, Lausanne, Switzerland
- Translational Research Center in Onco-Haematology (CRTOH), University of Geneva, Geneva, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM)INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Jordi Remon
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New-York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research; University of Chicago, Chicago, IL, USA
| | - James W Welsh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurence Zitvogel
- ClinicObiome, Gustave Roussy, Villejuif, France
- INSERM U1015 "Tumor Immunology and Anti-Cancer Immunotherapy Unit", Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France
- Division of Medicine, Paris-Saclay University, Ile-de-France, France
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New-York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM, U1030 "Molecular Radiotherapy and Therapeutic Innovations", Gustave Roussy, Villejuif, France
- Division of Medicine, Paris-Saclay University, Ile-de-France, France
- RHU LySAIRI "Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy", Gustave Roussy, Villejuif, France
| |
Collapse
|
2
|
Zhao J, Wang Y, Ma C, Feng Y, Wang Y, Sun S. SCGB1D4 downregulation links to fibrosis in intrauterine adhesion patients and rat models†. Biol Reprod 2025; 112:273-285. [PMID: 39588952 DOI: 10.1093/biolre/ioae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/17/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Intrauterine adhesions (IUA) represent a prevalent uterine endometrial disorder frequently correlated with menstrual irregularities and infertility. Some members of the secretoglobin(SCGB) family have demonstrated anti-fibrotic effects, however, the specific role of SCGB1D4, one of the family members, in anti-fibrosis remains unclear. This study aimed to investigate the expression of SCGB1D4 in IUA tissues, validate the role of SCGB1D4 in endometrial fibrosis, and assess its potential therapeutic significance by analyzing clinical features and constructing rat and cell models. Clinical characteristics of patients with intrauterine adhesions (IUA) were compared and analyzed against control subjects. Additionally, a rat uterine adhesion model was successfully established using a combination of mechanical injury and infection. The expression levels of SCGB1D4 in patient tissues and animal models were detected through immunohistochemistry, Western blot, and real-time fluorescence quantitative PCR, and the changes in fibrosis markers COL1A1 and α-SMA were also evaluated. Furthermore, human endometrial stromal cell lines (HESCs) induced by transforming growth factor-β-1 conversion were differentiated into myofibroblasts to establish cell models of intrauterine adhesion. We detected the expression of SCGB1D4 and fibrosis-related factors by real-time fluorescence quantitative PCR and Western blot. Cell proliferation and cell cycle changes were assessed using flow cytometry and CCK8. IUA patients showed increased miscarriage rates and decreased endometrial thickness. Clinical tissue specimens revealed significantly lower expression of SCGB1D4 in the endometrial tissues of IUA patients, accompanied by a notable increase in COL1A1 and α-SMA. The established rat model of intrauterine adhesion exhibited decreased expression of SCGB1D4 and a significant increase in fibrosis. After overexpression of SCGB1D4 on the IUA cell model, SCGB1D4 expression was elevated, while COL1A1 and α-SMA expression was significantly reduced. Cell proliferation was inhibited and cell cycle distribution was altered. This study has confirmed the low expression of SCGB1D4 in patients with IUA, as well as in animal and cell models. Furthermore, the overexpression of SCGB1D4 in a cell model of IUA demonstrates that it may play a key role in inhibiting fibrosis. SCGB1D4 holds promise as a potential therapeutic target for IUA, providing a new avenue for overcoming fertility issues caused by IUA.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yuanhui Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Chanchan Ma
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yifan Feng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yunmeng Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Shiying Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
3
|
Ji K, Jia H, Liu Z, Yu G, Wen R, Zhang T, Peng Z, Man W, Tian Y, Wang C, Ling Q, Zhang W, Zhou L, Liu M, Zhu B. New insight in immunotherapy and combine therapy in colorectal cancer. Front Cell Dev Biol 2025; 12:1453630. [PMID: 39839672 PMCID: PMC11747282 DOI: 10.3389/fcell.2024.1453630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) in colorectal cancer (CRC) treatment marks a major breakthrough. These therapies have proven safer and more effective than traditional radiotherapy and targeted treatments. Immunotherapies like pembrolizumab, nivolumab, and ipilimumab have pioneered new treatment avenues, potentially improving patient outcomes and quality of life. Additionally, advances in immunotherapy have prompted detailed research into CRC therapies, especially those integrating ICIs with conventional treatments, providing new hope for patients and shaping future research and practice. This review delves into the mechanisms of various ICIs and evaluates their therapeutic potential when combined with radiotherapy, chemotherapy, and targeted therapies in clinical settings. It also sheds light on the current application and research involving ICIs in CRC treatment.
