1
|
Nartallo-Kaluarachchi R, Asllani M, Deco G, Kringelbach ML, Goriely A, Lambiotte R. Broken detailed balance and entropy production in directed networks. Phys Rev E 2024; 110:034313. [PMID: 39425339 DOI: 10.1103/physreve.110.034313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
The structure of a complex network plays a crucial role in determining its dynamical properties. In this paper , we show that the the degree to which a network is directed and hierarchically organized is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes and show how different directed network features affect their entropy production rate. We begin with an analytical treatment of a two-node network followed by numerical simulations of synthetic networks using the preferential attachment and Erdös-Renyi algorithms. Next, we analyze a collection of 97 empirical networks to determine the effect of complex real-world topologies. Finally, we present a simple method for inferring broken detailed balance and directed network structure from multivariate time series and apply our method to identify non-equilibrium dynamics and hierarchical organisation in both human neuroimaging and financial time series. Overall, our results shed light on the consequences of directed network structure on non-equilibrium dynamics and highlight the importance and ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.
Collapse
Affiliation(s)
| | | | | | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, 7 Stoke Pl, Oxford OX3 9BX, United Kingdom
- Center for Music in the Brain, Aarhus University, & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX United Kingdom
| | | | | |
Collapse
|
2
|
Bryant AG, Aquino K, Parkes L, Fornito A, Fulcher BD. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.573372. [PMID: 38915560 PMCID: PMC11195072 DOI: 10.1101/2024.01.10.573372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.
Collapse
Affiliation(s)
- Annie G. Bryant
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
- Brain Key Incorporated, San Francisco, CA, USA
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Bailey NW, Fulcher BD, Caldwell B, Hill AT, Fitzgibbon B, van Dijk H, Fitzgerald PB. Uncovering a stability signature of brain dynamics associated with meditation experience using massive time-series feature extraction. Neural Netw 2024; 171:171-185. [PMID: 38091761 DOI: 10.1016/j.neunet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/29/2024]
Abstract
Previous research has examined resting electroencephalographic (EEG) data to explore brain activity related to meditation. However, previous research has mostly examined power in different frequency bands. The practical objective of this study was to comprehensively test whether other types of time-series analysis methods are better suited to characterize brain activity related to meditation. To achieve this, we compared >7000 time-series features of the EEG signal to comprehensively characterize brain activity differences in meditators, using many measures that are novel in meditation research. Eyes-closed resting-state EEG data from 49 meditators and 46 non-meditators was decomposed into the top eight principal components (PCs). We extracted 7381 time-series features from each PC and each participant and used them to train classification algorithms to identify meditators. Highly differentiating individual features from successful classifiers were analysed in detail. Only the third PC (which had a central-parietal maximum) showed above-chance classification accuracy (67 %, pFDR = 0.007), for which 405 features significantly distinguished meditators (all pFDR < 0.05). Top-performing features indicated that meditators exhibited more consistent statistical properties across shorter subsegments of their EEG time-series (higher stationarity) and displayed an altered distributional shape of values about the mean. By contrast, classifiers trained with traditional band-power measures did not distinguish the groups (pFDR > 0.05). Our novel analysis approach suggests the key signatures of meditators' brain activity are higher temporal stability and a distribution of time-series values suggestive of longer, larger, or more frequent non-outlying voltage deviations from the mean within the third PC of their EEG data. The higher temporal stability observed in this EEG component might underpin the higher attentional stability associated with meditation. The novel time-series properties identified here have considerable potential for future exploration in meditation research and the analysis of neural dynamics more broadly.
Collapse
Affiliation(s)
- Neil W Bailey
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia; Central Clinical School, Department of Psychiatry, Monash University, Victoria, Australia.
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Bridget Caldwell
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Bernadette Fitzgibbon
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia; Central Clinical School, Department of Psychiatry, Monash University, Victoria, Australia
| | - Hanneke van Dijk
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Kingdom of the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University Maastricht, Maastricht, the Kingdom of the Netherlands
| | - Paul B Fitzgerald
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Klein B. A consolidated framework for quantifying interaction dynamics. NATURE COMPUTATIONAL SCIENCE 2023; 3:823-824. [PMID: 38177753 DOI: 10.1038/s43588-023-00520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Brennan Klein
- Network Science Institute, Northeastern University, Boston, MA, USA.
| |
Collapse
|