1
|
Farshadi EA, Wang W, Mohammad F, van der Oost E, Doukas M, van Eijck CHJ, van de Werken HJG, Katsikis PD. Tumor organoids improve mutation detection of pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:25468. [PMID: 39462012 PMCID: PMC11513084 DOI: 10.1038/s41598-024-75888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents challenges in detecting somatic mutations due to its complex cellular composition. This study investigated the utility of patient-derived organoids (PDOs) to overcome these obstacles and enhance somatic mutation identification. Surgically resected PDAC tumors and their paired PDOs from 21 patients were examined. Whole-exome sequencing (WES) of tumor tissue, organoids, and peripheral blood mononuclear cells was performed to identify somatic mutations. Our findings demonstrate that PDOs retained about 80% of the somatic mutations from the original tumors, showing high concordance in mutation types. PDOs exhibited increased tumor purity and uncovered key driver mutations, aiding in identifying clinically relevant genomic alterations. Moreover, eight cycles of FOLFIRINOX treatment did not significantly alter the mutational landscape at the DNA level, indicating the stability of the mutational profile after therapeutic pressure in patients. In conclusion, PDOs are potentially important tools for exploring the somatic mutational landscape of PDAC. While they can reveal mutations that may be challenging to detect through traditional biopsy sequencing due to the inherently low tumor purity of PDAC, it is important to note that PDOs may not always fully recapitulate all mutations found in primary tumors. Despite this limitation, PDOs can still offer critical insights into the genomic complexities of PDAC, which is crucial for the development of personalized vaccines and therapies for this disease.
Collapse
Affiliation(s)
- Elham Aida Farshadi
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Wenya Wang
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Farzana Mohammad
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Elise van der Oost
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
2
|
Rowlands CE, Folberg AM, Beickman ZK, Devor EJ, Leslie KK, Givens BE. Particles and Prejudice: Nanomedicine Approaches to Reducing Health Disparities in Endometrial Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300096. [PMID: 37312613 PMCID: PMC10716380 DOI: 10.1002/smll.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Endometrial cancer is the most common gynecological malignancy worldwide and unfortunately has a much higher mortality rate in Black women compared with White women. Many potential factors contribute to these mortality rates, including the underlying effects of systemic and interpersonal racism. Furthermore, other trends in medicine have potential links to these rates including participation in clinical trials, hormone therapy, and pre-existing health conditions. Addressing the high incidence and disparate mortality rates in endometrial cancer requires novel methods, such as nanoparticle-based therapeutics. These therapeutics have been growing in increasing prevalence in pre-clinical development and have far-reaching implications in cancer therapy. The rigor of pre-clinical studies is enhanced by the likeness of the model to the human body. In systems for 3D cell culture, for example, the extracellular matrix mimics the tumor more closely. The increasing emphasis on precision medicine can be applied to cancer using nanoparticle-based methods and applied to pre-clinical models by using patient-derived model data. This review highlights the intersections of nanomedicine, precision medicine, and racial disparities within endometrial cancer and provides insights into reducing health disparities using recent scientific advances on the nanoscale.
Collapse
Affiliation(s)
- Claire E Rowlands
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| | - Abigail M Folberg
- Department of Psychology, University of Nebraska at Omaha, 6100 W. Dodge Road, ASH 347E, Omaha, NE, 68182, USA
| | - Zachary K Beickman
- Department of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kimberly K Leslie
- Division of Molecular Medicine, Department of Internal Medicine, Department of Obstetrics and Gynecology, The University of New Mexico Comprehensive Cancer Center | The University of New Mexico Health Sciences Center, 1021 Medical Arts Ave NE, Albuquerque, NM, 87131, USA
| | - Brittany E Givens
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| |
Collapse
|
3
|
Zhang C, Lu X, Ni T, Wang Q, Gao X, Sun X, Li J, Mao F, Hou J, Wang Y. Developing patient-derived organoids to identify JX24120 inhibit SAMe synthesis in endometrial cancer by targeting MAT2B. Pharmacol Res 2024:107420. [PMID: 39293586 DOI: 10.1016/j.phrs.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we established a series of PDOs from EC and performed drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs model. These findings suggested that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiaojing Lu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China.
