1
|
Xia W, Dai X, Hu Y, Yang S, Chen C, Li X. Value of intraoperative post-conisation human papillomavirus testing in predicting residual or recurrence after treatment with a loop electrosurgical excision procedure in women with HR-HPV positive and cervical high-grade squamous intraepithelial lesion. BMC Cancer 2024; 24:1496. [PMID: 39639227 PMCID: PMC11619614 DOI: 10.1186/s12885-024-13272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE To evaluate the feasibility of intraoperative human papillomavirus (IOP-HPV) testing for the prediction of postoperative treatment failure in patients with high-grade squamous intraepithelial lesion (HSIL) undergoing loop electrosurgical excisional procedure (LEEP). METHODS A total of 114 women diagnosed with HSIL by biopsy and/or endocervical curettage who underwent LEEP were included in a prospective cohort study. IOP-HPV testing was performed immediately after the procedure. Patients were followed up for 24 months. Logistic regression was used to analyse the factors influencing the residual or recurrent lesions. Further stratified analyses were performed to investigate the differences in prognosis of IOP-HPV positivity in patients of different age and menopausal status. RESULTS 1. Of the 114 patients, 6 (5.26%) were pathologically upgraded to cervical cancer, and 21 (18.42%) were lost to follow-up. Recurrence or residual HSIL lesions occurred in 9.20% (8/87) of cases. Of the 8 women who developed post-treatment HSIL, 7 (26.92%) were positive for IOP-HPV, and only 1 (1.64%) was negative for IOP-HPV (< 0.01). 2. Transformation zones of type 2 (P = 0.0306) or type 3 (P = 0.0446), diagnosed as LSIL/negative by cervical biopsy (P = 0.0396), margin involvement (P = 0.0233), positive endocervical curettage after conisation (P = 0.0028), intraoperative HPV-positive (P < 0.01), cytological abnormalities (P = 0.0038), DNA ploidy positivity (P = 0.0172), postoperative HPV (P < 0.01) and DNA ploidy (P = 0.0078) positivity at 6 months were associated with higher risk of residual or recurrent lesions. 3. The results of the multivariate regression analysis showed that IOP-HPV positivity was the independent risk factor for residual or recurrent lesions (OR=10.69 , 95% CI:3.41, 33.51, P<0.01). IOP-HPV positivity was strongly associated with the occurrence of residual/recurrent LSIL (OR=6.42 , 95% CI:1.74, 23.70, P=0.0053) and HSIL (OR=32.08 , 95% CI:3.60, 285.64, P=0.0019). 4. Stratified analyses showed that IOP-HPV positive in patients younger than 50 years or premenopausal patients was associated with a significantly higher risk of recurrence or residual lesions (p<0.05). CONCLUSIONS IOP-HPV positivity is an independent risk factor for residual or recurrent HSIL lesions. In addition, IOP-HPV positivity was more associated with residual or recurrent lesions in those younger than 50 years or premenopausal. IOP-HPV testing may be of critical clinical value in providing the early and accurate prediction of residual or recurrent lesions.
Collapse
Affiliation(s)
- Weiting Xia
- Present address: Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinyue Dai
- Present address: Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yan Hu
- Present address: Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Simeng Yang
- Present address: Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chen Chen
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaolin Li
- Present address: Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
2
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024; 24:850-866. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Medo M, Ng CKY, Medová M. A comprehensive comparison of tools for fitting mutational signatures. Nat Commun 2024; 15:9467. [PMID: 39487150 PMCID: PMC11530434 DOI: 10.1038/s41467-024-53711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
Mutational signatures connect characteristic mutational patterns in the genome with biological or chemical processes that take place in cancers. Analysis of mutational signatures can help elucidate tumor evolution, prognosis, and therapeutic strategies. Although tools for extracting mutational signatures de novo have been extensively benchmarked, a similar effort is lacking for tools that fit known mutational signatures to a given catalog of mutations. We fill this gap by comprehensively evaluating twelve signature fitting tools on synthetic mutational catalogs with empirically driven signature weights corresponding to eight cancer types. On average, SigProfilerSingleSample and SigProfilerAssignment/MuSiCal perform best for small and large numbers of mutations per sample, respectively. We further show that ad hoc constraining the list of reference signatures is likely to produce inferior results. Evaluation of real mutational catalogs suggests that the activity of signatures that are absent in the reference catalog poses considerable problems to all evaluated tools.