Collapse
Affiliation(s)
- Kai Ji
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hang Jia
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zixuan Liu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianshuai Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiying Peng
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenjiang Man
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yucheng Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianlong Ling
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
4
|
Wang Y, Zhang J, Shao C. Cytological changes in radiation-induced lung injury. Life Sci 2024; 358:123188. [PMID: 39481833 DOI: 10.1016/j.lfs.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Radiation-induced lung injury (RILI) is a prevalent complication associated with radiotherapy for thoracic tumors. Based on the pathological progression, it can be categorized into two stages: early radiation pneumonitis and late radiation pulmonary fibrosis. The occurrence of RILI not only constrains the therapeutic dose that can be administered to the tumor target area but also significantly impairs patients' health and quality of life, thereby limiting the efficacy and applicability of radiotherapy. To effectively prevent and mitigate the development of RILI, it is crucial to disclose its underlying mechanisms. This review aims to elucidate the specific mechanisms involved in RILI and to examine the roles of various cell types, including lung parenchymal cells and different immune cells. The functions and interactions of lung epithelial cells, pulmonary vascular endothelial cells, a variety of immune cells, and fibroblasts during different stages of inflammation, tissue repair, and fibrosis following radiation-induced lung injury are analyzed. A comprehensive understanding of the dynamic changes in these cellular components is anticipated to offer new strategies for the prevention of RILI.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
5
|
Shen Y, Zhong B, Zheng W, Wang D, Chen L, Song H, Pan X, Mo S, Jin B, Cui H, Zhan H, Luo F, Liu J. Rg3-lipo biomimetic delivery of paclitaxel enhances targeting of tumors and myeloid-derived suppressor cells. J Clin Invest 2024; 134:e178617. [PMID: 39545407 PMCID: PMC11563678 DOI: 10.1172/jci178617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024] Open
Abstract
Liposomal drug delivery systems have revolutionized traditional cytotoxic drugs. However, the relative instability and toxicity of the existing liposomal drug delivery systems compromised their efficacy. Herein, we present Rg3-lipo, an innovative drug delivery system using a glycosyl moiety-enriched ginsenoside (Rg3). This system is distinguished by its glycosyl moieties exposed on the liposomal surface. These moieties imitate human cell membranes to stabilize and evade phagocytic clearance. The Rg3-lipo system loaded with paclitaxel (PTX-Rg3-lipo) demonstrated favorable bioavailability and safety in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys. With its glycosyl moieties recognizing tumor cells via the glucose transporter Glut1, PTX-Rg3-lipo inhibited gastric, breast, and esophageal cancers in human cancer cell lines, tumor-bearing mice, and patient-derived xenograft models. These glycosyl moieties selectively targeted myeloid-derived suppressor cells (MDSCs) through the glucose transporter Glut3 to attenuate their immunosuppressive effect. The mechanism study revealed that Rg3-lipo suppressed glycolysis and downregulated the transcription factors c-Maf and Mafb overcoming the MDSC-mediated immunosuppressive microenvironment and enhancing PTX-Rg3-lipo's antitumor effect. Taken together, we supply substantial evidence for its advantageous bioavailability and safety in multiple animal models, including nonhuman primates, and Rg3-lipo's dual targeting of cancer cells and MDSCs. Further investigation regarding Rg3-lipo's druggability will be conducted in clinical trials.
Collapse
Affiliation(s)
- Yuru Shen
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Zhong
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Biotherapy Research Center, Fudan University, Shanghai, China
| | - Wanwei Zheng
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Wang
- Xiamen Ginposome Pharmaceutical Co. Ltd., Xiamen, China
| | - Lin Chen
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Song
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Pan
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaocong Mo
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bryan Jin
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoshu Cui
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huaxing Zhan
- Xiamen Ginposome Pharmaceutical Co. Ltd., Xiamen, China
| | - Feifei Luo
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Markowitz GJ, Ban Y, Tavarez DA, Yoffe L, Podaza E, He Y, Martin MT, Crowley MJP, Sandoval TA, Gao D, Martin ML, Elemento O, Cubillos-Ruiz JR, McGraw TE, Altorki NK, Mittal V. Deficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1 + progenitor CD8 + T cells to improve immunotherapy. Nat Immunol 2024; 25:1884-1899. [PMID: 39327500 DOI: 10.1038/s41590-024-01963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/13/2024] [Indexed: 09/28/2024]
Abstract
TCF1high progenitor CD8+ T cells mediate the efficacy of immunotherapy; however, the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high progenitor-exhausted-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites and increased PPP cycling as determined by 1,2-13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells toward a TCF1high population, generated a unique transcriptional landscape and adoptive transfer of agonist-treated CD8+ T cells enhanced tumor control in mice in combination with PD-1 blockade and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state promoting immunotherapy efficacy.
Collapse
Affiliation(s)
- Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Ban
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diamile A Tavarez
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Enrique Podaza
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Gritstone Bio, Boston, MA, USA
| | - Yongfeng He
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Mitchell T Martin
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael J P Crowley
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- SalioGen Therapeutics, Lexington, MA, USA
| | - Tito A Sandoval
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Altos Labs, Redwood City, CA, USA
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Wang Z, Tang R, Wang H, Li X, Liu Z, Li W, Peng G, Zhou H. Bioinformatics analysis of the role of lysosome-related genes in breast cancer. Comput Methods Biomech Biomed Engin 2024:1-20. [PMID: 39054687 DOI: 10.1080/10255842.2024.2379936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to investigate the roles of lysosome-related genes in BC prognosis and immunity. Transcriptome data from TCGA and MSigDB, along with lysosome-related gene sets, underwent NMF cluster analysis, resulting in two subtypes. Using lasso regression and univariate/multivariate Cox regression analysis, an 11-gene signature was successfully identified and verified. High- and low-risk populations were dominated by HR+ sample types. There were differences in pathway enrichment, immune cell infiltration, and immune scores. Sensitive drugs targeting model genes were screened using GDSC and CCLE. This study constructed a reliable prognostic model with lysosome-related genes, providing valuable insights for BC clinical immunotherapy.
