1
|
Pal S, Su Y, Nwadozi E, Claesson-Welsh L, Richards M. Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions. Angiogenesis 2024; 28:7. [PMID: 39668325 PMCID: PMC11638295 DOI: 10.1007/s10456-024-09963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Neuropilin-1 (NRP1) regulates endothelial cell (EC) biology through modulation of vascular endothelial growth factor receptor 2 (VEGFR2) signalling by presenting VEGFA to VEGFR2. How NRP1 impacts VEGFA-mediated vascular hyperpermeability has however remained unresolved, described as exerting either a positive or a passive function. Using EC-specific Nrp1 knock-out mice, we discover that EC-expressed NRP1 exerts an organotypic role. In the ear skin, VEGFA/VEGFR2-mediated vascular leakage was increased following loss of EC NRP1, implicating NRP1 in negative regulation of VEGFR2 signalling. In contrast, in the back skin and trachea, loss of EC NRP1 decreased vascular leakage. In accordance, phosphorylation of vascular endothelial (VE)-cadherin was increased in the ear skin but suppressed in the back skin of Nrp1 iECKO mice. NRP1 expressed on perivascular cells has been shown to impact VEGF-mediated VEGFR2 signalling. Importantly, expression of NRP1 on perivascular cells was more abundant in the ear skin than in the back skin. Global loss of NRP1 resulted in suppressed VEGFA-induced vascular leakage in the ear skin, implicating perivascular NRP1 as a juxtacrine co-receptor of VEGFA in this compartment. Altogether, we demonstrate that perivascular NRP1 is an active participant in EC VEGFA/VEGFR2 signalling and acts as an organotypic modifier of EC biology.
Collapse
Affiliation(s)
- Sagnik Pal
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yangyang Su
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Balistreri CR, Di Giorgi L, Monastero R. Focus of endothelial glycocalyx dysfunction in ischemic stroke and Alzheimer's disease: Possible intervention strategies. Ageing Res Rev 2024; 99:102362. [PMID: 38830545 DOI: 10.1016/j.arr.2024.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The integrity of the endothelial glycocalyx (eGCX), a mixture of carbohydrates attached to proteins expressed on the surface of blood vessel endothelial cells (EC), is critical for the maintenance of homeostasis of the cardiovascular system and all systems of the human body, the endothelium being the critical component of the stroma of all tissues. Consequently, dysfunction of eGCX results in a dysfunctional cardiovascular wall and severe downstream cardiovascular events, which contribute to the onset of cardio- and cerebrovascular diseases and neurodegenerative disorders, as well as other age-related diseases (ARDs). The key role of eGCX dysfunction in the onset of ARDs is examined here, with a focus on the most prevalent neurological diseases: ischemic stroke and Alzheimer's disease. Furthermore, the advantages and limitations of some treatment strategies for anti-eGCX dysfunction are described, ranging from experimental drug therapies, which need to be better tested and explored not only in animal models but also in humans, as well as reprogramming, the use of nutraceuticals, which are emerging as regenerative and new approaches. The promotion of these strategies is essential to keep eGCX and endothelium healthy, as is the development of intravital (e.g., intravascular) tools to estimate eGCX health status and treatment efficacy, which could lead to advanced solutions to address ARDs.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo 90134, Italy.
| | - Lucia Di Giorgi
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy
| | - Roberto Monastero
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy.
| |
Collapse
|
3
|
Hagen MW, Setiawan NJ, Woodruff KA, Termini CM. Syndecans in hematopoietic cells and their niches. Am J Physiol Cell Physiol 2024; 327:C372-C378. [PMID: 38912739 PMCID: PMC11427021 DOI: 10.1152/ajpcell.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.
Collapse
Affiliation(s)
- Matthew W Hagen
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Nicollette J Setiawan
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Kelsey A Woodruff
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Christina M Termini
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
4
|
Huang Y, Zhou X, Zhang Y, Xie M, Wang F, Qin J, Ye H, Zhang H, Zhang C, Hong J. A Nucleic Acid-Based LYTAC Plus Platform to Simultaneously Mediate Disease-Driven Protein Downregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306248. [PMID: 38251411 PMCID: PMC10987141 DOI: 10.1002/advs.202306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Protein degradation techniques, such as proteolysis-targeting chimeras (PROTACs) and lysosome-targeting chimeras (LYTACs), have emerged as promising therapeutic strategies for the treatment of diseases. However, the efficacy of current protein degradation methods still needs to be improved to address the complex mechanisms underlying diseases. Herein, a LYTAC Plus hydrogel engineered is proposed by nucleic acid self-assembly, which integrates a gene silencing motif into a LYTAC construct to enhance its therapeutic potential. As a proof-of-concept study, vascular endothelial growth factor receptor (VEGFR)-binding peptides and mannose-6 phosphate (M6P) moieties into a self-assembled nucleic acid hydrogel are introduced, enabling its LYTAC capability. Small interference RNAs (siRNAs) is then employed that target the angiopoietin-2 (ANG-2) gene as cross-linkers for hydrogel formation, giving the final LYTAC Plus hydrogel gene silencing ability. With dual functionalities, the LYTAC Plus hydrogel demonstrated effectiveness in simultaneously reducing the levels of VEGFR-2 and ANG-2 both in vitro and in vivo, as well as in improving therapeutic outcomes in treating neovascular age-related macular degeneration in a mouse model. As a general material platform, the LYTAC Plus hydrogel may possess great potential for the treatment of various diseases and warrant further investigation.