Collapse
Affiliation(s)
- Matúš Medo
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Charlotte K Y Ng
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Baker TM, Lai S, Lynch AR, Lesluyes T, Yan H, Ogilvie HA, Verfaillie A, Dentro S, Bowes AL, Pillay N, Flanagan AM, Swanton C, Spellman PT, Tarabichi M, Van Loo P. The History of Chromosomal Instability in Genome-Doubled Tumors. Cancer Discov 2024; 14:1810-1822. [PMID: 38943574 PMCID: PMC7616501 DOI: 10.1158/2159-8290.cd-23-1249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/22/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Tumors frequently display high chromosomal instability and contain multiple copies of genomic regions. Here, we describe Gain Route Identification and Timing In Cancer (GRITIC), a generic method for timing genomic gains leading to complex copy number states, using single-sample bulk whole-genome sequencing data. By applying GRITIC to 6,091 tumors, we found that non-parsimonious evolution is frequent in the formation of complex copy number states in genome-doubled tumors. We measured chromosomal instability before and after genome duplication in human tumors and found that late genome doubling was followed by an increase in the rate of copy number gain. Copy number gains often accumulate as punctuated bursts, commonly after genome doubling. We infer that genome duplications typically affect the landscape of copy number losses, while only minimally impacting copy number gains. In summary, GRITIC is a novel copy number gain timing framework that permits the analysis of copy number evolution in chromosomally unstable tumors. Significance: Complex genomic gains are associated with whole-genome duplications, which are frequent across tumors, span a large fraction of their genomes, and are linked to poorer outcomes. GRITIC infers when these gains occur during tumor development, which will help to identify the genetic events that drive tumor evolution. See related commentary by Taylor, p. 1766.
Collapse
Affiliation(s)
- Toby M. Baker
- The Francis Crick Institute, London, United Kingdom.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Medicine, University of California Los Angeles, Los Angeles, California.
| | - Siqi Lai
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Andrew R. Lynch
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Tom Lesluyes
- The Francis Crick Institute, London, United Kingdom.
| | - Haixi Yan
- The Francis Crick Institute, London, United Kingdom.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Huw A. Ogilvie
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | - Stefan Dentro
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany.
| | - Amy L. Bowes
- The Francis Crick Institute, London, United Kingdom.
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London, United Kingdom.
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Adrienne M. Flanagan
- Research Department of Pathology, Cancer Institute, University College London, London, United Kingdom.
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom.
- Department of Oncology, University College London Hospitals, London, United Kingdom.
| | - Paul T. Spellman
- Department of Medicine, University of California Los Angeles, Los Angeles, California.
| | - Maxime Tarabichi
- The Francis Crick Institute, London, United Kingdom.
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
| | - Peter Van Loo
- The Francis Crick Institute, London, United Kingdom.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
5
|
Shirima CA, Bleotu C, Spandidos DA, El-Naggar AK, Pircalabioru GG, Michalopoulos I. Epithelial‑derived head and neck squamous tumourigenesis (Review). Oncol Rep 2024; 52:141. [PMID: 39219259 PMCID: PMC11358675 DOI: 10.3892/or.2024.8800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
Collapse
Affiliation(s)
- Charles Adolfu Shirima
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Adel K. El-Naggar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
6
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Zheng J, Li T, Ye H, Jiang Z, Jiang W, Yang H, Wu Z, Xie Z. Comprehensive identification of pathogenic variants in retinoblastoma by long- and short-read sequencing. Cancer Lett 2024; 598:217121. [PMID: 39009069 DOI: 10.1016/j.canlet.2024.217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Retinoblastoma (RB) is the most common intraocular malignancy in childhood. The causal variants in RB are mostly characterized by previously used short-read sequencing (SRS) analysis, which has technical limitations in identifying structural variants (SVs) and phasing information. Long-read sequencing (LRS) technology has advantages over SRS in detecting SVs, phased genetic variants, and methylation. In this study, we comprehensively characterized the genetic landscape of RB using combinatorial LRS and SRS of 16 RB tumors and 16 matched blood samples. We detected a total of 232 somatic SVs, with an average of 14.5 SVs per sample across the whole genome in our cohort. We identified 20 distinct pathogenic variants disrupting RB1 gene, including three novel small variants and five somatic SVs. We found more somatic SVs were detected from LRS than SRS (140 vs. 122) in RB samples with WGS data, particularly the insertions (18 vs. 1). Furthermore, our analysis shows that, with the exception of one sample who lacked the methylation data, all samples presented biallelic inactivation of RB1 in various forms, including two cases with the biallelic hypermethylated promoter and four cases with compound heterozygous mutations which were missing in SRS analysis. By inferring relative timing of somatic events, we reveal the genetic progression that RB1 disruption early and followed by copy number changes, including amplifications of Chr2p and deletions of Chr16q, during RB tumorigenesis. Altogether, we characterize the comprehensive genetic landscape of RB, providing novel insights into the genetic alterations and mechanisms contributing to RB initiation and development. Our work also establishes a framework to analyze genomic landscape of cancers based on LRS data.