| |
Collapse
|
4
|
Liu Y, Jia D, Li L, Wang M. Advances in Nanomedicine and Biomaterials for Endometrial Regeneration: A Comprehensive Review. Int J Nanomedicine 2024; 19:8285-8308. [PMID: 39161362 PMCID: PMC11330863 DOI: 10.2147/ijn.s473259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
The endometrium is an extremely important component of the uterus and is crucial for individual health and human reproduction. However, traditional methods still struggle to ideally repair the structure and function of damaged endometrium and restore fertility. Therefore, seeking and developing innovative technologies and materials has the potential to repair and regenerate damaged or diseased endometrium. The emergence and functionalization of various nanomedicine and biomaterials, as well as the proposal and development of regenerative medicine and tissue engineering techniques, have brought great hope for solving these problems. In this review, we will summarize various nanomedicine, biomaterials, and innovative technologies that contribute to endometrial regeneration, including nanoscale exosomes, nanomaterials, stem cell-based materials, naturally sourced biomaterials, chemically synthesized biomaterials, approaches and methods for functionalizing biomaterials, as well as the application of revolutionary new technologies such as organoids, organ-on-chips, artificial intelligence, etc. The diverse design and modification of new biomaterials endow them with new functionalities, such as microstructure or nanostructure, mechanical properties, biological functions, and cellular microenvironment regulation. It will provide new options for the regeneration of endometrium, bring new hope for the reconstruction and recovery of patients' reproductive abilities.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Dongyun Jia
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lin Li
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Meiyan Wang
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
5
|
Khorsandi D, Yang JW, Foster S, Khosravi S, Hoseinzadeh N, Zarei F, Lee YB, Runa F, Gangrade A, Voskanian L, Adnan D, Zhu Y, Wang Z, Jucaud V, Dokmeci MR, Shen X, Bishehsari F, Kelber JA, Khademhosseini A, de Barros NR. Patient-Derived Organoids as Therapy Screening Platforms in Cancer Patients. Adv Healthc Mater 2024; 13:e2302331. [PMID: 38359321 PMCID: PMC11324859 DOI: 10.1002/adhm.202302331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Samuel Foster
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Negar Hoseinzadeh
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fahimeh Zarei
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Yun Bin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Farhana Runa
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jonathan A. Kelber
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
- Baylor University, 101 Bagby Ave, Waco, Texas, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
6
|
Shen Y, Wang Y, Wang SY, Li C, Han FJ. Research progress on the application of organoids in gynecological tumors. Front Pharmacol 2024; 15:1417576. [PMID: 38989138 PMCID: PMC11234177 DOI: 10.3389/fphar.2024.1417576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Organoids are in vitro 3D models that maintain their own tissue structure and function. They largely overcome the limitations of traditional tumor models and have become a powerful research tool in the field of oncology in recent years. Gynecological malignancies are major diseases that seriously threaten the life and health of women and urgently require the establishment of models with a high degree of similarity to human tumors for clinical studies to formulate individualized treatments. Currently, organoids are widely studied in exploring the mechanisms of gynecological tumor development as a means of drug screening and individualized medicine. Ovarian, endometrial, and cervical cancers as common gynecological malignancies have high morbidity and mortality rates among other gynecological tumors. Therefore, this study reviews the application of modelling, drug efficacy assessment, and drug response prediction for ovarian, endometrial, and cervical cancers, thereby clarifying the mechanisms of tumorigenesis and development, and providing precise treatment options for gynecological oncology patients.
Collapse
Affiliation(s)
- Ying Shen
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Si-Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00960-8. [PMID: 38806997 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Espedal H, Fasmer KE, Berg HF, Lyngstad JM, Schilling T, Krakstad C, Haldorsen IS. MRI radiomics captures early treatment response in patient-derived organoid endometrial cancer mouse models. Front Oncol 2024; 14:1334541. [PMID: 38774411 PMCID: PMC11106402 DOI: 10.3389/fonc.2024.1334541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Background Radiomics can capture microscale information in medical images beyond what is visible to the naked human eye. Using a clinically relevant mouse model for endometrial cancer, the objective of this study was to develop and validate a radiomic signature (RS) predicting response to standard chemotherapy. Methods Mice orthotopically implanted with a patient-derived grade 3 endometrioid endometrial cancer organoid model (O-PDX) were allocated to chemotherapy (combined paclitaxel/carboplatin, n=11) or saline/control (n=13). During tumor progression, the mice underwent weekly T2-weighted (T2w) magnetic resonance imaging (MRI). Segmentation of primary tumor volume (vMRI) allowed extraction of radiomic features from whole-volume tumor masks. A radiomic model for predicting treatment response was derived employing least absolute shrinkage and selection operator (LASSO) statistics at endpoint images in the orthotopic O-PDX (RS_O), and subsequently applied on the earlier study timepoints (RS_O at baseline, and week 1-3). For external validation, the radiomic model was tested in a separate T2w-MRI dataset on segmented whole-volume subcutaneous tumors (RS_S) from the same O-PDX model, imaged at three timepoints (baseline, day 3 and day 10/endpoint) after start of chemotherapy (n=8 tumors) or saline/control (n=8 tumors). Results The RS_O yielded rapidly increasing area under the receiver operating characteristic (ROC) curves (AUCs) for predicting treatment response from baseline until endpoint; AUC=0.38 (baseline); 0.80 (week 1), 0.85 (week 2), 0.96 (week 3) and 1.0 (endpoint). In comparison, vMRI yielded AUCs of 0.37 (baseline); 0.69 (w1); 0.83 (week 2); 0.92 (week 3) and 0.97 (endpoint). When tested in the external validation dataset, RS_S yielded high accuracy for predicting treatment response at day10/endpoint (AUC=0.85) and tended to yield higher AUC than vMRI (AUC=0.78, p=0.18). Neither RS_S nor vMRI predicted response at day 3 in the external validation set (AUC=0.56 for both). Conclusions We have developed and validated a radiomic signature that was able to capture chemotherapeutic treatment response both in an O-PDX and in a subcutaneous endometrial cancer mouse model. This study supports the promising role of preclinical imaging including radiomic tumor profiling to assess early treatment response in endometrial cancer models.
