1
|
Botonis OK, Mendley J, Aalla S, Veit NC, Fanton M, Lee J, Tripathi V, Pandi V, Khobragade A, Chaudhary S, Chaudhuri A, Narayanan V, Xu S, Jeong H, Rogers JA, Jayaraman A. Feasibility of snapshot testing using wearable sensors to detect cardiorespiratory illness (COVID infection in India). NPJ Digit Med 2024; 7:289. [PMID: 39427067 PMCID: PMC11490565 DOI: 10.1038/s41746-024-01287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The COVID-19 pandemic has challenged the current paradigm of clinical and community-based disease detection. We present a multimodal wearable sensor system paired with a two-minute, movement-based activity sequence that successfully captures a snapshot of physiological data (including cardiac, respiratory, temperature, and percent oxygen saturation). We conducted a large, multi-site trial of this technology across India from June 2021 to April 2022 amidst the COVID-19 pandemic (Clinical trial registry name: International Validation of Wearable Sensor to Monitor COVID-19 Like Signs and Symptoms; NCT05334680; initial release: 04/15/2022). An Extreme Gradient Boosting algorithm was trained to discriminate between COVID-19 infected individuals (n = 295) and COVID-19 negative healthy controls (n = 172) and achieved an F1-Score of 0.80 (95% CI = [0.79, 0.81]). SHAP values were mapped to visualize feature importance and directionality, yielding engineered features from core temperature, cough, and lung sounds as highly important. The results demonstrated potential for data-driven wearable sensor technology for remote preliminary screening, highlighting a fundamental pivot from continuous to snapshot monitoring of cardiorespiratory illnesses.
Collapse
Affiliation(s)
- Olivia K Botonis
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Jonathan Mendley
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Shreya Aalla
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Nicole C Veit
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Michael Fanton
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | - Akash Khobragade
- Grant Medical College and Sir Jamshedjee Jeejeebhoy Group of Hospitals, Mumbai, Maharashtra, India
| | | | | | | | | | - Hyoyoung Jeong
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA, USA
| | - John A Rogers
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Arun Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Manten K, Katzenschlager S, Brümmer LE, Schmitz S, Gaeddert M, Erdmann C, Grilli M, Pollock NR, Macé A, Erkosar B, Carmona S, Ongarello S, Johnson CC, Sacks JA, Faehling V, Bornemann L, Weigand MA, Denkinger CM, Yerlikaya S. Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests: a systematic review and meta-analysis. Virol J 2024; 21:99. [PMID: 38685117 PMCID: PMC11059670 DOI: 10.1186/s12985-024-02371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests' clinical accuracy. METHODS We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. RESULTS We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer's instructions and those conducted differently, or between point-of-care and lab-based testing. CONCLUSION Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.
Collapse
Affiliation(s)
- Katharina Manten
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Katzenschlager
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Lukas E Brümmer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephani Schmitz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mary Gaeddert
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Nira R Pollock
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | - Cheryl C Johnson
- Global HIV, Hepatitis and STIs Programmes, World Health Organization, Geneva, Switzerland
| | - Jilian A Sacks
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Verena Faehling
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Linus Bornemann
- Institute of Virology, Faculty of Medicine, University Medical Centre, University of Freiburg, Freiburg, Germany
| | - Markus A Weigand
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Claudia M Denkinger
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | - Seda Yerlikaya
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Chavda V, Yadav D, Parmar H, Brahmbhatt R, Patel B, Madhwani K, Jain M, Song M, Patel S. A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management. Curr Top Med Chem 2024; 24:1883-1916. [PMID: 38859776 DOI: 10.2174/0115680266296095240529114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto94305, CA, USA
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, South Korea
| | - Harisinh Parmar
- Department of Neurosurgery, Krishna institute of medical sciences, Karad, Maharashtra, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Kajal Madhwani
- Department of Life Science, University of Westminster, London, W1B 2HW, United Kingdom
| | - Meenu Jain
- Gajra Raja Medical College, Gwalior, 474009, Madhya Pradesh, India
| | - Minseok Song
- Department of Life Science, Yeungnam University, South Korea
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
4
|
Xu J, Wang Z, Moghadas SM. Modelling the effect of travel-related policies on disease control in a meta-population structure. J Math Biol 2023; 87:55. [PMID: 37688625 DOI: 10.1007/s00285-023-01990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Travel restrictions, while delaying the spread of an emerging disease from the source, could inflict substantial socioeconomic burden. Travel-related policies, such as quarantine and testing of travelers, may be considered as alternative strategies to mitigate the negative impact of travel bans. We developed a meta-population, delay-differential model to evaluate a strategy that combines testing of travelers prior to departure from the source of infection with quarantine and testing at exit from quarantine in the destination population. Our results, based on early parameter estimates of SARS-CoV-2 infection, indicate that testing travelers at exit from quarantine is more effective in delaying case importation than testing them before departure or upon arrival. We show that a 1-day quarantine with an exit test could outperform a longer, 3-day quarantine without testing in delaying the outbreak peak. Rapid, large-scale testing capacities with short turnaround times provide important means of detecting infectious cases and reducing case importation, while shortening quarantine duration for travelers at destination.