Collapse
Affiliation(s)
- Yangyang Huang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030P. R. China
| | - Yirou Zhang
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030P. R. China
| | - Miao Xie
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Fujun Wang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Jingcan Qin
- Department of RadiologyChanghai HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Han Ye
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030P. R. China
| | - Hong Zhang
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030P. R. China
- Department of Ophthalmologythe Affiliated Hospital of Guizhou Medical UniversityGuiyang550025P. R. China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030P. R. China
- Shanghai Engineering Research Center of Synthetic ImmunologyShanghai200032China
| |
Collapse
|
5
|
Vestweber D, Claesson-Welsh L, McDonald DM, Williams T, Schwartz MA, Scallan J, Gavins FNE, van Buul J, Gamble J, Vadas M, Annex BH, Messe SR, Perretti M, André H, Ferrara N, Hla T, Nourshargh S, Simons M. Report from the 2023 workshop on endothelial permeability, edema and inflammation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1120-1124. [PMID: 39196154 DOI: 10.1038/s44161-023-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Dietmar Vestweber
- Department of Vascular Cell Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Donald M McDonald
- Department of Anatomy, Cardiovascular Research Institute, and UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Timothy Williams
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | | | - Jaap van Buul
- Faculty of Science Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer Gamble
- Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Vadas
- Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- The Heart Research Institute, Newtown, New South Wales, Australia
| | - Brian H Annex
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Steven R Messe
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Helder André
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Timothy Hla
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sussan Nourshargh
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Michael Simons
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 2023; 24:816-834. [PMID: 37491579 DOI: 10.1038/s41580-023-00631-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFβ and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.
Collapse
Affiliation(s)
- Lorena Pérez-Gutiérrez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Liu K, Chen J, Zhao Y, Boland J, Ting KK, Lockwood G, McKenzie C, Kench J, Vadas MA, Gamble JR, McCaughan GW. Novel miRNA-based drug CD5-2 reduces liver tumor growth in diethylnitrosamine-treated mice by normalizing tumor vasculature and altering immune infiltrate. Front Immunol 2023; 14:1245708. [PMID: 37795103 PMCID: PMC10545841 DOI: 10.3389/fimmu.2023.1245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Liver cancers exhibit abnormal (leaky) vasculature, hypoxia and an immunosuppressive microenvironment. Normalization of tumor vasculature is an emerging approach to treat many cancers. Blockmir CD5-2 is a novel oligonucleotide-based inhibitor of the miR-27a interaction with VE-Cadherin, the endothelial-specific cadherin. The combination of a vasoactive medication with inhibition of immune checkpoints such as programmed cell death protein 1 (PD1) has been shown to be effective in treating liver cancer in humans. We aimed to study the effect of CD5-2 combined with checkpoint inhibition (using an antibody against PD1) on liver tumor growth, vasculature and immune infiltrate in the diethylnitrosamine (DEN)-induced liver tumor mouse model. Methods We first analyzed human miR-27a and VE-Cadherin expression data from The Cancer Genome Atlas for hepatocellular carcinoma. CD5-2 and/or anti-PD1 antibody were given to the DEN-treated mice from age 7-months until harvest at age 9-months. Tumor and non-tumor liver tissues were analyzed using histology, immunohistochemistry, immunofluorescence and scanning electron microscopy. Results Human data showed high miR-27a and low VE-Cadherin were both significantly associated with poorer prognosis. Mice treated with CD5-2 plus anti-PD1 antibody had significantly smaller liver tumors (50% reduction) compared to mice treated with either agent alone, controls, or untreated mice. There was no difference in tumor number. Histologically, tumors in CD5-2-treated mice had less leaky vessels with higher VE-Cadherin expression and less tumor hypoxia compared to non-CD5-2-treated mice. Only tumors in the combination CD5-2 plus anti-PD1 antibody group exhibited a more favorable immune infiltrate (significantly higher CD3+ and CD8+ T cells and lower Ly6G+ neutrophils) compared to tumors from other groups. Discussion CD5-2 normalized tumor vasculature and reduced hypoxia in DEN-induced liver tumors. CD5-2 plus anti-PD1 antibody reduced liver tumor size possibly by altering the immune infiltrate to a more immunosupportive one.
