1
|
Knotts GM, Lile SK, Campbell EM, Agee TA, Liyanage SD, Gwaltney SR, Johnson CN. An all-atom model of the human cardiac sodium channel in a lipid bilayer. Sci Rep 2024; 14:26857. [PMID: 39500978 PMCID: PMC11538489 DOI: 10.1038/s41598-024-78466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Voltage-gated sodium channels (NaV) are complex macromolecular proteins that are responsible for the initial upstroke of an action potential in excitable cells. Appropriate function is necessary for many physiological processes such as heartbeat, voluntary muscle contraction, nerve conduction, and neurological function. Dysfunction can have life-threatening consequences. During the past decade, there have been significant advancements with ion channel structural characterization by CryoEM, yet descriptions of cytosolic components are often lacking. Many investigations have biophysically characterized reconstituted cytosolic components and their interactions. However, extrapolating the structural alterations and allosteric communication within an intact ion channel can be challenging. To address this, we have developed an all-atom model of the human cardiac sodium channel (NaV1.5) in a lipid bilayer with explicit salt and water. Our simulations contain descriptions of cytosolic components that are poorly predicted by AlphaFold and lacking in many CryoEM structures. Leveraging the latest advancements of the Amber force fields (ff19sb and Lipid21) and water model (OPC), our simulations improved protein backbone torsion angles and generated structural information across time (four independent one-microsecond simulations). Our analysis provided descriptions of lipid and solvent contacts and insight into the C-Terminal Domain - inactivation gate and inactivation gate - latch receptor interactions.
Collapse
Affiliation(s)
- Garrett M Knotts
- Department of Chemistry, Mississippi State University, Starkville, MS, 39759, USA
| | - Spencer K Lile
- Department of Chemistry, Mississippi State University, Starkville, MS, 39759, USA
| | - Emily M Campbell
- Department of Chemistry, Mississippi State University, Starkville, MS, 39759, USA
| | - Taylor A Agee
- Department of Chemistry, Mississippi State University, Starkville, MS, 39759, USA
| | - Senal D Liyanage
- Department of Chemistry, Mississippi State University, Starkville, MS, 39759, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Starkville, MS, 39759, USA
| | | |
Collapse
|
2
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Catterall WA, Gamal El-Din TM, Wisedchaisri G. The chemistry of electrical signaling in sodium channels from bacteria and beyond. Cell Chem Biol 2024; 31:1405-1421. [PMID: 39151407 DOI: 10.1016/j.chembiol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature's simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| | - Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle WA 98195-7280, USA.
| |
Collapse
|
4
|
Yang H, Jing M, Tian C, Li B, Liao W, Wang W, Li Y, Wang X, Duan G, Sun Q, Huang Z, Wu L. 1,4-Disubstituted Piperazin-2-Ones as Selective Late Sodium Current Inhibitors with QT Interval Shortening Properties in Isolated Rabbit Hearts. J Med Chem 2024; 67:12676-12694. [PMID: 38757601 DOI: 10.1021/acs.jmedchem.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Late sodium current (INa) inhibitors are a new subclass of antiarrhythmic agents. To overcome the drawbacks, e.g., low efficacy and inhibition effect on K+ current, of the FDA-approved late INa inhibitor ranolazine, chain amide 6a-6q, 1,4-disubstituted piperazin-2-ones 7a-7s, and their derivatives 8a-8n were successively designed, synthesized, and evaluated in vitro on the NaV1.5-transfected HEK293T cells by the whole-cell patch clamp recording assay at the concentration of 40 μM. Among the new skeleton compounds, 7d showed the highest efficacy (IC50 = 2.7 μM) and good selectivity (peak/late ratio >30 folds), as well as excellent pharmacokinetics properties in mice (T1/2 of 3.5 h, F = 90%, 3 mg/kg, po). It exhibited low hERG inhibition and was able to reverse the ATX-II-induced augmentation of late INa phenotype of LQT3 model in isolated rabbit hearts. These results suggest the application potentials of 7d in the treatments of arrhythmias related to the enhancement of late INa.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengqin Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chao Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bingxun Li
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Weiming Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yunzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaowei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Tonggu L, Wisedchaisri G, Gamal El-Din TM, Lenaeus MJ, Logan MM, Toma T, Du Bois J, Zheng N, Catterall WA. Dual receptor-sites reveal the structural basis for hyperactivation of sodium channels by poison-dart toxin batrachotoxin. Nat Commun 2024; 15:2306. [PMID: 38485923 PMCID: PMC10940626 DOI: 10.1038/s41467-024-45958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
The poison dart toxin batrachotoxin is exceptional for its high potency and toxicity, and for its multifaceted modification of the function of voltage-gated sodium channels. By using cryogenic electron microscopy, we identify two homologous, but nonidentical receptor sites that simultaneously bind two molecules of toxin, one at the interface between Domains I and IV, and the other at the interface between Domains III and IV of the cardiac sodium channel. Together, these two bound toxin molecules stabilize α/π helical conformation in the S6 segments that gate the pore, and one of the bound BTX-B molecules interacts with the crucial Lys1421 residue that is essential for sodium conductance and selectivity via an apparent water-bridged hydrogen bond. Overall, our structure provides insight into batrachotoxin's potency, efficacy, and multifaceted functional effects on voltage-gated sodium channels via a dual receptor site mechanism.
Collapse
Affiliation(s)
- Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | | | | | - Michael J Lenaeus
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Matthew M Logan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Vividion Therapeutics, Inc., 5820 Nancy Ridge Dr., San Diego, CA, 92121, USA
| | - Tatsuya Toma
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- PRISM BioLab Co., Ltd., 2-26-1 Muraokahigashi, Fujisawa-shi, Kanagawa, 251-8555, Japan
| | - Justin Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 2023; 17:2281714. [PMID: 37983307 PMCID: PMC10761118 DOI: 10.1080/19336950.2023.2281714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve and muscle, and voltage-gated calcium channels couple depolarization of the plasma membrane to intracellular events such as secretion, contraction, synaptic transmission, and gene expression. In this Review and Perspective article, I summarize early work that led to identification, purification, functional reconstitution, and determination of the amino acid sequence of the protein subunits of sodium and calcium channels and showed that their pore-forming subunits are closely related. Decades of study by antibody mapping, site-directed mutagenesis, and electrophysiological recording led to detailed two-dimensional structure-function maps of the amino acid residues involved in voltage-dependent activation and inactivation, ion permeation and selectivity, and pharmacological modulation. Most recently, high-resolution three-dimensional structure determination by X-ray crystallography and cryogenic electron microscopy has revealed the structural basis for sodium and calcium channel function and pharmacological modulation at the atomic level. These studies now define the chemical basis for electrical signaling and provide templates for future development of new therapeutic agents for a range of neurological and cardiovascular diseases.
Collapse
|
7
|
Fossier L, Ben-Johny M. New insights on cardiac Na channel block by an atypical anti-arrhythmic drug. NATURE CARDIOVASCULAR RESEARCH 2023; 2:494-495. [PMID: 39195887 DOI: 10.1038/s44161-023-00284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Lucile Fossier
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|