Collapse
Affiliation(s)
- Heidi Espedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Western Australia National Imaging Facility, Centre for Microscopy, Characterization and Analysis, University of Western Australia, Perth, WA, Australia
| | - Kristine E. Fasmer
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hege F. Berg
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Jenny M. Lyngstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Tomke Schilling
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Ingfrid S. Haldorsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Maru Y, Kohno M, Suzuka K, Odaka A, Masuda M, Araki A, Itami M, Tanaka N, Hippo Y. Establishment and characterization of multiple patient-derived organoids from a case of advanced endometrial cancer. Hum Cell 2024; 37:840-853. [PMID: 38546950 DOI: 10.1007/s13577-024-01048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/22/2024] [Indexed: 04/15/2024]
Abstract
Patient-derived organoids (PDOs) retain the original tumor's characteristics to a large degree and allow direct evaluation of the drug sensitivity, thereby emerging as a valuable resource for both basic and preclinical researches. Whereas most past studies stereotypically adopted a single PDO as an avatar of the patient, it remains to be investigated whether this assumption can be justified even for the tumor with spatial diversity. To address this issue, we established and characterized multiple PDOs originating from various sites of a patient with advanced uterine carcinosarcoma (UCS). Specifically, cancer cells were separately sampled from three sites; resected UCS tumor tissue, the peritoneal lavage fluid, and an intra-uterine brushing of the tumor. The three derived PDOs were morphologically undistinguishable, displaying typical carcinoma organoids-like appearance, but two of them proliferated at a faster rate. The primary tumor harbored mutations in TP53 and STK11 along with amplifications in CCNE1, ERBB2, and KRAS. These two mutations and the CCNE1 amplification were detected in all PDOs, while either KRAS or ERBB2 amplification was selectively observed in each PDO in a mutually exclusive manner. Observed intra-tumor heterogeneity in HER2 expression was differentially reproduced in the PDOs, which mirrored each PDO's sensitivity to HER2 inhibitors. Inter-PDO heterogeneity was also evident in sensitivity to standard cytotoxic agents. Lastly, a drug screening identified four candidate reagents commonly effective to all PDOs. Collectively, we showed that multiple PDOs could help reproduce the spatial diversity of a tumor and serve as a valuable resource in UCS research in many respects.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Laboratory of Precision Tumor Model Systems, Chiba Cancer Center Research Institute, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan.
| | - Mami Kohno
- Laboratory of Precision Tumor Model Systems, Chiba Cancer Center Research Institute, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Kiyomi Suzuka
- Department of Gynecology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Akiko Odaka
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Mari Masuda
- Department of Proteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akinobu Araki
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Naotake Tanaka
- Department of Gynecology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Yoshitaka Hippo
- Laboratory of Precision Tumor Model Systems, Chiba Cancer Center Research Institute, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan.