Collapse
Affiliation(s)
- Zhongming Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Ruiyao Tang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huazhong Wang
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Xizhang Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Zhenbang Liu
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Wenjie Li
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Gui Peng
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| | - Huaiying Zhou
- Department of Breast Oncology, The Third People's Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| |
Collapse
|
8
|
Han L, He J, Xie H, Gong Y, Xie C. Pan-cell death-related signature reveals tumor immune microenvironment and optimizes personalized therapy alternations in lung adenocarcinoma. Sci Rep 2024; 14:15682. [PMID: 38977778 PMCID: PMC11231366 DOI: 10.1038/s41598-024-66662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
This study constructed a comprehensive analysis of cell death modules in eliminating aberrant cells and remodeling tumor microenvironment (TME). Consensus analysis was performed in 490 lung adenocarcinoma (LUAD) patients based on 4 types of cell death prognostic genes. Intersection method divided these LUAD samples into 5 cell death risk (CDR) clusters, and COX regression analysis were used to construct the CDR signature (CDRSig) with risk scores. Significant differences of TME phenotypes, clinical factors, genome variations, radiosensitivity and immunotherapy sensitivity were observed in different CDR clusters. Patients with higher risk scores in the CDRSig tended to be immune-excluded or immune-desert, and those with lower risk scores were more sensitive to radiotherapy and immunotherapy. The results from mouse model showed that intense expression of the high-risk gene PFKP was associated with low CD8+ T cell infiltration upon radiotherapy and anti-PD-L1 treatment. Deficient assays in vitro confirmed that PFKP downregulation enhanced cGAS/STING pathway activation and radiosensitivity in LUAD cells. In conclusion, our studies originally performed a comprehensive cell death analysis, suggesting the importance of CDR patterns in reprogramming TME and providing novel clues for LUAD personalized therapies.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Zheng Y, Peng Y. SCGB2A2 as a predictor of prognosis and response to immune-checkpoint blockage in metastatic triple-negative invasive breast cancer. Asian J Surg 2024; 47:2299-2301. [PMID: 38378431 DOI: 10.1016/j.asjsur.2024.01.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Yu Zheng
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
| | - Yunsong Peng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China.
| |
Collapse
|
10
|
Altorki NK, Bhinder B, Borczuk AC, Elemento O, Mittal V, McGraw TE. A signature of enhanced proliferation associated with response and survival to anti-PD-L1 therapy in early-stage non-small cell lung cancer. Cell Rep Med 2024; 5:101438. [PMID: 38401548 PMCID: PMC10982989 DOI: 10.1016/j.xcrm.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
In early-stage non-small cell lung cancer, the combination of neoadjuvant anti-PD-L1 and subablative stereotactic body radiation therapy (SBRT) is associated with higher rates of major pathologic response compared to anti-PD-L1 alone. Here, we identify a 140-gene set, enriched in genes characteristic of highly proliferating cells, associated with response to the dual therapy. Analysis of on-treatment transcriptome data indicate roles for T and B cells in response. The 140-gene set is associated with disease-free survival when applied to the combined trial arms. This 140-gene set identifies a subclass of tumors in all 7 of The Cancer Genome Atlas tumor types examined. Worse survival is associated with the 140-gene signature in 5 of these tumor types. Collectively, our data support that this 140-gene set, discovered in association with response to combined anti-PD-L1 and SBRT, identifies a clinically aggressive subclass of solid tumors that may be more likely to respond to immunotherapies.
Collapse
Affiliation(s)
- Nasser K Altorki
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Northwell Health Cancer Institute, Northwell Health, Greenvale, NY 10042, USA
| | - Olivier Elemento
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Timothy E McGraw
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
11
|
Altorki NK, Walsh ZH, Melms JC, Port JL, Lee BE, Nasar A, Spinelli C, Caprio L, Rogava M, Ho P, Christos PJ, Saxena A, Elemento O, Bhinder B, Ager C, Amin AD, Sanfilippo NJ, Mittal V, Borczuk AC, Formenti SC, Izar B, McGraw TE. Neoadjuvant durvalumab plus radiation versus durvalumab alone in stages I-III non-small cell lung cancer: survival outcomes and molecular correlates of a randomized phase II trial. Nat Commun 2023; 14:8435. [PMID: 38114518 PMCID: PMC10730562 DOI: 10.1038/s41467-023-44195-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
We previously reported the results of a randomized phase II trial (NCT02904954) in patients with early-stage non-small cell lung cancer (NSCLC) who were treated with either two preoperative cycles of the anti-PD-L1 antibody durvalumab alone or combined with immunomodulatory doses of stereotactic radiation (DRT). The trial met its primary endpoint of major pathological response, which was significantly higher following DRT with no new safety signals. Here, we report on the prespecified secondary endpoint of disease-free survival (DFS) regardless of treatment assignment and the prespecified exploratory analysis of DFS in each arm of the trial. DFS at 2 and 3 years across patients in both arms of the trial were 73% (95% CI: 62.1-84.5) and 65% (95% CI: 52.5-76.9) respectively. For the exploratory endpoint of DFS in each arm of the trial, three-year DFS was 63% (95% CI: 46.0-80.4) in the durvalumab monotherapy arm compared to 67% (95% CI: 49.6-83.4) in the dual therapy arm. In addition, we report post hoc exploratory analysis of progression-free survival as well as molecular correlates of response and recurrence through high-plex immunophenotyping of sequentially collected peripheral blood and gene expression profiles from resected tumors in both treatment arms. Together, our results contribute to the evolving landscape of neoadjuvant treatment regimens for NSCLC and identify easily measurable potential biomarkers of response and recurrence.
Collapse
Affiliation(s)
- Nasser K Altorki
- Weill Cornell Medicine, Department of Cardiothoracic Surgery, New York, New York, USA.
| | - Zachary H Walsh
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Jeffery L Port
- Weill Cornell Medicine, Department of Cardiothoracic Surgery, New York, New York, USA
| | - Benjamin E Lee
- Weill Cornell Medicine, Department of Cardiothoracic Surgery, New York, New York, USA
| | - Abu Nasar
- Weill Cornell Medicine, Department of Cardiothoracic Surgery, New York, New York, USA
| | - Cathy Spinelli
- Weill Cornell Medicine, Department of Cardiothoracic Surgery, New York, New York, USA
| | - Lindsay Caprio
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Meri Rogava
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Patricia Ho
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Paul J Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Ashish Saxena
- Weill Cornell Medicine, Division of Hematology and Oncology, New York, New York, USA
| | - Olivier Elemento
- Weill Cornell Medicine, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, New York, New York, USA
| | - Bhavneet Bhinder
- Weill Cornell Medicine, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, New York, New York, USA
| | - Casey Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA
| | | | - Vivek Mittal
- Weill Cornell Medicine, Department of Cardiothoracic Surgery, New York, New York, USA
| | - Alain C Borczuk
- Department of Pathology, Northwell Health, Greenvale, New York, New York, USA
| | - Silvia C Formenti
- Weill Cornell Medicine, Department of Radiation Oncology, New York, New York, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, Vagelos College of Physicians & Surgeons, New York, New York, USA.