Collapse
Affiliation(s)
- Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jinbiao Chen
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Yang Zhao
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jade Boland
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Ka Ka Ting
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Glen Lockwood
- Biogerontology Group, ANZAC Research Institute, Sydney, NSW, Australia
| | - Catriona McKenzie
- New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - James Kench
- New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mathew A. Vadas
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jennifer R. Gamble
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Baccouche B, Lietuvninkas L, Kazlauskas A. Activin A Limits VEGF-Induced Permeability via VE-PTP. Int J Mol Sci 2023; 24:8698. [PMID: 37240047 PMCID: PMC10218593 DOI: 10.3390/ijms24108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of neutralizing vascular endothelial growth factor (VEGF) has unequivocally identified VEGF as a driver of retinal edema that underlies a variety of blinding conditions. VEGF is not the only input that is received and integrated by the endothelium. For instance, the permeability of blood vessels is also regulated by the large and ubiquitously expressed transforming growth factor beta (TGF-β) family. In this project, we tested the hypothesis that members of the TGF-β family influence the VEGF-mediated control of the endothelial cell barrier. To this end, we compared the effect of bone morphogenetic protein-9 (BMP-9), TGF-β1, and activin A on the VEGF-driven permeability of primary human retinal endothelial cells. While BMP-9 and TGF-β1 had no effect on VEGF-induced permeability, activin A limited the extent to which VEGF relaxed the barrier. This activin A effect was associated with the reduced activation of VEGFR2 and its downstream effectors and an increased expression of vascular endothelial tyrosine phosphatase (VE-PTP). Attenuating the expression or activity of VE-PTP overcame the effect of activin A. Taken together, these observations indicate that the TGF-β superfamily governed VEGF-mediated responsiveness in a ligand-specific manner. Furthermore, activin A suppressed the responsiveness of cells to VEGF, and the underlying mechanism involved the VE-PTP-mediated dephosphorylation of VEGFR2.
Collapse
Affiliation(s)
- Basma Baccouche
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lina Lietuvninkas
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Cho HD, Nhàn NTT, Zhou C, Tu K, Nguyen T, Sarich NA, Yamada KH. KIF13B mediates VEGFR2 recycling to modulate vascular permeability. Cell Mol Life Sci 2023; 80:91. [PMID: 36928770 PMCID: PMC10165967 DOI: 10.1007/s00018-023-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Excessive vascular endothelial growth factor-A (VEGF-A) signaling induces vascular leakage and angiogenesis in diseases. VEGFR2 trafficking to the cell surface, mediated by kinesin-3 family protein KIF13B, is essential to respond to VEGF-A when inducing angiogenesis. However, the precise mechanism of how KIF13B regulates VEGF-induced signaling and its effects on endothelial permeability is largely unknown. Here we show that KIF13B-mediated recycling of internalized VEGFR2 through Rab11-positive recycling vesicle regulates endothelial permeability. Phosphorylated VEGFR2 at the cell-cell junction was internalized and associated with KIF13B in Rab5-positive early endosomes. KIF13B mediated VEGFR2 recycling through Rab11-positive recycling vesicle. Inhibition of the function of KIF13B attenuated phosphorylation of VEGFR2 at Y951, SRC at Y416, and VE-cadherin at Y685, which are necessary for endothelial permeability. Failure of VEGFR2 trafficking to the cell surface induced accumulation and degradation of VEGFR2 in lysosomes. Furthermore, in the animal model of the blinding eye disease wet age-related macular degeneration (AMD), inhibition of KIF13B-mediated VEGFR2 trafficking also mitigated vascular leakage. Thus, the present results identify the fundamental role of VEGFR2 recycling to the cell surface in mediating vascular permeability, which suggests a promising strategy for mitigating vascular leakage associated with inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Food and Nutrition, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Nguyễn Thị Thanh Nhàn
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Christopher Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kayeman Tu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Simons M, Toomre D. YES to Junctions, No to Src. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1116-1118. [PMID: 36938496 PMCID: PMC10021110 DOI: 10.1038/s44161-022-00185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulation of the endothelial barrier function is critical to physiological function of the vasculature, which must dynamically change in a number of physiologic and pathologic settings. A new study emphasizes the complex relationship between VE-cadherin phosphorylation , the critical role of YES in this process, and the vascular leak.
Collapse
Affiliation(s)
- Michael Simons
- Yale Cardiovascular Research Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511
| | - Derek Toomre
- Yale Cardiovascular Research Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
12
|
Richards M, Claesson-Welsh L. Targeting VEGF-induced vascular permeability. NATURE CARDIOVASCULAR RESEARCH 2022; 1:413-414. [PMID: 39195948 DOI: 10.1038/s44161-022-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Mark Richards
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|