Collapse
Affiliation(s)
- Jingjing Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zehang Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenbing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Zhikun Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Culliford R, Lawrence SED, Mills C, Tippu Z, Chubb D, Cornish AJ, Browning L, Kinnersley B, Bentham R, Sud A, Pallikonda H, Frangou A, Gruber AJ, Litchfield K, Wedge D, Larkin J, Turajlic S, Houlston RS. Whole genome sequencing refines stratification and therapy of patients with clear cell renal cell carcinoma. Nat Commun 2024; 15:5935. [PMID: 39009593 PMCID: PMC11250826 DOI: 10.1038/s41467-024-49692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer, but a comprehensive description of its genomic landscape is lacking. We report the whole genome sequencing of 778 ccRCC patients enrolled in the 100,000 Genomes Project, providing for a detailed description of the somatic mutational landscape of ccRCC. We identify candidate driver genes, which as well as emphasising the major role of epigenetic regulation in ccRCC highlight additional biological pathways extending opportunities for therapeutic interventions. Genomic characterisation identified patients with divergent clinical outcome; higher number of structural copy number alterations associated with poorer prognosis, whereas VHL mutations were independently associated with a better prognosis. The observations that higher T-cell infiltration is associated with better overall survival and that genetically predicted immune evasion is not common supports the rationale for immunotherapy. These findings should inform personalised surveillance and treatment strategies for ccRCC patients.
Collapse
Affiliation(s)
- Richard Culliford
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Samuel E D Lawrence
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Charlie Mills
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Zayd Tippu
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Robert Bentham
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Husayn Pallikonda
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Anna Frangou
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
- Algebraic Systems Biology, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Algebraic Systems Biology, Centre for Systems Biology Dresden, Dresden, Germany
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - David Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
9
|
Tabatabaeian H, Bai Y, Huang R, Chaurasia A, Darido C. Navigating therapeutic strategies: HPV classification in head and neck cancer. Br J Cancer 2024; 131:220-230. [PMID: 38643337 PMCID: PMC11263586 DOI: 10.1038/s41416-024-02655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/22/2024] Open
Abstract
The World Health Organisation recognised human papillomavirus (HPV) as the cause of multiple cancers, including head and neck cancers. HPV is a double-stranded DNA virus, and its viral gene expression can be controlled after infection by cellular and viral promoters. In cancer cells, the HPV genome is detected as either integrated into the host genome, episomal (extrachromosomal), or a mixture of integrated and episomal. Viral integration requires the breakage of both viral and host DNA, and the integration rate correlates with the level of DNA damage. Interestingly, patients with HPV-positive head and neck cancers generally have a good prognosis except for a group of patients with fully integrated HPV who show worst clinical outcomes. Those patients present with lowered expression of viral genes and limited infiltration of cytotoxic T cells. An impediment to effective therapy applications in the clinic is the sole testing for HPV positivity without considering the HPV integration status. This review will discuss HPV integration as a potential determinant of response to therapies in head and neck cancers and highlight to the field a novel therapeutic avenue that would reduce the cancer burden and improve patient survival.