| |
Collapse
|
10
|
Mai S, Inkielewicz-Stepniak I. Graphene Oxide Nanoparticles and Organoids: A Prospective Advanced Model for Pancreatic Cancer Research. Int J Mol Sci 2024; 25:1066. [PMID: 38256139 PMCID: PMC10817028 DOI: 10.3390/ijms25021066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer, notorious for its grim 10% five-year survival rate, poses significant clinical challenges, largely due to late-stage diagnosis and limited therapeutic options. This review delves into the generation of organoids, including those derived from resected tissues, biopsies, pluripotent stem cells, and adult stem cells, as well as the advancements in 3D printing. It explores the complexities of the tumor microenvironment, emphasizing culture media, the integration of non-neoplastic cells, and angiogenesis. Additionally, the review examines the multifaceted properties of graphene oxide (GO), such as its mechanical, thermal, electrical, chemical, and optical attributes, and their implications in cancer diagnostics and therapeutics. GO's unique properties facilitate its interaction with tumors, allowing targeted drug delivery and enhanced imaging for early detection and treatment. The integration of GO with 3D cultured organoid systems, particularly in pancreatic cancer research, is critically analyzed, highlighting current limitations and future potential. This innovative approach has the promise to transform personalized medicine, improve drug screening efficiency, and aid biomarker discovery in this aggressive disease. Through this review, we offer a balanced perspective on the advancements and future prospects in pancreatic cancer research, harnessing the potential of organoids and GO.
Collapse
Affiliation(s)
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
11
|
Espinosa-Gil S, Ivanova S, Alari-Pahissa E, Denizli M, Villafranca-Magdalena B, Viñas-Casas M, Bolinaga-Ayala I, Gámez-García A, Faundez-Vidiella C, Colas E, Lopez-Botet M, Zorzano A, Lizcano JM. MAP kinase ERK5 modulates cancer cell sensitivity to extrinsic apoptosis induced by death-receptor agonists. Cell Death Dis 2023; 14:715. [PMID: 37919293 PMCID: PMC10622508 DOI: 10.1038/s41419-023-06229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Death receptor ligand TRAIL is a promising cancer therapy due to its ability to selectively trigger extrinsic apoptosis in cancer cells. However, TRAIL-based therapies in humans have shown limitations, mainly due inherent or acquired resistance of tumor cells. To address this issue, current efforts are focussed on dissecting the intracellular signaling pathways involved in resistance to TRAIL, to identify strategies that sensitize cancer cells to TRAIL-induced cytotoxicity. In this work, we describe the oncogenic MEK5-ERK5 pathway as a critical regulator of cancer cell resistance to the apoptosis induced by death receptor ligands. Using 2D and 3D cell cultures and transcriptomic analyses, we show that ERK5 controls the proteostasis of TP53INP2, a protein necessary for full activation of caspase-8 in response to TNFα, FasL or TRAIL. Mechanistically, ERK5 phosphorylates and induces ubiquitylation and proteasomal degradation of TP53INP2, resulting in cancer cell resistance to TRAIL. Concordantly, ERK5 inhibition or genetic deletion, by stabilizing TP53INP2, sensitizes cancer cells to the apoptosis induced by recombinant TRAIL and TRAIL/FasL expressed by Natural Killer cells. The MEK5-ERK5 pathway regulates cancer cell proliferation and survival, and ERK5 inhibitors have shown anticancer activity in preclinical models of solid tumors. Using endometrial cancer patient-derived xenograft organoids, we propose ERK5 inhibition as an effective strategy to sensitize cancer cells to TRAIL-based therapies.
Collapse
Affiliation(s)
- Sergio Espinosa-Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Saska Ivanova
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Melek Denizli
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Beatriz Villafranca-Magdalena
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Maria Viñas-Casas
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Idoia Bolinaga-Ayala
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrés Gámez-García
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Claudia Faundez-Vidiella
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Miguel Lopez-Botet
- University Pompeu Fabra, Barcelona, Spain
- Immunology laboratory, Dpt. of Pathology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Antonio Zorzano
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain
| | - José Miguel Lizcano
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
| |
Collapse
|
12
|
Su P, Mao X, Ma J, Huang L, Yu L, Tang S, Zhuang M, Lu Z, Osafo KS, Ren Y, Wang X, Lin X, Huang L, Huang X, Braicu EI, Sehouli J, Sun P. ERRα promotes glycolytic metabolism and targets the NLRP3/caspase-1/GSDMD pathway to regulate pyroptosis in endometrial cancer. J Exp Clin Cancer Res 2023; 42:274. [PMID: 37864196 PMCID: PMC10588109 DOI: 10.1186/s13046-023-02834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Tumor cells can resist chemotherapy-induced pyroptosis through glycolytic reprogramming. Estrogen-related receptor alpha (ERRα) is a central regulator of cellular energy metabolism associated with poor cancer prognosis. Herein, we refine the oncogenic role of ERRα in the pyroptosis pathway and glycolytic metabolism. METHODS The interaction between ERRα and HIF-1α was verified using co-immunoprecipitation. The transcriptional binding sites of ERRα and NLRP3 were confirmed using dual-luciferase reporter assay and cleavage under targets and tagmentation (CUT&Tag). Flow cytometry, transmission electron microscopy, scanning electron microscopy, cell mito stress test, and extracellular acidification rate analysis were performed to investigate the effects of ERRα on the pyroptosis pathway and glycolytic metabolism. The results of these experiments were further confirmed in endometrial cancer (EC)-derived organoids and nude mice. In addition, the expression of ERRα-related pyroptosis genes was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus database. RESULTS Triggered by a hypoxic microenvironment, highly expressed ERRα could bind to the promoter of NLRP3 and inhibit caspase-1/GSDMD signaling, which reduced inflammasome activation and increased pyroptosis resistance, thereby resulting in the resistance of cancer cells to cisplatin. Moreover, ERRα activated glycolytic rate-limiting enzyme to bridge glycolytic metabolism and pyroptosis in EC. This phenomenon was further confirmed in EC-derived organoids and nude mice. CUT & Tag sequencing and The Cancer Genome Atlas database analysis showed that ERRα participated in glycolysis and programmed cell death, which resulted in EC progression. CONCLUSIONS ERRα inhibits pyroptosis in an NLRP3-dependent manner and induces glycolytic metabolism, resulting in cisplatin resistance in EC cells.