- Deparmtent of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, New York, USA.
- Columbia Center for Translational Immunology, New York, New York, USA.
| | - Timothy E McGraw
- Weill Cornell Medicine, Department of Biochemistry, New York, New York, USA.
| |
Collapse
|
12
|
Jeon SH, Song C, Eom KY, Kim IA, Kim JS. Modulation of CD8 + T Cell Responses by Radiotherapy-Current Evidence and Rationale for Combination with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:16691. [PMID: 38069014 PMCID: PMC10706388 DOI: 10.3390/ijms242316691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; (S.H.J.); (C.S.); (K.-Y.E.); (I.A.K.)
| |
Collapse
|
13
|
Zhang Z, Zhang X, Chen D. Using triple radio-immunotherapy to overcome cancer immunotherapy resistance. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0268. [PMID: 37975213 PMCID: PMC10690884 DOI: 10.20892/j.issn.2095-3941.2023.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan 250117, China
| | - Xiaodong Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan 250117, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
14
|
Wang X, Lin M, Zhu L, Ye Z. GAS-STING: a classical DNA recognition pathways to tumor therapy. Front Immunol 2023; 14:1200245. [PMID: 37920470 PMCID: PMC10618366 DOI: 10.3389/fimmu.2023.1200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Cyclic GMP-AMP synthetase (cGAS), recognized as the primary DNA sensor within cells, possesses the capability to identify foreign DNA molecules along with free DNA fragments. This identification process facilitates the production of type I IFNs through the activator of the interferon gene (STING) which induces the phosphorylation of downstream transcription factors. This action characterizes the most archetypal biological functionality of the cGAS-STING pathway. When treated with anti-tumor agents, cells experience DNA damage that triggers activation of the cGAS-STING pathway, culminating in the expression of type I IFNs and associated downstream interferon-stimulated genes. cGAS-STING is one of the important innate immune pathways,the role of type I IFNs in the articulation between innate immunity and T-cell antitumour immunity.type I IFNs promote the recruitment and activation of inflammatory cells (including NK cells) at the tumor site.Type I IFNs also can promote the activation and maturation of dendritic cel(DC), improve the antigen presentation of CD4+T lymphocytes, and enhance the cross-presentation of CD8+T lymphocytes to upregulating anti-tumor responses. This review discussed the cGAS-STING signaling and its mechanism and biological function in traditional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Xinrui Wang
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Meijia Lin
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liping Zhu
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zhoujie Ye
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Quach HT, Skovgard MS, Villena-Vargas J, Bellis RY, Chintala NK, Amador-Molina A, Bai Y, Banerjee S, Saini J, Xiong Y, Vista WR, Byun AJ, De Biasi A, Zeltsman M, Mayor M, Morello A, Mittal V, Gomez DR, Rimner A, Jones DR, Adusumilli PS. Tumor-Targeted Nonablative Radiation Promotes Solid Tumor CAR T-cell Therapy Efficacy. Cancer Immunol Res 2023; 11:1314-1331. [PMID: 37540803 PMCID: PMC10592183 DOI: 10.1158/2326-6066.cir-22-0840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Infiltration of tumor by T cells is a prerequisite for successful immunotherapy of solid tumors. In this study, we investigate the influence of tumor-targeted radiation on chimeric antigen receptor (CAR) T-cell therapy tumor infiltration, accumulation, and efficacy in clinically relevant models of pleural mesothelioma and non-small cell lung cancers. We use a nonablative dose of tumor-targeted radiation prior to systemic administration of mesothelin-targeted CAR T cells to assess infiltration, proliferation, antitumor efficacy, and functional persistence of CAR T cells at primary and distant sites of tumor. A tumor-targeted, nonablative dose of radiation promotes early and high infiltration, proliferation, and functional persistence of CAR T cells. Tumor-targeted radiation promotes tumor-chemokine expression and chemokine-receptor expression in infiltrating T cells and results in a subpopulation of higher-intensity CAR-expressing T cells with high coexpression of chemokine receptors that further infiltrate distant sites of disease, enhancing CAR T-cell antitumor efficacy. Enhanced CAR T-cell efficacy is evident in models of both high-mesothelin-expressing mesothelioma and mixed-mesothelin-expressing lung cancer-two thoracic cancers for which radiotherapy is part of the standard of care. Our results strongly suggest that the use of tumor-targeted radiation prior to systemic administration of CAR T cells may substantially improve CAR T-cell therapy efficacy for solid tumors. Building on our observations, we describe a translational strategy of "sandwich" cell therapy for solid tumors that combines sequential metastatic site-targeted radiation and CAR T cells-a regional solution to overcome barriers to systemic delivery of CAR T cells.
