1
|
Karhausen J, Ulloa L, Yang W. SUMOylation Connects Cell Stress Responses and Inflammatory Control: Lessons From the Gut as a Model Organ. Front Immunol 2021; 12:646633. [PMID: 33679811 PMCID: PMC7933481 DOI: 10.3389/fimmu.2021.646633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Conjugation with the small ubiquitin-like modifier (SUMO) constitutes a key post-translational modification regulating the stability, activity, and subcellular localization of its target proteins. However, the vast numbers of identified SUMO substrates obscure a clear view on the function of SUMOylation in health and disease. This article presents a comprehensive review on the physiological relevance of SUMOylation by discussing how global SUMOylation levels—rather than specific protein SUMOylation—shapes the immune response. In particular, we highlight the growing body of work on SUMOylation in intestinal pathologies, because of the unique metabolic, infectious, and inflammatory challenges of this organ. Recent studies show that global SUMOylation can help restrain detrimental inflammation while maintaining immune defenses and tissue integrity. These results warrant further efforts to develop new therapeutic tools and strategies to control SUMOylation in infectious and inflammatory disorders.
Collapse
Affiliation(s)
- Jörn Karhausen
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| | - Wei Yang
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
2
|
Ni Y, Zhang K. Clustering analysis to identify key genes associated with motor neuron excitability following spinal cord injury. Int J Neurosci 2019; 129:856-863. [PMID: 30821549 DOI: 10.1080/00207454.2019.1576661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yong Ni
- Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Kefeng Zhang
- Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| |
Collapse
|
3
|
Shen Y, Yan B, Zhao Q, Wang Z, Wu J, Ren J, Wang W, Yu S, Sheng H, Crowley SD, Ding F, Paschen W, Yang W. Aging Is Associated With Impaired Activation of Protein Homeostasis-Related Pathways After Cardiac Arrest in Mice. J Am Heart Assoc 2018; 7:e009634. [PMID: 30371162 PMCID: PMC6201440 DOI: 10.1161/jaha.118.009634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/02/2018] [Indexed: 01/08/2023]
Abstract
Background The mechanisms underlying worse outcome at advanced age after cardiac arrest ( CA ) and resuscitation are not well understood. Because protein homeostasis (proteostasis) is essential for cellular and organismal health, but is impaired after CA , we investigated the effects of age on proteostasis-related prosurvival pathways activated after CA . Methods and Results Young (2-3 months old) and aged (21-22 months old) male C57Bl/6 mice were subjected to CA and cardiopulmonary resuscitation ( CPR ). Functional outcome and organ damage were evaluated by assessing neurologic deficits, histological features, and creatinine level. CA / CPR -related changes in small ubiquitin-like modifier conjugation, ubiquitination, and the unfolded protein response were analyzed by measuring mRNA and protein levels in the brain, kidney, and spinal cord. Thiamet-G was used to increase O-linked β-N-acetylglucosamine modification. After CA / CPR , aged mice had trended lower survival rates, more severe tissue damage in the brain and kidney, and poorer recovery of neurologic function compared with young mice. Furthermore, small ubiquitin-like modifier conjugation, ubiquitination, unfolded protein response, and O-linked β-N-acetylglucosamine modification were activated after CA / CPR in young mice, but their activation was impaired in aged mice. Finally, pharmacologically increasing O-linked β-N-acetylglucosamine modification after CA improved outcome. Conclusions Results suggest that impaired activation of prosurvival pathways contributes to worse outcome after CA / CPR in aged mice because restoration of proteostasis is critical to the survival of cells stressed by ischemia. Therefore, a pharmacologic intervention that targets aging-related impairment of proteostasis-related pathways after CA / CPR may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yuntian Shen
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Baihui Yan
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Department of AnesthesiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qiang Zhao
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Department of NeurologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Zhuoran Wang
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Jiangbo Wu
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Jiafa Ren
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNC
| | - Wei Wang
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Department of AnesthesiologySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Shu Yu
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Huaxin Sheng
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Steven D. Crowley
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNC
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Wulf Paschen
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Wei Yang
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| |
Collapse
|
4
|