Collapse
Affiliation(s)
- Pingping Su
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Jincheng Ma
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Lirui Yu
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Shuting Tang
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Mingzhi Zhuang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Kelvin Stefan Osafo
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Yuan Ren
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Xinrui Wang
- Medical Research Center, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
| | - Xite Lin
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Leyi Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoli Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, FuzhouFujian, 350005, China
| | - Elena Ioana Braicu
- Department of Gynecology and Obstetrics, Charité Virchow University Hospital, Augustenberger Platz1, 13353, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology and Obstetrics, Charité Virchow University Hospital, Augustenberger Platz1, 13353, Berlin, Germany
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China.
- National Key Clinical Specialty Construction Program of China (Gynecology), Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
13
|
Hsin IL, Wu PJ, Tang SC, Ou CC, Chang HY, Shen HP, Ko JL, Wang PH. β-catenin inhibitor ICG-001 suppress cell cycle progression and induce autophagy in endometrial cancer cells. J Cell Physiol 2023; 238:2440-2450. [PMID: 37682852 DOI: 10.1002/jcp.31103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 09/10/2023]
Abstract
The incidence of endometrial cancer has been rising in recent years. Gene mutation and high protein expression of β-catenin are commonly detected in endometrioid endometrial cancer. ICG-001 is a β-catenin inhibitor via blocking the complex formation of β-catenin and cAMP response element-binding protein (CREB)-binding protein (CBP). This study aims to investigate the effect of ICG-001 on endometrial cancer inhibition. First, endometrial carcinoma patient-derived xenograft (PDX)-derived organoids and primary cells were used to verify the inhibiting ability of ICG-001 on endometrial cancer. Furthermore, endometrial cancer cell lines were used to investigate the anticancer mechanism of ICG-001. Using MTT assay and tumor spheroid formation assay, ICG-001 significantly reduced the cell viability of HEC-59 and HEC-1A cells. ICG-001 enhanced cisplatin-mediated cytotoxicity. ICG-001 decreased cancer stem cell sphere formation. ICG-001 decreased the protein expressions of CD44, hexokinase 2 (HK2), and cyclin A. ICG-001 lowered the cell cycle progression by flow cytometer analysis. Autophagy, but no apoptosis, was activated by ICG-001 in endometrial cancer cells. Autophagy inhibition by ATG5 silencing enhanced ICG-001-mediated suppression of cell viability, tumor spheroid formation, and protein expression of cyclin A and CD44. This study clarified the mechanism and revealed the clinical potential of ICG-001 against endometrial cancer.