Collapse
Affiliation(s)
| | - Yuchen Bai
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Ruihong Huang
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Charbel Darido
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Li X, Tang Z, Li Z, Li Z, Zhao P, Song Y, Yang K, Xia Z, Wang Y, Guo D. Somatic mutations that affect early genetic progression and immune microenvironment in gastric carcinoma. Pathol Res Pract 2024; 257:155310. [PMID: 38663178 DOI: 10.1016/j.prp.2024.155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Gastric carcinoma (GC) is a high heterogeneity and malignant tumor with a poor prognosis. The current implementation of immunotherapy in GC is limited due to the insufficient exploration of immune-related mutations and speculated early mutation events. Therefore, we performed whole-exome sequencing on 40 patients with GC to explore their genetic characteristics, shedding light on the order of genetic events, somatic mutations impacting the immune microenvironment, and potential biomarkers for immunotherapy. Regarding genetic events, TP53 disruptions were identified as frequent and early events in GC progression, often occurring alongside other gene mutations. The mutations occurring in GANS, SMAD4, and POLE were early independent events. Patients harboring CSMD3, FAT4, FLG, KMT2C, LRP1B, MUC5B, MUC16, PLEC, RNF43, SYNE1, TP53, TTN, XIRP2, and ZFHX4 mutations tended to have decreased B cells, T cells, macrophage, neutrophil, and dendritic cells infiltration, except for the ARID1A gene mutations. We also found patients with microsatellite instability-high tumors had higher homologous recombination deficiency (HRD) scores. HRD showed a positive correlation with tumor mutational burden, which might serve as indirect evidence supporting the potential of HRD as a biomarker for GC. These findings highlighted GC's high heterogeneity and complexity and provided valuable insights into the somatic mutations that affect early genetic progression and immune microenvironment.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Zirui Tang
- School of Software Engineering, Northeastern University, Shenyang, Liaoning 110169, China; Shenzhen Byoryn Technology Co. Ltd, Shenzhen, China
| | - Zhaopeng Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Zhao Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Ping Zhao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Yi Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Kexin Yang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zihan Xia
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Dong Guo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
11
|
Kuzmin E, Baker TM, Lesluyes T, Monlong J, Abe KT, Coelho PP, Schwartz M, Del Corpo J, Zou D, Morin G, Pacis A, Yang Y, Martinez C, Barber J, Kuasne H, Li R, Bourgey M, Fortier AM, Davison PG, Omeroglu A, Guiot MC, Morris Q, Kleinman CL, Huang S, Gingras AC, Ragoussis J, Bourque G, Van Loo P, Park M. Evolution of chromosome-arm aberrations in breast cancer through genetic network rewiring. Cell Rep 2024; 43:113988. [PMID: 38517886 PMCID: PMC11063629 DOI: 10.1016/j.celrep.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024] Open
Abstract
The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.
Collapse
Affiliation(s)
- Elena Kuzmin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| | | | | | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Kento T Abe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael Schwartz
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Joseph Del Corpo
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Dongmei Zou
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Genevieve Morin
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alain Pacis
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Yang Yang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Constanza Martinez
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
| | - Jarrett Barber
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Mathieu Bourgey
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Anne-Marie Fortier
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Peter G Davison
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Computational and Systems Biology, Sloan Kettering Institute, New York City, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Sidong Huang
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computational Genomics (C3G), McGill University, Montreal, QC H3A 0G1, Canada
| | - Peter Van Loo
- The Francis Crick Institute, NW1 1AT London, UK; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada.
| |
Collapse
|
12
|
Lechner A, Kumbrink J, Walz C, Jung A, Baumeister P, Flach S. Molecular characterization of the evolution of premalignant lesions in the upper aerodigestive tract. Front Oncol 2024; 14:1364958. [PMID: 38706595 PMCID: PMC11067708 DOI: 10.3389/fonc.2024.1364958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Early relapse and development of metastatic disease are some of the primary reasons for the poor prognosis of patients with head and neck squamous cell carcinoma (HNSCC). HNSCC is a heterogeneous disease which may develop in large premalignant fields of genetically altered cells. Yet knowing which individuals will progress and develop clinically significant cancers during their lifetimes remains one of the most important challenges of reducing HNSCC morbidity and mortality. To further elucidate the molecular mechanisms, we performed a focused analysis of the genome and immune microenvironment from multiple, matched normal squamous tissue, premalignant lesions, as well as primary and recurrent tumors from seven patients with p16-negative HNSCC. Methods We performed targeted panel Next Generation Sequencing (161 genes) to analyze somatic variants from sequentially collected, matched formalin-fixed paraffin-embedded tissue (normal, premalignant, HNSCC) from two patients. These samples plus samples from five additional patients were analyzed with the Nanostring PanCancer Immune Panel. In addition, we performed shallow whole genome sequencing (0.5x coverage on average) on samples from three of these patients. Patients were, apart from one case, primarily treated with curative-intent surgery, and received subsequent adjuvant treatment, if indicated. Results The most frequently mutated genes were TP53 and NOTCH1. Other mutated genes included NOTCH3 and CDKN2A, among others. A significant number of mutations were private to dysplasia and invasive carcinoma, respectively, however, almost 20% were shared between them. Increasing genomic instability was observed when comparing histologically normal squamous mucosa with higher levels of dysplasia. High-grade dysplasia showed similarly rearranged genomes as invasive carcinoma. Pathways related to interferon alpha and gamma response were upregulated even in moderate dysplastic lesions with increasing expression in higher grades of dysplasia and carcinoma. SPINK5, a known tumor suppressor gene in HNSCC, was already downregulated in low-grade dysplastic lesions, indicating an early deactivation in the evolution of the disease. Conclusion Genomic alterations as well as aberrant immune gene expression can be observed early in the evolution of tumors of the upper aerodigestive tract, highlighting the potential for targeting early mechanisms of disease progression.