Knock E, Matsuzaki S, Takamura H, Satoh K, Rooke G, Han K, Zhang H, Staniszewski A, Katayama T, Arancio O, Fraser PE. SUMO1 impact on Alzheimer disease pathology in an amyloid-depositing mouse model. Neurobiol Dis 2018; 110:154-165. [DOI: 10.1016/j.nbd.2017.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
|
5
|
Peters M, Wielsch B, Boltze J. The role of SUMOylation in cerebral hypoxia and ischemia. Neurochem Int 2017; 107:66-77. [DOI: 10.1016/j.neuint.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
6
|
Jung HY, Kim DW, Kwon HJ, Yoo DY, Hwang IK, Won MH, Cho TG, Choi SY, Moon SM. SUMO-1 delays neuronal damage in the spinal cord following ischemia/reperfusion. Mol Med Rep 2017; 15:4312-4318. [PMID: 28487986 DOI: 10.3892/mmr.2017.6527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the protective effects of small ubiquitin-like modifier 1 (SUMO-1) on spinal cord ischemic damage in rabbits. A trans‑activator of transcription (Tat)‑SUMO‑1 fusion protein was prepared, and transient spinal cord ischemia was induced by occlusion of the abdominal aorta for 15 min. Vehicle (glycerol) or 1 mg/kg Tat-1-SUMO‑1 was administered intraperitoneally to the rabbits immediately following ischemia/reperfusion. Administration of Tat-SUMO-1 did not lead to significant alterations in arterial blood gases [partial pressure (Pa)CO2 and PaO2], pH, or blood glucose levels prior to ischemia, 10 min after occlusion or 10 min after reperfusion. Mean arterial pressure was significantly decreased only during occlusion. Motor behaviors were assessed at 24, 48 and 72 h after ischemia/reperfusion using Tarlov's criteria. Administration of Tat‑SUMO‑1 significantly improved Tarlov scores 24 h after ischemia/reperfusion and the number of cresyl violet positive neurons was significantly increased in the ventral horn of the spinal cord compared with the vehicle‑treated group. However, Tarlov scores were consistently decreased at 48 and 72 h after ischemia/reperfusion in the Tat‑SUMO‑1‑treated group, and Tarlov scores and the number of cresyl violet positive neurons were not significantly different between the vehicle‑ and Tat‑SUMO‑1‑treated groups after 72 h. Tat-SUMO‑1 administration significantly ameliorated a reduction in Cu, Zn‑superoxide dismutase activity and an increase in lipid peroxidation 24 h after ischemia/reperfusion; however, these effects were not present at 72 h. These results suggested that Tat‑SUMO‑1 may delay, although not protect against, neuronal death by regulating oxidative stress in the ventral horn of the spinal cord and that combination therapy using Tat‑SUMO‑1 with other compounds may provide a therapeutic approach to decrease neuronal damage.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tack-Geun Cho
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Gyeonggi 18450, Republic of Korea
| |
Collapse
|
7
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Ge L, Zhu MM, Yang JY, Wang F, Zhang R, Zhang JH, Shen J, Tian HF, Wu CF. Differential proteomic analysis of the anti-depressive effects of oleamide in a rat chronic mild stress model of depression. Pharmacol Biochem Behav 2015; 131:77-86. [PMID: 25641667 DOI: 10.1016/j.pbb.2015.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
Abstract
Depression is a complex psychiatric disorder, and its etiology and pathophysiology are not completely understood. Depression involves changes in many biogenic amine, neuropeptide, and oxidative systems, as well as alterations in neuroendocrine function and immune-inflammatory pathways. Oleamide is a fatty amide which exhibits pharmacological effects leading to hypnosis, sedation, and anti-anxiety effects. In the present study, the chronic mild stress (CMS) model was used to investigate the antidepressant-like activity of oleamide. Rats were exposed to 10weeks of CMS or control conditions and were then subsequently treated with 2weeks of daily oleamide (5mg/kg, i.p.), fluoxetine (10mg/kg, i.p.), or vehicle. Protein extracts from the hippocampus were then collected, and hippocampal maps were generated by way of two-dimensional gel electrophoresis (2-DE). Altered proteins induced by CMS and oleamide were identified through mass spectrometry and database searches. Compared to the control group, the CMS rats exhibited significantly less body weight gain and decreased sucrose consumption. Treatment with oleamide caused a reversal of the CMS-induced deficit in sucrose consumption. In the proteomic analysis, 12 protein spots were selected and identified. CMS increased the levels of adenylate kinase isoenzyme 1 (AK1), nucleoside diphosphate kinase B (NDKB), histidine triad nucleotide-binding protein 1 (HINT1), acyl-protein thioesterase 2 (APT-2), and glutathione S-transferase A4 (GSTA4). Compared to the CMS samples, seven spots changed significantly following treatment with oleamide, including GSTA4, glutathione S-transferase A6 (GSTA6), GTP-binding nuclear protein Ran (Ran-GTP), ATP synthase subunit d, transgelin-3, small ubiquitin-related modifier 2 (SUMO2), and eukaryotic translation initiation factor 5A-1 (eIF5A1). Of these seven proteins, the level of eIF5A1 was up-regulated, whereas the remaining proteins were down-regulated. In conclusion, oleamide has antidepressant-like properties in the CMS rat model. The identification of proteins altered by CMS and oleamide treatment provides support for targeting these proteins in the development of novel therapies for depression.