Collapse
Affiliation(s)
- I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Yi Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Huang-Pin Shen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
15
|
Arias-Diaz AE, Ferreiro-Pantin M, Barbazan J, Perez-Beliz E, Ruiz-Bañobre J, Casas-Arozamena C, Muinelo-Romay L, Lopez-Lopez R, Vilar A, Curiel T, Abal M. Ascites-Derived Organoids to Depict Platinum Resistance in Gynaecological Serous Carcinomas. Int J Mol Sci 2023; 24:13208. [PMID: 37686015 PMCID: PMC10487816 DOI: 10.3390/ijms241713208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Gynaecological serous carcinomas (GSCs) constitute a distinctive entity among female tumours characterised by a very poor prognosis. In addition to late-stage diagnosis and a high rate of recurrent disease associated with massive peritoneal carcinomatosis, the systematic acquisition of resistance to first-line chemotherapy based on platinum determines the unfavourable outcome of GSC patients. To explore the molecular mechanisms associated with platinum resistance, we generated patient-derived organoids (PDOs) from liquid biopsies of GSC patients. PDOs are emerging as a relevant preclinical model system to assist in clinical decision making, mainly from tumoural tissue and particularly for personalised therapeutic options. To approach platinum resistance in a GSC context, proficient PDOs were generated from the ascitic fluid of ovarian, primary peritoneal and uterine serous carcinoma patients in platinum-sensitive and platinum-resistant clinical settings from the uterine aspirate of a uterine serous carcinoma patient, and we also induced platinum resistance in vitro in a representative platinum-sensitive PDO. Histological and immunofluorescent characterisation of these ascites-derived organoids showed resemblance to the corresponding original tumours, and assessment of platinum sensitivity in these preclinical models replicated the clinical setting of the corresponding GSC patients. Differential gene expression profiling of a panel of 770 genes representing major canonical cancer pathways, comparing platinum-sensitive and platinum-resistant PDOs, revealed cellular response to DNA damage stimulus as the principal biological process associated with the acquisition of resistance to the first-line therapy for GSC. Additionally, candidate genes involved in regulation of cell adhesion, cell cycles, and transcription emerged from this proof-of-concept study. In conclusion, we describe the generation of PDOs from liquid biopsies in the context of gynaecological serous carcinomas to explore the molecular determinants of platinum resistance.
Collapse
Affiliation(s)
- Andrea Estrella Arias-Diaz
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Department of Medicine, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Miriam Ferreiro-Pantin
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
| | - Jorge Barbazan
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edurne Perez-Beliz
- Department of Pathology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Juan Ruiz-Bañobre
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rafael Lopez-Lopez
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ana Vilar
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Teresa Curiel
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
16
|
Chen J, Dai S, Zhao L, Peng Y, Sun C, Peng H, Zhong Q, Quan Y, Li Y, Chen X, Pan X, Zhong A, Wang M, Zhang M, Yang S, Lu Y, Lian Z, Liu Y, Zhou S, Li Z, Na F, Chen C. A New Type of Endometrial Cancer Models in Mice Revealing the Functional Roles of Genetic Drivers and Exploring their Susceptibilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300383. [PMID: 37340596 PMCID: PMC10460855 DOI: 10.1002/advs.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Indexed: 06/22/2023]
Abstract
Endometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported. These models faithfully recapitulate the molecular and pathohistological characteristics of human diseases. The authors names these models and similar models for other cancers as organoid-initiated precision cancer models (OPCMs). Importantly, this approach can conveniently introduce any driver mutation or a combination of driver mutations. Using these models,it is shown that the mutations in Pik3ca and Pik3r1 cooperate with Pten loss to promote endometrial adenocarcinoma in mice. In contrast, the Kras G12D mutati led to endometrial squamous cell carcinoma. Then, tumor organoids are derived from these mouse EC models and performed high-throughput drug screening and validation. The results reveal distinct vulnerabilities of ECs with different mutations. Taken together, this study develops a multiplexing approach to model EC in mice and demonstrates its value for understanding the pathology of and exploring the potential treatments for this malignancy.
Collapse
Affiliation(s)
- Jingyao Chen
- Precision Medicine Research CenterState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Siqi Dai
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yiman Peng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Chongen Sun
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Hongling Peng
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Qian Zhong
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Yuan Quan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yue Li
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ailing Zhong
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Manli Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - You Lu
- Division of Thoracic Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengdu610041China
- Laboratory of Clinical Cell Therapy, West China HospitalSichuan UniversityChengdu610041China
| | - Zhong Lian
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shengtao Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Zhengyu Li
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Chong Chen
- Precision Medicine Research CenterState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
17
|
Magré L, Verstegen MMA, Buschow S, van der Laan LJW, Peppelenbosch M, Desai J. Emerging organoid-immune co-culture models for cancer research: from oncoimmunology to personalized immunotherapies. J Immunother Cancer 2023; 11:jitc-2022-006290. [PMID: 37220953 DOI: 10.1136/jitc-2022-006290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
In the past decade, treatments targeting the immune system have revolutionized the cancer treatment field. Therapies such as immune checkpoint inhibitors have been approved as first-line treatment in a variety of solid tumors such as melanoma and non-small cell lung cancer while other therapies, for instance, chimeric antigen receptor (CAR) lymphocyte transfer therapies, are still in development. Although promising results are obtained in a small subset of patients, overall clinical efficacy of most immunotherapeutics is limited due to intertumoral heterogeneity and therapy resistance. Therefore, prediction of patient-specific responses would be of great value for efficient use of costly immunotherapeutic drugs as well as better outcomes. Because many immunotherapeutics operate by enhancing the interaction and/or recognition of malignant target cells by T cells, in vitro cultures using the combination of these cells derived from the same patient hold great promise to predict drug efficacy in a personalized fashion. The use of two-dimensional cancer cell lines for such cultures is unreliable due to altered phenotypical behavior of cells when compared with the in vivo situation. Three-dimensional tumor-derived organoids, better mimic in vivo tissue and are deemed a more realistic approach to study the complex tumor-immune interactions. In this review, we present an overview of the development of patient-specific tumor organoid-immune co-culture models to study the tumor-specific immune interactions and their possible therapeutic infringement. We also discuss applications of these models which advance personalized therapy efficacy and understanding the tumor microenvironment such as: (1) Screening for efficacy of immune checkpoint inhibition and CAR therapy screening in a personalized manner. (2) Generation of tumor reactive lymphocytes for adoptive cell transfer therapies. (3) Studying tumor-immune interactions to detect cell-specific roles in tumor progression and remission. Overall, these onco-immune co-cultures might hold a promising future toward developing patient-specific therapeutic approaches as well as increase our understanding of tumor-immune interactions.