Collapse
Affiliation(s)
- Axel Lechner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität (LMU) Munich University Hospital, Munich, Germany
| | - Jörg Kumbrink
- Department of Pathology, LMU Munich University Hospital, Munich, Germany
| | - Christoph Walz
- Department of Pathology, LMU Munich University Hospital, Munich, Germany
| | - Andreas Jung
- Department of Pathology, LMU Munich University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität (LMU) Munich University Hospital, Munich, Germany
| | - Susanne Flach
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität (LMU) Munich University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
13
|
Yarbrough WG, Schrank TP, Burtness BA, Issaeva N. De-Escalated Therapy and Early Treatment of Recurrences in HPV-Associated Head and Neck Cancer: The Potential for Biomarkers to Revolutionize Personalized Therapy. Viruses 2024; 16:536. [PMID: 38675879 PMCID: PMC11053602 DOI: 10.3390/v16040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human papillomavirus-associated (HPV+) head and neck squamous cell carcinoma (HNSCC) is the most common HPV-associated cancer in the United States, with a rapid increase in incidence over the last two decades. The burden of HPV+ HNSCC is likely to continue to rise, and given the long latency between infection and the development of HPV+ HNSCC, it is estimated that the effect of the HPV vaccine will not be reflected in HNSCC prevalence until 2060. Efforts have begun to decrease morbidity of standard therapies for this disease, and its improved characterization is being leveraged to identify and target molecular vulnerabilities. Companion biomarkers for new therapies will identify responsive tumors. A more basic understanding of two mechanisms of HPV carcinogenesis in the head and neck has identified subtypes of HPV+ HNSCC that correlate with different carcinogenic programs and that identify tumors with good or poor prognosis. Current development of biomarkers that reliably identify these two subtypes, as well as biomarkers that can detect recurrent disease at an earlier time, will have immediate clinical application.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Travis P. Schrank
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Barbara A. Burtness
- Department of Medicine, Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA;
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Mallick S, Choi Y, Taylor AM, Cosper PF. Human Papillomavirus-Induced Chromosomal Instability and Aneuploidy in Squamous Cell Cancers. Viruses 2024; 16:501. [PMID: 38675844 PMCID: PMC11053578 DOI: 10.3390/v16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. CIN is defined as a continuous rate of chromosome missegregation events over the course of multiple cell divisions. CIN causes aneuploidy, a state of abnormal chromosome content differing from a multiple of the haploid. Human papillomavirus (HPV) is a well-known cause of squamous cancers of the oropharynx, cervix, and anus. The HPV E6 and E7 oncogenes have well-known roles in carcinogenesis, but additional genomic events, such as CIN and aneuploidy, are often required for tumor formation. HPV+ squamous cancers have an increased frequency of specific types of CIN, including polar chromosomes. CIN leads to chromosome gains and losses (aneuploidies) specific to HPV+ cancers, which are distinct from HPV- cancers. HPV-specific CIN and aneuploidy may have implications for prognosis and therapeutic response and may provide insight into novel therapeutic vulnerabilities. Here, we review HPV-specific types of CIN and patterns of aneuploidy in squamous cancers, as well as how this impacts patient prognosis and treatment.