Collapse
Affiliation(s)
- Jingjing Xu
- Agent-Based Modelling Laboratory, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
| | - Zhen Wang
- Agent-Based Modelling Laboratory, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
5
|
Wang Z, Wu P, Wang L, Li B, Liu Y, Ge Y, Wang R, Wang L, Tan H, Wu CH, Laine M, Salje H, Song H. Marginal effects of public health measures and COVID-19 disease burden in China: A large-scale modelling study. PLoS Comput Biol 2023; 19:e1011492. [PMID: 37721947 PMCID: PMC10538769 DOI: 10.1371/journal.pcbi.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
China had conducted some of the most stringent public health measures to control the spread of successive SARS-CoV-2 variants. However, the effectiveness of these measures and their impacts on the associated disease burden have rarely been quantitatively assessed at the national level. To address this gap, we developed a stochastic age-stratified metapopulation model that incorporates testing, contact tracing and isolation, based on 419 million travel movements among 366 Chinese cities. The study period for this model began from September 2022. The COVID-19 disease burden was evaluated, considering 8 types of underlying health conditions in the Chinese population. We identified the marginal effects between the testing speed and reduction in the epidemic duration. The findings suggest that assuming a vaccine coverage of 89%, the Omicron-like wave could be suppressed by 3-day interval population-level testing (PLT), while it would become endemic with 4-day interval PLT, and without testing, it would result in an epidemic. PLT conducted every 3 days would not only eliminate infections but also keep hospital bed occupancy at less than 29.46% (95% CI, 22.73-38.68%) of capacity for respiratory illness and ICU bed occupancy at less than 58.94% (95% CI, 45.70-76.90%) during an outbreak. Furthermore, the underlying health conditions would lead to an extra 2.35 (95% CI, 1.89-2.92) million hospital admissions and 0.16 (95% CI, 0.13-0.2) million ICU admissions. Our study provides insights into health preparedness to balance the disease burden and sustainability for a country with a population of billions.
Collapse
Affiliation(s)
- Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Peiyi Wu
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Lin Wang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bingying Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yonghong Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yuxi Ge
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ruixue Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ligui Wang
- Center of Disease Control and Prevention, PLA, Beijing, China
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chieh-Hsi Wu
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Marko Laine
- Finnish Meteorological Institute, Meteorological Research Unit, Helsinki, Finland
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Hongbin Song
- Center of Disease Control and Prevention, PLA, Beijing, China
| |
Collapse
|
6
|
Camacho Moll ME, Mata Tijerina VL, Silva Ramírez B, Peñuelas Urquides K, González Escalante LA, Escobedo Guajardo BL, Cruz Luna JE, Corrales Pérez R, Gómez García S, Bermúdez de León M. Sex, Age, and Comorbidities Are Associated with SARS-CoV-2 Infection, COVID-19 Severity, and Fatal Outcome in a Mexican Population: A Retrospective Multi-Hospital Study. J Clin Med 2023; 12:jcm12072676. [PMID: 37048758 PMCID: PMC10095205 DOI: 10.3390/jcm12072676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
People with comorbidities and the male sex are at a higher risk of developing severe COVID-19. In the present study, we aim to investigate the associated factors for infection, severity, and death due to COVID-19 in a population from Nuevo León, México. Epidemiological COVID-19 data were collected from 65 hospitals from December 2020 to May 2022. A total of 75,232 cases were compiled from which 25,722 cases were positive for SARS-CoV-2. Male sex, older age, diabetes, obesity, and hypertension were associated with infection. In addition to the above-mentioned factors, renal disease, cardiovascular disease, and immunosuppression were found to be associated with increased COVID-19 severity. These factors, as well as neurological diseases, are also associated with death due to COVID-19. When comparing the different variants of SARs-CoV-2, the variant B1.1.519 increased the probability of death by 2.23 times compared to the AY.20 variant. Male sex, older age, diabetes, obesity, and hypertension are associated with SARS-CoV-2 infection, severity, and death. Along with the aforementioned comorbidities, renal disease, cardiovascular disease, and immunosuppression are also associated with severity and death. Another factor associated with death is the presence of neurological disease. The SARS-CoV-2 B1.1.519 variant increases the odds of death compared to the SARS-CoV-2 AY.20 variant.