Collapse
Affiliation(s)
- Luc Magré
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sonja Buschow
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Maikel Peppelenbosch
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jyaysi Desai
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Katcher A, Yueh B, Ozler K, Nizam A, Kredentser A, Chung C, Frimer M, Goldberg GL, Beyaz S. Establishing patient-derived organoids from human endometrial cancer and normal endometrium. Front Endocrinol (Lausanne) 2023; 14:1059228. [PMID: 37124727 PMCID: PMC10140435 DOI: 10.3389/fendo.2023.1059228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in the United States and is one of the few malignancies that had an increasing incidence and mortality rate over the last 10 years. Current research models fail to recapitulate actual characteristics of the tumor that are necessary for the proper understanding and treatment of this heterogenous disease. Patient-derived organoids provide a durable and versatile culture system that can capture patient-specific characteristics such as the mutational profile and response to therapy of the primary tumor. Here we describe the methods for establishing, expansion and banking of endometrial cancer organoids to develop a living biobank. Samples of both endometrial tumor tissue and matched normal endometrium were collected from 10 patients. The tissue was digested into single cells and then cultured in optimized media to establish matched patient endometrial cancer and normal endometrial tissue organoids. Organoids were created from all major endometrial cancer histologic subtypes. These organoids are passaged long term, banked and can be utilized for downstream histological and genomic characterization as well as functional assays such as assessing the response to therapeutic drugs.
Collapse
Affiliation(s)
- Arielle Katcher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Long Island Jewish Medical Center, Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New Hyde Park, NY, United States
| | - Brian Yueh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Kadir Ozler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Aaron Nizam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Long Island Jewish Medical Center, Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New Hyde Park, NY, United States
| | - Ariel Kredentser
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Long Island Jewish Medical Center, Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New Hyde Park, NY, United States
| | - Charlie Chung
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Marina Frimer
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Long Island Jewish Medical Center, Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New Hyde Park, NY, United States
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Gary L. Goldberg
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Long Island Jewish Medical Center, Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New Hyde Park, NY, United States
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- *Correspondence: Semir Beyaz,
| |
Collapse
|
19
|
Piñeiro-Pérez R, Abal M, Muinelo-Romay L. Liquid Biopsy for Monitoring EC Patients: Towards Personalized Treatment. Cancers (Basel) 2022; 14:1405. [PMID: 35326558 PMCID: PMC8946652 DOI: 10.3390/cancers14061405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
Endometrial cancer (EC) is the most frequent gynecological cancer in developed countries and its incidence shows an increasing trend. Fortunately, the prognosis of the disease is good when the tumour is diagnosed in an early phase, but some patients recur after surgery and develop distant metastasis. The therapy options for EC for advanced disease are more limited than for other tumours. Therefore, the application of non-invasive strategies to anticipate the recurrence of localized tumours and guide the treatment in advanced stages represents a clear requirement to improve the survival and quality of life of patients with EC. To achieve this desired precision oncology, it is necessary to invest in the identification and validation of circulating markers that allow a more effective stratification and monitoring of patients. We here review the main advances made for the evaluation of circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), circulating extracellular vesicles (cEVs), and other non-invasive biomarkers as a monitoring tool in the context of localized and advanced endometrial tumours, with the aim of providing a global perspective of the achievements and the key areas in which the use of these markers can be developed into a real clinical tool.