Collapse
Affiliation(s)
- Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Yeseo Choi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
15
|
Kina S, Miyamoto S, Kawabata-Iwakawa R, Kina-Tanada M, Ogawa M, Yokoo S. Higher overall survival rates of oral squamous cell carcinoma treated with metronomic neoadjuvant chemotherapy. Am J Cancer Res 2024; 14:1033-1051. [PMID: 38590400 PMCID: PMC10998753 DOI: 10.62347/eynt8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Distant metastasis is an important prognostic factor for oral squamous cell carcinoma (OSCC). It involves the direct spread of tumor cells through blood vessels or via lymph nodes; however, there are currently no well-established treatments for its prevention in patients with OSCC. To investigate the impact of metronomic neoadjuvant chemotherapy on OSCC, we conducted a retrospective analysis of the efficacy of neoadjuvant chemotherapy with S-1 alone. Fifty-four patients underwent up-front surgery, while 106 received neoadjuvant chemotherapy with S-1 alone. A serious adverse event occurred in one of patient treated with neoadjuvant chemotherapy (1%); however, all patients underwent resection. The 5-year overall survival rate was higher with S-1 than with up-front surgery (96% vs. 81%, P = 0.002). Moreover, neoadjuvant chemotherapy significantly increased the overall survival rate of patients with poorly or moderately differentiated tumors, but not those with well-differentiated tumors. By analyzing a cohort of 523 head and neck squamous cell carcinoma (HNSCC) patients in the Cancer Genome Atlas, we identified genetic variants associated with histological differentiation. The frequency of pathogenic/likely pathogenic variants or deletions in 5 genes associated with HNSCC correlated with histological differentiation, some of which indicated the activation of the Wnt/β-catenin pathway in well-differentiated HNSCC. The vessel marker CD31 was highly expressed in poorly differentiated OSCC, whereas the anti-angiogenic molecule, LCN2, which is induced by the activation of the Wnt pathway, was highly expressed in well-differentiated OSCC. The present study showed that overall survival rates were higher in patients with poorly or moderately differentiated OSCC who received metronomic neoadjuvant chemotherapy, which was attributed to a difference in angiogenesis based on the characteristic landscape of pathogenic mutations according to histological differentiation.
Collapse
Affiliation(s)
- Shinichiro Kina
- Department of Medical Education and Development, Graduate School of Medicine, Gunma UniversityMaebashi, Gunma, Japan
| | - Sho Miyamoto
- Department of Oral Surgery, Sapporo Medical University School of MedicineSouth-1, West-16, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma UniversityMaebashi, Gunma, Japan
| | - Mika Kina-Tanada
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Graduate School of Medicine, Gunma UniversityMaebashi, Gunma, Japan
| | - Masaru Ogawa
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Graduate School of Medicine, Gunma UniversityMaebashi, Gunma, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, Graduate School of Medicine, Gunma UniversityMaebashi, Gunma, Japan
| |
Collapse
|
16
|
Das D, Hirayama S, Aye L, Bryan ME, Naegele S, Zhao B, Efthymiou V, Mendel J, Fisch AS, Kröller L, Michels BE, Waterboer T, Richmon JD, Adalsteinsson V, Lawrence MS, Crowson MG, Iafrate AJ, Faden DL. Blood-based screening for HPV-associated cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.04.24300841. [PMID: 38328243 PMCID: PMC10849671 DOI: 10.1101/2024.01.04.24300841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Background HPV-associated oropharyngeal cancer (HPV+OPSCC) is the most common HPV-associated cancer in the United States yet unlike cervical cancer lacks a screening test. HPV+OPSCCs are presumed to start developing 10-15 years prior to clinical diagnosis. Circulating tumor HPV DNA (ctHPVDNA) is a sensitive and specific biomarker for HPV+OPSCC. Taken together, blood-based screening for HPV+OPSCC may be feasible years prior to diagnosis. Methods We developed an HPV whole genome sequencing assay, HPV-DeepSeek, with 99% sensitivity and specificity at clinical diagnosis. 28 plasma samples from HPV+OPSCC patients collected 1.3-10.8 years prior to diagnosis along with 1:1 age and gender-matched controls were run on HPV-DeepSeek and an HPV serology assay. Results 22/28 (79%) of cases and 0/28 controls screened positive for HPV+OPSCC with 100% detection within four years of diagnosis and a maximum lead time of 7.8 years. We next applied a machine learning model classifying 27/28 cases (96%) with 100% detection within 10 years. Plasma-based PIK3CA gene mutations, viral genome integration events and HPV serology were used to orthogonally validate cancer detection with 68% (19/28) of the cohort having multiple cancer signals detected. Molecular fingerprinting of HPV genomes was performed across patients demonstrating that each viral genome was unique, ruling out contamination. In patients with tumor blocks from diagnosis (15/28), molecular fingerprinting was performed within patients confirming the same viral genome across time. Conclusions We demonstrate accurate blood-based detection of HPV-associated cancers with lead times up to 10 years before clinical cancer diagnosis and in doing so, highlight the enormous potential of ctDNA-based cancer screening.