Collapse
Affiliation(s)
- Hue Tu Quach
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Matthew S. Skovgard
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jonathan Villena-Vargas
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Rebecca Y. Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Navin K. Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yang Bai
- Department of Cardiothoracic Surgery, Weill Cornell Medicine; New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jasmeen Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - William-Ray Vista
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Alexander J. Byun
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Andreas De Biasi
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Masha Zeltsman
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Marissa Mayor
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Aurore Morello
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine; New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY, USA
| | - Daniel R. Gomez
- Thoracic Radiation Oncology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Andreas Rimner
- Thoracic Radiation Oncology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
16
|
Galassi C, Klapp V, Formenti SC, Demaria S, Galluzzi L. Immunologically relevant effects of radiation therapy on the tumor microenvironment. Essays Biochem 2023; 67:979-989. [PMID: 37199227 PMCID: PMC10543618 DOI: 10.1042/ebc20220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Focal radiation therapy (RT) has been successfully employed to clinically manage multiple types of cancer for more than a century. Besides being preferentially cytotoxic for malignant cells over their nontransformed counterparts, RT elicits numerous microenvironmental alterations that appear to factor into its therapeutic efficacy. Here, we briefly discuss immunostimulatory and immunosuppressive microenvironmental changes elicited by RT and their impact on tumor recognition by the host immune system.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
17
|
Ellen JG, Jacob E, Nikolaou N, Markuzon N. Autoencoder-based multimodal prediction of non-small cell lung cancer survival. Sci Rep 2023; 13:15761. [PMID: 37737469 PMCID: PMC10517020 DOI: 10.1038/s41598-023-42365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
The ability to accurately predict non-small cell lung cancer (NSCLC) patient survival is crucial for informing physician decision-making, and the increasing availability of multi-omics data offers the promise of enhancing prognosis predictions. We present a multimodal integration approach that leverages microRNA, mRNA, DNA methylation, long non-coding RNA (lncRNA) and clinical data to predict NSCLC survival and identify patient subtypes, utilizing denoising autoencoders for data compression and integration. Survival performance for patients with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) was compared across modality combinations and data integration methods. Using The Cancer Genome Atlas data, our results demonstrate that survival prediction models combining multiple modalities outperform single modality models. The highest performance was achieved with a combination of only two modalities, lncRNA and clinical, at concordance indices (C-indices) of 0.69 ± 0.03 for LUAD and 0.62 ± 0.03 for LUSC. Models utilizing all five modalities achieved mean C-indices of 0.67 ± 0.04 and 0.63 ± 0.02 for LUAD and LUSC, respectively, while the best individual modality performance reached C-indices of 0.64 ± 0.03 for LUAD and 0.59 ± 0.03 for LUSC. Analysis of biological differences revealed two distinct survival subtypes with over 900 differentially expressed transcripts.
Collapse
Affiliation(s)
- Jacob G Ellen
- Institute of Health Informatics, University College London, London, UK.
| | - Etai Jacob
- AstraZeneca, Oncology Data Science, Waltham, MA, USA
| | | | | |
Collapse
|
18
|
Markowitz GJ, Ban Y, Tavarez DA, Yoffe L, Podaza E, He Y, Martin MT, Crowley MJP, Sandoval TA, Gao D, Martin ML, Elemento O, Cubillos-Ruiz JR, McGraw TE, Altorki NK, Mittal V. Deficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1+ progenitor CD8+ T cells to improve checkpoint blockade. RESEARCH SQUARE 2023:rs.3.rs-3356477. [PMID: 37790365 PMCID: PMC10543315 DOI: 10.21203/rs.3.rs-3356477/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
TCF1high progenitor CD8+ T cells mediate the efficacy of PD-1 blockade, however the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high central memory-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites, and increased PPP cycling as determined by 1,2 13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells towards a TCF1high population, generated a unique transcriptional landscape, enhanced tumor control in mice in combination with PD-1 blockade, and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state amenable to checkpoint blockade.
Collapse
|
19
|
Wu M, Wu S, Chen Y, Sun L, Zhou J. Immune Activation Effects at Different Irradiated Sites and Optimal Timing of Radioimmunotherapy in Patients with Extensive-Stage Small Cell Lung Cancer: a Real-World Analysis. Biol Proced Online 2023; 25:24. [PMID: 37710179 PMCID: PMC10503112 DOI: 10.1186/s12575-023-00217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND In view of the limited data on radiotherapy (RT) combined with immunotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC), this study aimed to identify the immune activation effect on different sites and the survival outcomes of radioimmunotherapy at different treatment stages. METHODS Forty-five patients diagnosed with ES-SCLC were included in this retrospective analysis. We collected the overall survival (OS) of the patients,, recorded the blood cell counts before, during, and after RT, and derived blood index ratios such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII). The datasets were analyzed using the Spearman rank correlation test, Kruskal-Wallis rank sum test and logistic regression. RESULTS Among the selected blood indices, the delta-NLR/PLR/Sll correlated with different irradiated organs, and the mean ranks of these three indices were the lowest in the brain-irradiated group during immunotherapy. Additionally, adjunct first-line immunotherapy with RT demonstrated a significant improvement compared to second- or third-line therapy and subsequent therapies. CONCLUSION Our findings suggest that compared to other organs, the strongest immune activation effect occurs with brain RT, and ES-SCLC patients who received radioimmunotherapy (RIT) earlier achieved higher OS rates.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiation Oncology, Nanjing Medical University, Nanjing, Jiangsu, China
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shihao Wu
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yuetong Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Jundong Zhou
- Department of Radiation Oncology, Nanjing Medical University, Nanjing, Jiangsu, China.