Collapse
Affiliation(s)
- Raquel Piñeiro-Pérez
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
20
|
Hoivik EA, Hodneland E, Dybvik JA, Wagner-Larsen KS, Fasmer KE, Berg HF, Halle MK, Haldorsen IS, Krakstad C. A radiogenomics application for prognostic profiling of endometrial cancer. Commun Biol 2021; 4:1363. [PMID: 34873276 PMCID: PMC8648740 DOI: 10.1038/s42003-021-02894-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Prognostication is critical for accurate diagnosis and tailored treatment in endometrial cancer (EC). We employed radiogenomics to integrate preoperative magnetic resonance imaging (MRI, n = 487 patients) with histologic-, transcriptomic- and molecular biomarkers (n = 550 patients) aiming to identify aggressive tumor features in a study including 866 EC patients. Whole-volume tumor radiomic profiling from manually (radiologists) segmented tumors (n = 138 patients) yielded clusters identifying patients with high-risk histological features and poor survival. Radiomic profiling by a fully automated machine learning (ML)-based tumor segmentation algorithm (n = 336 patients) reproduced the same radiomic prognostic groups. From these radiomic risk-groups, an 11-gene high-risk signature was defined, and its prognostic role was reproduced in orthologous validation cohorts (n = 554 patients) and aligned with The Cancer Genome Atlas (TCGA) molecular class with poor survival (copy-number-high/p53-altered). We conclude that MRI-based integrated radiogenomics profiling provides refined tumor characterization that may aid in prognostication and guide future treatment strategies in EC.
Collapse
Affiliation(s)
- Erling A Hoivik
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway.
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Erlend Hodneland
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Julie A Dybvik
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kari S Wagner-Larsen
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kristine E Fasmer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hege F Berg
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Mari K Halle
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Ingfrid S Haldorsen
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway.
- Section of Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
21
|
Espedal H, Berg HF, Fonnes T, Fasmer KE, Krakstad C, Haldorsen IS. Feasibility and utility of MRI and dynamic 18F-FDG-PET in an orthotopic organoid-based patient-derived mouse model of endometrial cancer. J Transl Med 2021; 19:406. [PMID: 34565386 PMCID: PMC8474962 DOI: 10.1186/s12967-021-03086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/19/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pelvic magnetic resonance imaging (MRI) and whole-body positron emission tomography-computed tomography (PET-CT) play an important role at primary diagnostic work-up and in detecting recurrent disease in endometrial cancer (EC) patients, however the preclinical use of these imaging methods is currently limited. We demonstrate the feasibility and utility of MRI and dynamic 18F-fluorodeoxyglucose (FDG)-PET imaging for monitoring tumor progression and assessing chemotherapy response in an orthotopic organoid-based patient-derived xenograft (O-PDX) mouse model of EC. METHODS 18 O-PDX mice (grade 3 endometrioid EC, stage IIIC1), selectively underwent weekly T2-weighted MRI (total scans = 32), diffusion-weighted MRI (DWI) (total scans = 9) and dynamic 18F-FDG-PET (total scans = 26) during tumor progression. MRI tumor volumes (vMRI), tumor apparent diffusion coefficient values (ADCmean) and metabolic tumor parameters from 18F-FDG-PET including maximum and mean standard uptake values (SUVmax/SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG) and metabolic rate of 18F-FDG (MRFDG) were calculated. Further, nine mice were included in a chemotherapy treatment study (treatment; n = 5, controls; n = 4) and tumor ADCmean-values were compared to changes in vMRI and cellular density from histology at endpoint. A Mann-Whitney test was used to evaluate differences between groups. RESULTS Tumors with large tumor volumes (vMRI) had higher metabolic activity (MTV and TLG) in a clear linear relationship (r2 = 0.92 and 0.89, respectively). Non-invasive calculation of MRFDG from dynamic 18F-FDG-PET (mean MRFDG = 0.39 μmol/min) was feasible using an image-derived input function. Treated mice had higher tumor ADCmean (p = 0.03), lower vMRI (p = 0.03) and tumor cellular density (p = 0.02) than non-treated mice, all indicating treatment response. CONCLUSION Preclinical imaging mirroring clinical imaging methods in EC is highly feasible for monitoring tumor progression and treatment response in the present orthotopic organoid mouse model.
Collapse
Affiliation(s)
- Heidi Espedal
- Department of Clinical Medicine, University of Bergen, 5021, Bergen, Norway.
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Hege F Berg
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Tina Fonnes
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Kristine E Fasmer
- Department of Clinical Medicine, University of Bergen, 5021, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Ingfrid S Haldorsen
- Department of Clinical Medicine, University of Bergen, 5021, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021, Bergen, Norway
| |
Collapse
|