Collapse
Affiliation(s)
- Dipon Das
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear, Boston, Massachusetts
| | - Shun Hirayama
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ling Aye
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Michael E. Bryan
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Saskia Naegele
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Brian Zhao
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Vasileios Efthymiou
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear, Boston, Massachusetts
| | - Julia Mendel
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Adam S. Fisch
- Massachusetts Eye and Ear, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lea Kröller
- Division of Infections and Cancer Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Birgitta E. Michels
- Division of Infections and Cancer Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Jeremy D. Richmon
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear, Boston, Massachusetts
| | | | - Michael S. Lawrence
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Matthew G. Crowson
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear, Boston, Massachusetts
| | - A. John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel L. Faden
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
17
|
Cooper DJ, Ziemba Y, Pereira L, Kann BH, Parashar B, Miles BA, Ghaly M, Seetharamu N, Frank D, Talcott WJ. Rates of Occult Invasive Disease in Patients With Biopsy-Proven Oral Cavity Squamous Cell Carcinoma in Situ. JAMA Otolaryngol Head Neck Surg 2024; 150:151-156. [PMID: 38175664 PMCID: PMC10767638 DOI: 10.1001/jamaoto.2023.3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2024]
Abstract
Importance The likelihood that an oral cavity lesion harbors occult invasive disease after biopsy demonstrating carcinoma in situ (CIS) is unknown. While de-escalated treatment strategies may be appealing in the setting of CIS, knowing whether occult invasive disease may be present and its association with survival outcomes would lead to more informed management decisions. Objective To evaluate rate of occult invasive disease and clinical outcomes in patients with oral cavity CIS. Design, Setting, and Participants This was a retrospective population-based cohort study using the National Cancer Database and included adults with biopsy-proven oral cavity CIS as the first diagnosis of cancer between 2004 and 2020. Data were analyzed from October 10, 2022, to June 25, 2023. Exposures Surgical resection vs no surgery. Main Outcomes and Measures Analyses calculated the rate of occult invasive disease identified on resection of a biopsy-proven CIS lesion. Univariate and multivariate logistic regression with odds ratios and 95% CIs were used to identify significant demographic and clinical characteristics associated with risk of occult invasion (age, year of diagnosis, sex, race and ethnicity, oral cavity subsite, and comorbidity status). Kaplan-Meier curves for overall survival (OS) were calculated for both unresected and resected cohorts (stratified by presence of occult invasive disease). Results A total of 1856 patients with oral cavity CIS were identified, with 122 who did not undergo surgery (median [range] age, 65 [26-90] years; 48 female individuals [39.3%] and 74 male individuals [60.7%]) and 1458 who underwent surgical resection and had documented pathology (median [range] age, 62 [21-90] years; 490 female individuals [33.6%] and 968 male individuals [66.4%]). Of the 1580 patients overall, 52 (3.3%) were Black; 39 (2.5%), Hispanic; 1365 (86.4%), White; and 124 (7.8%), other, not specified. Among those who proceeded with surgery with documented pathology, 408 patients (28.0%) were found to have occult invasive disease. Higher-risk features were present in 45 patients (11.0%) for final margin positivity, 16 patients (3.9%) for lymphovascular invasion, 13 patients (3.2%) for high-grade invasive disease, and 14 patients (3.4%) for nodal involvement. For those patients with occult disease, staging according to the American Joint Committee on Cancer's AJCC Cancer Staging Manual, eighth edition, was pT1 in 341 patients (83.6%), pT2 in 41 (10.0%), and pT3 or pT4 disease in 26 (6.4%). Factors associated with greater odds of occult invasive disease at resection were female sex, Black race, and alveolar ridge, vestibule, and retromolar subsite. With median 66-month follow-up, 5-year OS was 85.9% in patients who proceeded with surgical resection vs 59.7% in patients who did not undergo surgery (difference, 26.2%; 95% CI, 19.0%-33.4%). Conclusions and Relevance This cohort study assessed the risk of concurrent occult invasion with biopsy-proven CIS of the oral cavity, demonstrating that 28.0% had invasive disease at resection. Reassuringly, even in the setting of occult invasion, high-risk disease features were rare, and 5-year OS was nearly 80% with resection. The findings support the practice of definitive resection if feasible following biopsy demonstrating oral cavity CIS.