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Monjazeb AM, Daly ME, Luxardi G, Maverakis E, Merleev AA, Marusina AI, Borowsky A, Mirhadi A, Shiao SL, Beckett L, Chen S, Eastham D, Li T, Vick LV, McGee HM, Lara F, Garcia L, Morris LA, Canter RJ, Riess JW, Schalper KA, Murphy WJ, Kelly K. Atezolizumab plus stereotactic ablative radiotherapy for medically inoperable patients with early-stage non-small cell lung cancer: a multi-institutional phase I trial. Nat Commun 2023; 14:5332. [PMID: 37658083 PMCID: PMC10474145 DOI: 10.1038/s41467-023-40813-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amin Mirhadi
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | | | - Shuai Chen
- UC Davis Health, Sacramento, CA, 95817, USA
| | - David Eastham
- David Grant USAF Medical Center, Travis AFB, Fairfield, CA, 93405, USA
| | | | | | | | | | | | | | | | | | | | | | - Karen Kelly
- UC Davis Health, Sacramento, CA, 95817, USA
- International Association for the Study of Lung Cancer, Denver, CO, 80202, USA
| |
Collapse
|
21
|
Ascierto PA, Avallone A, Bifulco C, Bracarda S, Brody JD, Emens LA, Ferris RL, Formenti SC, Hamid O, Johnson DB, Kirchhoff T, Klebanoff CA, Lesinski GB, Monette A, Neyns B, Odunsi K, Paulos CM, Powell DJ, Rezvani K, Segal BH, Singh N, Sullivan RJ, Fox BA, Puzanov I. Perspectives in Immunotherapy: meeting report from Immunotherapy Bridge (Naples, November 30th-December 1st, 2022). J Transl Med 2023; 21:488. [PMID: 37475035 PMCID: PMC10360352 DOI: 10.1186/s12967-023-04329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
The discovery and development of novel treatments that harness the patient's immune system and prevent immune escape has dramatically improved outcomes for patients across cancer types. However, not all patients respond to immunotherapy, acquired resistance remains a challenge, and responses are poor in certain tumors which are considered to be immunologically cold. This has led to the need for new immunotherapy-based approaches, including adoptive cell transfer (ACT), therapeutic vaccines, and novel immune checkpoint inhibitors. These new approaches are focused on patients with an inadequate response to current treatments, with emerging evidence of improved responses in various cancers with new immunotherapy agents, often in combinations with existing agents. The use of cell therapies, drivers of immune response, and trends in immunotherapy were the focus of the Immunotherapy Bridge (November 30th-December 1st, 2022), organized by the Fondazione Melanoma Onlus, Naples, Italy, in collaboration with the Society for Immunotherapy of Cancer.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumor IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Carlo Bifulco
- Translational Molecular Pathology and Molecular Genomics, Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Sergio Bracarda
- Department of Oncology, Medical and Translational Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Joshua D Brody
- Tisch Cancer Institute, Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Ankyra Therapeutics, Cambridge, MA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Bart Neyns
- Department of Medical Oncology, University Hospital Brussel, Brussels, Belgium
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Chrystal M Paulos
- Department of Surgery and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Translational Research for Cutaneous Malignancies, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brahm H Segal
- Department of Internal Medicine and Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nathan Singh
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ryan J Sullivan
- Melanoma Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
22
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
23
|
Chi A, Nguyen NP. Mechanistic rationales for combining immunotherapy with radiotherapy. Front Immunol 2023; 14:1125905. [PMID: 37377970 PMCID: PMC10291094 DOI: 10.3389/fimmu.2023.1125905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Immunotherapy consisted mainly of immune checkpoint inhibitors (ICIs) has led to significantly improved antitumor response. However, such response has been observed only in tumors possessing an overall responsive tumor immune micro-environment (TIME), in which the presence of functional tumor-infiltrating lymphocytes (TILs) is critical. Various mechanisms of immune escape from immunosurveillance exist, leading to different TIME phenotypes in correlation with primary or acquired resistance to ICIs. Radiotherapy has been shown to induce antitumor immunity not only in the irradiated primary tumor, but also at unirradiated distant sites of metastases. Such antitumor immunity is mainly elicited by radiation's stimulatory effects on antigenicity and adjuvanticity. Furthermore, it may be significantly augmented when irradiation is combined with immunotherapy, such as ICIs. Therefore, radiotherapy represents one potential therapeutic strategy to restore anti-tumor immunity in tumors presenting with an unresponsive TIME. In this review, the generation of anti-tumor immunity, its impairment, radiation's immunogenic properties, and the antitumor effects of combining radiation with immunotherapy will be comprehensively discussed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Capital Medical University Xuanwu Hospital, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nam Phong Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| |
Collapse
|
24
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
25
|
Ning B, Tilston-Lunel AM, Simonetti J, Hicks-Berthet J, Matschulat A, Pfefferkorn R, Spira A, Edwards M, Mazzilli S, Lenburg ME, Beane JE, Varelas X. Convergence of YAP/TAZ, TEAD and TP63 activity is associated with bronchial premalignant severity and progression. J Exp Clin Cancer Res 2023; 42:116. [PMID: 37150829 PMCID: PMC10165825 DOI: 10.1186/s13046-023-02674-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Bronchial premalignant lesions (PMLs) are composed primarily of cells resembling basal epithelial cells of the airways, which through poorly understood mechanisms have the potential to progress to lung squamous cell carcinoma (LUSC). Despite ongoing efforts that have mapped gene expression and cell diversity across bronchial PML pathologies, signaling and transcriptional events driving malignancy are poorly understood. Evidence has suggested key roles for the Hippo pathway effectors YAP and TAZ and associated TEAD and TP63 transcription factor families in bronchial basal cell biology and LUSC. In this study we examine the functional association of YAP/TAZ, TEADs and TP63 in bronchial epithelial cells and PMLs. METHODS We performed RNA-seq in primary human bronchial epithelial cells following small interfering RNA (siRNA)-mediated depletion of YAP/TAZ, TEADs or TP63, and combined these data with ChIP-seq analysis of these factors. Directly activated or repressed genes were identified and overlapping genes were profiled across gene expression data obtained from progressive or regressive human PMLs and across lung single cell RNA-seq data sets. RESULTS Analysis of genes regulated by YAP/TAZ, TEADs, and TP63 in human bronchial epithelial cells revealed a converged transcriptional network that is strongly associated with the pathological progression of bronchial PMLs. Our observations suggest that YAP/TAZ-TEAD-TP63 associate to cooperatively promote basal epithelial cell proliferation and repress signals associated with interferon responses and immune cell communication. Directly repressed targets we identified include the MHC Class II transactivator CIITA, which is repressed in progressive PMLs and associates with adaptive immune responses in the lung. Our findings provide molecular insight into the control of gene expression events driving PML progression, including those contributing to immune evasion, offering potential new avenues for lung cancer interception. CONCLUSIONS Our study identifies important gene regulatory functions for YAP/TAZ-TEAD-TP63 in the early stages of lung cancer development, which notably includes immune-suppressive roles, and suggest that an assessment of the activity of this transcriptional complex may offer a means to identify immune evasive bronchial PMLs and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Boting Ning
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA
| | - Andrew M Tilston-Lunel
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Justice Simonetti
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Julia Hicks-Berthet
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Adeline Matschulat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA
| | - Roxana Pfefferkorn
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA
| | - Avrum Spira
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Johnson and Johnson Innovation, Cambridge, MA, 02142, USA
| | | | - Sarah Mazzilli
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA
| | - Marc E Lenburg
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA.
| | - Jennifer E Beane
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Bioinformatics Program, Boston University, 72 East Concord Street, Boston, MA, 02215, USA.