Collapse
Affiliation(s)
- Maria Elena Camacho Moll
- Laboratory of Molecular Biology, Northeast Biomedical Research Centre, Mexican Social Security Institute, Monterrey 64720, Mexico
| | - Viviana Leticia Mata Tijerina
- Laboratory of Immunogenetics, Northeast Biomedical Research Centre, Mexican Social Security Institute, Monterrey 64720, Mexico
| | - Beatriz Silva Ramírez
- Laboratory of Immunogenetics, Northeast Biomedical Research Centre, Mexican Social Security Institute, Monterrey 64720, Mexico
| | - Katia Peñuelas Urquides
- Laboratory of Molecular Microbiology, Northeast Biomedical Research Centre, Mexican Social Security Institute, Monterrey 64720, Mexico
| | - Laura Adiene González Escalante
- Laboratory of Molecular Microbiology, Northeast Biomedical Research Centre, Mexican Social Security Institute, Monterrey 64720, Mexico
| | - Brenda Leticia Escobedo Guajardo
- Laboratory of Molecular Research of Diseases, Northeast Biomedical Research Centre, Mexican Social Security Institute, Monterrey 64720, Mexico
| | - Jorge Eleazar Cruz Luna
- Medical Epidemiological Assistance Coordination of the State of Nuevo León, Mexican Social Security Institute, Monterrey 64000, Mexico
| | - Roberto Corrales Pérez
- Medical Epidemiological Assistance Coordination of the State of Nuevo León, Mexican Social Security Institute, Monterrey 64000, Mexico
| | - Salvador Gómez García
- Medical Epidemiological Assistance Coordination of the State of Nuevo León, Mexican Social Security Institute, Monterrey 64000, Mexico
| | - Mario Bermúdez de León
- Laboratory of Molecular Biology, Northeast Biomedical Research Centre, Mexican Social Security Institute, Monterrey 64720, Mexico
| |
Collapse
|
7
|
Alafeef M, Skrodzki D, Moitra P, Gunaseelan N, Pan D. Binding-Induced Folding of DNA Oligonucleotides Targeted to the Nucleocapsid Gene Enables Electrochemical Sensing of SARS-CoV-2. ACS APPLIED BIO MATERIALS 2023; 6:1133-1145. [PMID: 36877613 PMCID: PMC9999945 DOI: 10.1021/acsabm.2c00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/19/2023] [Indexed: 03/07/2023]
Abstract
In the wake of the COVID-19 pandemic, millions of confirmed cases and deaths have been reported around the world. COVID-19 spread can be slowed and eventually stopped by a rapid test to diagnose positive cases of the disease on the spot. It is still important to test for COVID-19 quickly regardless of the availability of the vaccine. Using the binding-induced folding principle, we developed an electrochemical test for detecting SARS-CoV-2 with no RNA extraction or nucleic acid amplification. The test showed high sensitivity with a limit of detection of 2.5 copies/μL. An electrode mounted with a capture probe and a portable potentiostat are used to conduct the test. To target the N-gene of SARS-CoV-2, a highly specific oligo-capturing probe was used. Based on the binding-induced "folding" principle, the sensor detects binding between the oligo and RNA. When the target is absent, the capture probe tends to form a hairpin as a secondary structure, retaining the redox reporter close to the surface. This can be seen as a large anodic and cathodic peak current. When the target RNA is present, the hairpin structure will open to hybridize with its complementary sequence, causing the redox reporter to pull away from the electrode. Consequently, the anodic/cathodic peak currents are reduced, indicating the presence of the SARS-CoV-2 genetic material. Validation of the test performance was performed using 122 COVID-19 clinical samples (55 positives and 67 negatives) and benchmarked to the gold standard reverse transcription-polymerase chain reaction (RT-PCR) test. As a result of our test, the accuracy, sensitivity, and specificity have been measured at 98.4%, 98.2%, and 98.5%, respectively.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering
Department, The University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center
for Blood Oxygen Transport and Hemostasis, Health Sciences Research
Facility III, University of Maryland School
of Medicine, 670 W Baltimore
Street, Baltimore, Maryland 21201, United States
- Biomedical
Engineering Department, Jordan University
of Science and Technology, Irbid 22110, Jordan
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
- Department
of Nuclear Engineering, Pennsylvania State
University, State
College, Pennsylvania 16801, United States
| | - David Skrodzki
- Department
of Materials Science and Engineering, Pennsylvania
State University, State College, Pennsylvania 16801, United States
| | - Parikshit Moitra
- Department
of Nuclear Engineering, Pennsylvania State
University, State
College, Pennsylvania 16801, United States
| | - Nivetha Gunaseelan
- Biomedical
Engineering Department, Pennsylvania State
University, State College, Pennsylvania 16801, United States
| | - Dipanjan Pan
- Bioengineering
Department, The University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center
for Blood Oxygen Transport and Hemostasis, Health Sciences Research
Facility III, University of Maryland School
of Medicine, 670 W Baltimore
Street, Baltimore, Maryland 21201, United States
- Department
of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
- Department
of Nuclear Engineering, Pennsylvania State
University, State