Collapse
Affiliation(s)
- Dylan J. Cooper
- Department of Radiation Medicine, Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York
| | - Yonah Ziemba
- Department of Pathology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Lucio Pereira
- Department of Otolaryngology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Benjamin H. Kann
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Bhupesh Parashar
- Department of Radiation Medicine, Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York
| | - Brett A. Miles
- Department of Otolaryngology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Maged Ghaly
- Department of Radiation Medicine, Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York
| | - Nagashree Seetharamu
- Division of Hematology-Oncology, Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Douglas Frank
- Department of Otolaryngology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Wesley J. Talcott
- Department of Radiation Medicine, Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York
| |
Collapse
|
18
|
Dananberg A, Striepen J, Rozowsky JS, Petljak M. APOBEC Mutagenesis in Cancer Development and Susceptibility. Cancers (Basel) 2024; 16:374. [PMID: 38254863 PMCID: PMC10814203 DOI: 10.3390/cancers16020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
APOBEC cytosine deaminases are prominent mutators in cancer, mediating mutations in over 50% of cancers. APOBEC mutagenesis has been linked to tumor heterogeneity, persistent cell evolution, and therapy responses. While emerging evidence supports the impact of APOBEC mutagenesis on cancer progression, the understanding of its contribution to cancer susceptibility and malignant transformation is limited. We examine the existing evidence for the role of APOBEC mutagenesis in carcinogenesis on the basis of the reported associations between germline polymorphisms in genes encoding APOBEC enzymes and cancer risk, insights into APOBEC activities from sequencing efforts of both malignant and non-malignant human tissues, and in vivo studies. We discuss key knowledge gaps and highlight possible ways to gain a deeper understanding of the contribution of APOBEC mutagenesis to cancer development.
Collapse
Affiliation(s)
- Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Jacob S. Rozowsky
- Medical Scientist Training Program, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Petljak
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
19
|
Ordulu Z, Giunta P, Hung WT, Hung YP, Simon J, Fintelmann FJ, Lennerz JK, Naxerova K, Cote GM. Sensitivity to ALK-Directed Therapy in Osteosarcoma With an Acquired ALK Rearrangement. JCO Precis Oncol 2023; 7:e2300287. [PMID: 38096470 PMCID: PMC10730046 DOI: 10.1200/po.23.00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Zehra Ordulu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Peter Giunta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Wei-Ting Hung
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin P. Hung
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Judit Simon
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Florian J. Fintelmann
- Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jochen K. Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kamila Naxerova
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory M. Cote
- Department of Internal Medicine, Division of Hematology/Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Conarty JP, Wieland A. The Tumor-Specific Immune Landscape in HPV+ Head and Neck Cancer. Viruses 2023; 15:1296. [PMID: 37376596 DOI: 10.3390/v15061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Human papillomaviruses (HPVs) are the causative agent of several anogenital cancers as well as head and neck cancers, with HPV+ head and neck squamous cell carcinoma (HNSCC) becoming a rapidly growing public health issue in the Western world. Due its viral etiology and potentially its subanatomical location, HPV+ HNSCC exhibits an immune microenvironment which is more inflamed and thus distinct from HPV-negative HNSCC. Notably, the antigenic landscape in most HPV+ HNSCC tumors extends beyond the classical HPV oncoproteins E6/7 and is extensively targeted by both the humoral and cellular arms of the adaptive immune system. Here, we provide a comprehensive overview of HPV-specific immune responses in patients with HPV+ HNSCC. We highlight the localization, antigen specificity, and differentiation states of humoral and cellular immune responses, and discuss their similarities and differences. Finally, we review currently pursued immunotherapeutic treatment modalities that attempt to harness HPV-specific immune responses for improving clinical outcomes in patients with HPV+ HNSCC.
Collapse
Affiliation(s)
- Jacob P Conarty
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|