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Room K620, Boston, MA, 02118, USA.
| |
Collapse
|
26
|
Saxena A. Combining radiation therapy with immune checkpoint blockade for the treatment of small cell lung cancer. Semin Cancer Biol 2023; 90:45-56. [PMID: 36787870 DOI: 10.1016/j.semcancer.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The addition of immune checkpoint blockade (ICB) therapy to standard chemotherapy has been shown to improve survival in patients with metastatic small cell lung cancer. However, the benefit is modest and there remains an unmet need for novel therapeutic approaches to enhance the effectiveness of immunotherapy in this disease, both in the early and late stages. Ionizing radiation, which is a standard treatment for small cell lung cancer, is known to trigger immunogenic cell death in tumor cells, making it an attractive partner for ICB therapies in multiple solid tumor types. However, the optimal radiation dosage and fractionation scheme, target sites for radiation, and sequencing of radiation in relation to ICB treatment are still unclear. In this review we discuss the molecular biology underlying radiation-induced tumor immunity as well as pre-clinical and clinical studies combining radiation with ICB treatments, with a focus on translational and clinical trials in small cell lung cancer.
Collapse
Affiliation(s)
- Ashish Saxena
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, 1305 York Ave, 7th Floor, New York, NY 10021, USA.
| |
Collapse
|
27
|
Kraynak J, Marciscano AE. Image-guided radiation therapy of tumors in preclinical models. Methods Cell Biol 2023; 180:1-13. [PMID: 37890924 DOI: 10.1016/bs.mcb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Image-guided radiation therapy (IGRT) platforms for preclinical research represent an important advance for radiation research. IGRT-based platforms more accurately model the delivery of therapeutic ionizing radiation as delivered in clinical practice which permits more translationally and clinically relevant radiation biology research. Fundamentally, IGRT allows for precise delivery of ionizing radiation in order to (1) ensure that the tumor and/or target of interest is adequately covered by the prescribed radiation dose, and (2) to minimize the radiation dose delivered to adjacent nontargeted or normal tissues. Here, we describe the techniques and outline a general workflow employed for IGRT in preclinical in vivo tumor models.
Collapse
Affiliation(s)
- Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.
| | - Ariel E Marciscano
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
28
|
Hu J, Zhang L, Xia H, Yan Y, Zhu X, Sun F, Sun L, Li S, Li D, Wang J, Han Y, Zhang J, Bian D, Yu H, Chen Y, Fan P, Ma Q, Jiang G, Wang C, Zhang P. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med 2023; 15:14. [PMID: 36869384 PMCID: PMC9985263 DOI: 10.1186/s13073-023-01164-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Immunotherapy has revolutionized cancer treatment, but most patients are refractory to immunotherapy or acquire resistance, with the underlying mechanisms remaining to be explored. METHODS We characterized the transcriptomes of ~92,000 single cells from 3 pre-treatment and 12 post-treatment patients with non-small cell lung cancer (NSCLC) who received neoadjuvant PD-1 blockade combined with chemotherapy. The 12 post-treatment samples were categorized into two groups based on pathologic response: major pathologic response (MPR; n = 4) and non-MPR (NMPR; n = 8). RESULTS Distinct therapy-induced cancer cell transcriptomes were associated with clinical response. Cancer cells from MPR patients exhibited a signature of activated antigen presentation via major histocompatibility complex class II (MHC-II). Further, the transcriptional signatures of FCRL4+FCRL5+ memory B cells and CD16+CX3CR1+ monocytes were enriched in MPR patients and are predictors of immunotherapy response. Cancer cells from NMPR patients exhibited overexpression of estrogen metabolism enzymes and elevated serum estradiol. In all patients, therapy promoted expansion and activation of cytotoxic T cells and CD16+ NK cells, reduction of immunosuppressive Tregs, and activation of memory CD8+T cells into an effector phenotype. Tissue-resident macrophages were expanded after therapy, and tumor-associated macrophages (TAMs) were remodeled into a neutral instead of an anti-tumor phenotype. We revealed the heterogeneity of neutrophils during immunotherapy and identified an aged CCL3+ neutrophil subset was decreased in MPR patients. The aged CCL3+ neutrophils were predicted to interact with SPP1+ TAMs through a positive feedback loop to contribute to a poor therapy response. CONCLUSIONS Neoadjuvant PD-1 blockade combined with chemotherapy led to distinct NSCLC tumor microenvironment transcriptomes that correlated with therapy response. Although limited by a small patient sample size subjected to combination therapy, this study provides novel biomarkers to predict therapy response and suggests potential strategies to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Haoran Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Fenghuan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Shuangyi Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Dianke Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Jin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Dongliang Bian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Pengyu Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Qiang Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Frontier Science Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- The 1st School of Medicine, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
29
|