College, Pennsylvania 16801, United States
- Department
of Materials Science and Engineering, Pennsylvania
State University, State College, Pennsylvania 16801, United States
- Biomedical
Engineering Department, Pennsylvania State
University, State College, Pennsylvania 16801, United States
| |
Collapse
|
8
|
Widyasari K, Kim S. Rapid Antigen Tests during the COVID-19 Era in Korea and Their Implementation as a Detection Tool for Other Infectious Diseases. Bioengineering (Basel) 2023; 10:322. [PMID: 36978713 PMCID: PMC10045740 DOI: 10.3390/bioengineering10030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Rapid antigen tests (RATs) are diagnostic tools developed to specifically detect a certain protein of infectious agents (viruses, bacteria, or parasites). RATs are easily accessible due to their rapidity and simplicity. During the COVID-19 pandemic, RATs have been widely used in detecting the presence of the specific SARS-CoV-2 antigen in respiratory samples from suspected individuals. Here, the authors review the application of RATs as detection tools for COVID-19, particularly in Korea, as well as for several other infectious diseases. To address these issues, we present general knowledge on the design of RATs that adopt the lateral flow immunoassay for the detection of the analyte (antigen). The authors then discuss the clinical utilization of the authorized RATs amidst the battle against the COVID-19 pandemic in Korea and their role in comparison with other detection methods. We also discuss the implementation of RATs for other, non-COVID-19 infectious diseases, the challenges that may arise during the application, the limitations of RATs as clinical detection tools, as well as the possible problem solving for those challenges to maximize the performance of RATs and avoiding any misinterpretation of the test result.
Collapse
Affiliation(s)
- Kristin Widyasari
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sunjoo Kim
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| |
Collapse
|
9
|
Li A, Wang Z, Moghadas SM. Modelling the impact of timelines of testing and isolation on disease control. Infect Dis Model 2023; 8:58-71. [PMID: 36467718 PMCID: PMC9704027 DOI: 10.1016/j.idm.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Testing and isolation remain a key component of public health responses to both persistent and emerging infectious diseases. Although the value of these measures have been demonstrated in combating recent outbreaks including the COVID-19 pandemic and monkeypox, their impact depends critically on the timelines of testing and start of isolation during the course of disease. To investigate this impact, we developed a delay differential model and incorporated age-since-symptom-onset as a parameter for delay in testing. We then used the model to compare the outcomes of reverse-transcription polymerase chain reaction (RT-PCR) and rapid antigen (RA) testing methods when isolation starts either at the time of testing or at the time of test result. Parameterizing the model with estimates of SARS-CoV-2 infection and diagnostic sensitivity of the tests, we found that the reduction of disease transmission using the RA test can be comparable to that achieved by applying the RT-PCR test. Given constraints and inevitable delays associated with sample collection and laboratory assays in RT-PCR testing post symptom onset, self-administered RA tests with short turnaround times present a viable alternative for timely isolation of infectious cases.
Collapse
|
10
|
Wang Z, Wang R, Wu P, Li B, Li Y, Liu Y, Wang X, Yang P, Tian H, Tian H. Optimization of Population-Level Testing, Contact Tracing, and Isolation in Emerging COVID-19 Outbreaks: a Mathematical Modeling Study - Tonghua City and Beijing Municipality, China, 2021-2022. China CDC Wkly 2023; 5:82-89. [PMID: 36777897 PMCID: PMC9902757 DOI: 10.46234/ccdcw2023.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction The transmissibility of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant poses challenges for the existing measures containing the virus in China. In response, this study investigates the effectiveness of population-level testing (PLT) and contact tracing (CT) to help curb coronavirus disease 2019 (COVID-19) resurgences in China. Methods Two transmission dynamic models (i.e. with and without age structure) were developed to evaluate the effectiveness of PLT and CT. Extensive simulations were conducted to optimize PLT and CT strategies for COVID-19 control and surveillance. Results Urban Omicron resurgences can be controlled by multiple rounds of PLT, supplemented by CT - as long as testing is frequent. This study also evaluated the time needed to detect COVID-19 cases for surveillance under different routine testing rates. The results show that there is a 90% probability of detecting COVID-19 cases within 3 days through daily testing. Otherwise, it takes around 7 days to detect COVID-19 cases at a 90% probability level if biweekly testing is used. Routine testing applied to the age group 21-60 for COVID-19 surveillance would achieve similar performance to that applied to all populations. Discussion Our analysis evaluates potential PLT and CT strategies for COVID-19 control and surveillance.