Kim KH, Pyo H, Lee H, Oh D, Noh JM, Ahn YC, Kim CG, Yoon HI, Lee J, Park S, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ku BM, Shin EC, Ahn MJ. Association of T Cell Senescence with Radiation Pneumonitis in Patients with Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:464-475. [PMID: 35896144 DOI: 10.1016/j.ijrobp.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Associations between immunosenescence and radiation pneumonitis (RP) are largely unknown. We aimed to identify a peripheral blood T cell senescence biomarker to predict RP in patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Patients with locally advanced NSCLC who received definitive concurrent chemoradiotherapy (dCRT) were prospectively registered (cohort 1, n=23; cohort 2, n=31). Peripheral blood was collected at baseline, during dCRT, and at 1 month post-dCRT. Patients were dichotomized to grade ≥2 (G2+) RP and grade 0-1 (G0-1) RP. Flow cytometry was performed to assess phenotypes and functional properties of T cell subsets. RP incidence was estimated via competing risk analysis. RESULTS Five and six patients exhibited G2+ RP following dCRT in cohorts 1 and 2, respectively. Patients with G2+ RP exhibited a more aged T cell pool and higher frequencies of senescent CD57+CD28-CD8+ T cells than patients with G0-1 RP at baseline, during dCRT, and at 1 month post-dCRT. These senescent cells exhibited increased granzyme B, IFN-γ, and TNF-α production. Higher baseline frequency of CD57+CD28-CD8+ T cells was an independent predictor of G2+ RP (hazard ratio, 8.42; 95% confidence interval, 2.58-27.45; P<0.001). Recursive partitioning analysis revealed three distinct risk groups stratified by baseline CD57+CD28-CD8+ T cell frequency and lung V20 Gy, with 1-year cumulative G2+ RP incidences of 50.0%, 16.7%, and 0% for high-, intermediate-, and low-risk groups, respectively (P=0.002). CONCLUSIONS Higher baseline frequencies of CD57+CD28-CD8+ T cells correlated with increased G2+ RP risks. Our results suggest the need for further investigation of the role of T cell senescence on radiation-induced organ damage.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
30
|
Mirjolet C, Baude J, Galluzzi L. Dual impact of radiation therapy on tumor-targeting immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:xiii-xxiv. [PMID: 37438022 DOI: 10.1016/s1937-6448(23)00114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France.
| | - Jérémy Baude
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|
31
|
Byrd AL, Qu X, Lukyanchuk A, Liu J, Chen F, Naughton KJ, DuCote TJ, Song X, Bowman HC, Zhao Y, Edgin AR, Wang C, Liu J, Brainson CF. Dysregulated Polycomb Repressive Complex 2 contributes to chronic obstructive pulmonary disease by rewiring stem cell fate. Stem Cell Reports 2022; 18:289-304. [PMID: 36525966 PMCID: PMC9860081 DOI: 10.1016/j.stemcr.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Aberrant lung cell differentiation is a hallmark of many lung diseases including chronic obstructive pulmonary disease (COPD). The EZH2-containing Polycomb Repressive Complex 2 (PRC2) regulates embryonic lung stem cell fate, but its role in adult lung is obscure. Histological analysis of patient tissues revealed that loss of PRC2 activity was correlated with aberrant bronchiolar cell differentiation in COPD lung. Histological and single-cell RNA-sequencing analyses showed that loss of EZH2 in mouse lung organoids led to lowered self-renewal capability, increased squamous morphological development, and marked shifts in progenitor cell populations. Evaluation of in vivo models revealed that heterozygosity of Ezh2 in mice with ovalbumin-induced lung inflammation led to epithelial cell differentiation patterns similar to those in COPD lung. We also identified cystathionine-β-synthase as a possible upstream factor for PRC2 destabilization. Our findings suggest that PRC2 is integral to facilitating proper lung stem cell differentiation in humans and mice.
Collapse
Affiliation(s)
- Aria L. Byrd
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xufeng Qu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexsandr Lukyanchuk
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Fan Chen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Kassandra J. Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Tanner J. DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xiulong Song
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Hannah C. Bowman
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Yanming Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Abigail R. Edgin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Christine Fillmore Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
32
|
Doğan G, Öztürk M, Karakulak DT, Karagenç L. Altered Expression of Pulmonary Epithelial Cell Markers in Fetal and Adult Mice Generated by in vitro Embryo Culture and Embryo Transfer. Cells Tissues Organs 2022; 213:1-16. [PMID: 36103849 DOI: 10.1159/000527044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2024] Open
Abstract
Lung development is impaired in mice generated through transfer of in vitro-derived blastocysts. The main objective of the current study was to determine if the composition of epithelial cells in the fetal and adult lung tissue is altered in mice generated through transfer of in vitro-derived blastocysts. The study comprised two experimental (EGs) and two control (CGs) groups. Fetuses (18.5 d.p.c.) and adult mice (8 weeks old) of the EGs (EGfetus, n = 18; EGadult, n = 15) were produced by the transfer of day 5 F2 blastocysts to pseudo-pregnant females. F2 fetuses and adult mice derived from naturally ovulating females served as the CGs (CGfetus, n = 18; CGadult, n = 15). The expression of Tuba-1a (a marker of ciliated cells), Foxj-1 (a marker of motile ciliated cells), Uch-L1 (a marker of neuroendocrine cells), Cldn-10 (a marker of club cells), Aqp-5 (a marker of type I alveolar cells), and Sp-C (a marker of type II alveolar cells) was determined using Western blot, immunohistochemistry/immunofluorescence, and quantitative RT-PCR analyses. Weight of fetuses as well as adult mice is decreased in mice comprising the EGs. Impaired lung development observed in EGfetus was associated with altered expression of Tuba-1a, Foxj-1, Cldn-10, Uch-L1, Sp-C, and Aqp-5. Morphology of the adult lung tissue was similar between the groups except for a significant increase in the thickness of the epithelia in EGadult. The expression of Cldn-10 and Sp-C was also altered in EGadult. It remains to be determined whether altered expression of these genes has any long-term impact on epithelial cell functions in the adult lung tissue.
Collapse
Affiliation(s)
- Göksel Doğan
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Murat Öztürk
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Didar Tuğçe Karakulak
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Levent Karagenç
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
33
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
34
|
Affiliation(s)
- Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA.
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA.
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|