Collapse
Affiliation(s)
- Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Ruixue Wang
- School of National Safety and Emergency Management, Beijing Normal University, Beijing, China
| | - Peiyi Wu
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Bingying Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Yidan Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Yonghong Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xiaoli Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Peng Yang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China,Huaiyu Tian,
| | | | | | | |
Collapse
|
11
|
Vilches TN, Rafferty E, Wells CR, Galvani AP, Moghadas SM. Economic evaluation of COVID-19 rapid antigen screening programs in the workplace. BMC Med 2022; 20:452. [PMID: 36424587 PMCID: PMC9686464 DOI: 10.1186/s12916-022-02641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diagnostic testing has been pivotal in detecting SARS-CoV-2 infections and reducing transmission through the isolation of positive cases. We quantified the value of implementing frequent, rapid antigen (RA) testing in the workplace to identify screening programs that are cost-effective. METHODS To project the number of cases, hospitalizations, and deaths under alternative screening programs, we adapted an agent-based model of COVID-19 transmission and parameterized it with the demographics of Ontario, Canada, incorporating vaccination and waning of immunity. Taking into account healthcare costs and productivity losses associated with each program, we calculated the incremental cost-effectiveness ratio (ICER) with quality-adjusted life year (QALY) as the measure of effect. Considering RT-PCR testing of only severe cases as the baseline scenario, we estimated the incremental net monetary benefits (iNMB) of the screening programs with varying durations and initiation times, as well as different booster coverages of working adults. RESULTS Assuming a willingness-to-pay threshold of CDN$30,000 per QALY loss averted, twice weekly workplace screening was cost-effective only if the program started early during a surge. In most scenarios, the iNMB of RA screening without a confirmatory RT-PCR or RA test was comparable or higher than the iNMB for programs with a confirmatory test for RA-positive cases. When the program started early with a duration of at least 16 weeks and no confirmatory testing, the iNMB exceeded CDN$1.1 million per 100,000 population. Increasing booster coverage of working adults improved the iNMB of RA screening. CONCLUSIONS Our findings indicate that frequent RA testing starting very early in a surge, without a confirmatory test, is a preferred screening program for the detection of asymptomatic infections in workplaces.
Collapse
Affiliation(s)
- Thomas N Vilches
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, Canada
| | - Ellen Rafferty
- Institute of Health Economics, Edmonton, Alberta, Canada
| | - Chad R Wells
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Alison P Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Comparing Rapid Ag Test and PCR in SARS-CoV-2 Management in Rural Egypt. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like elsewhere around the globe, SARS-CoV-2 infection is spreading in rural Egypt. Due to high sensitivity and specificity, the gold standard of diagnostics is reverse transcription polymerase chain reaction PCR (RT-PCR). Rural areas without access to certified laboratories cannot take advantage of RT-PCR testing, and thus are dependent upon rapid antigen testing, a point-of-care test that requires less training and can produce results within 15 minutes. Rapid antigen testing can give an advantage to medical teams in rural settings by affording effective and early control of SARS-CoV-2 infection spread. We sought to assess the contribution of different COVID-19 testing procedures in rural Egypt. We conducted a prospective cohort study in a rural lab in Giza, Egypt. Approximately 223 individuals with potential SARS-CoV-2 infection were involved in the study during the pandemic peak in Giza, Egypt, from March 4 – May 30, 2021. Subjects were subjected to RT-PCR and rapid antigen testing, and the performance of each testing procedure was compared. Between March 4 – May 30, 2021, approximately 223 symptomatic individuals were included in this study. 190 patients (85.2%) were indicated as PCR positive for SARS-CoV-2, while 33 (14.8%) were PCR negative. In comparison, a rapid antigen test showed 178 out of 223 patients (79.8%) were indicated as positive, or 94% of the PCR-positive individuals. In Giza, a rural area of Egypt, RT-PCR had an optimal balance of sensitivity and specificity, however, the turnaround time was a limiting factor. Antigen testing, performed as a rapid point-of-care test, can play an effective role in rural outbreak control due to its ease of use and rapid results.
Collapse
|