Collapse
Affiliation(s)
- Lin Ge
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ming-Ming Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Fang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing-Hai Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jing Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Beijing Cancer Hospital & Institute, Beijing 100142, PR China
| | - Hui-Fang Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Beijing Cancer Hospital & Institute, Beijing 100142, PR China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Lewicki MC, Srikumar T, Johnson E, Raught B. The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery. J Proteomics 2014; 118:39-48. [PMID: 25434491 DOI: 10.1016/j.jprot.2014.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 01/07/2023]
Abstract
UNLABELLED The small ubiquitin-related modifier (SUMO) "stress response" (SSR) is a poorly understood evolutionarily conserved phenomenon in which steady-state SUMO conjugate levels are dramatically increased in response to environmental stresses. Here we characterize Saccharomyces cerevisiae SSR kinetics in response to several different types of stress, demonstrate that SSR activation and inactivation do not require protein synthesis or proteasome-dependent degradation, and establish that the SSR is effected primarily by the Siz1 E3 ligase and inactivated by the SUMO-specific protease Ulp2. Affinity purification coupled with mass spectrometry identifies the primary hyperosmotic SSR targets as components of the TFIID and mediator complexes, Pol II-associated mRNA maturation factors, chromatin remodeling proteins, and the transcriptional co-repressor Tup1-Cyc8. Consistent with these findings, our data also suggest that ongoing transcription (but not translation) is required to activate the SSR. The SSR thus does not appear to be directly linked to the stress itself, but likely represents a synchronized wave of sumoylation that occurs as a consequence of the large-scale, coordinated changes in the transcriptional program in response to environmental stress. BIOLOGICAL SIGNIFICANCE SUMO is a ubiquitin-like protein with a number of important biological functions. Increased levels of sumoylation are associated with a number of human diseases, and previous reports have described an evolutionarily conserved "SUMO stress response" (SSR), in which SUMO conjugate levels are markedly increased in response to environmental stresses. However, the connection between cellular stress and sumoylation has remained poorly understood. Here we conduct the first in-depth characterization of the S. cerevisiae SSR. The SUMO system components required to effect it are identified, and SSR kinetics in response to different types of environmental stresses are established. Using mass spectrometry, we identify the principle osmotic shock-associated SSR targets as components of the basal transcription machinery, transcriptional regulators and chromatin remodeling complexes. Consistent with these data, we also observe that the sumoylation of SSR targets is dependent upon, and thus appears to be coupled with, transcription. Together, our data suggest that the SSR is not responsive to environmental stress per se, but more likely reflects a synchronized, transcription-coupled wave of sumoylation that accompanies the rapid, global re-programming of transcription in response to stress. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
Affiliation(s)
- Megan C Lewicki
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Erica Johnson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Niikura T, Kita Y, Abe Y. SUMO3 modification accelerates the aggregation of ALS-linked SOD1 mutants. PLoS One 2014; 9:e101080. [PMID: 24971881 PMCID: PMC4074151 DOI: 10.1371/journal.pone.0101080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) are a major cause of familial amyotrophic lateral sclerosis (ALS), whereby the mutant proteins misfold and aggregate to form intracellular inclusions. We report that both small ubiquitin-like modifier (SUMO) 1 and SUMO2/3 modify ALS-linked SOD1 mutant proteins at lysine 75 in a motoneuronal cell line, the cell type affected in ALS. In these cells, SUMO1 modification occurred on both lysine 75 and lysine 9 of SOD1, and modification of ALS-linked SOD1 mutant proteins by SUMO3, rather than by SUMO1, significantly increased the stability of the proteins and accelerated intracellular aggregate formation. These findings suggest the contribution of sumoylation, particularly by SUMO3, to the protein aggregation process underlying the pathogenesis of ALS.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- * E-mail:
| | - Yoshiko Kita
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Tong L, Wu Z, Ran M, Chen Y, Yang L, Zhang H, Zhang L, Dong H, Xiong L. The Role of SUMO-Conjugating Enzyme Ubc9 in the Neuroprotection of Isoflurane Preconditioning Against Ischemic Neuronal Injury. Mol Neurobiol 2014; 51:1221-31. [PMID: 24961570 PMCID: PMC4435903 DOI: 10.1007/s12035-014-8797-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/15/2014] [Indexed: 12/03/2022]
Abstract
Preconditioning with volatile anesthetics can create an ischemia tolerance against cerebral ischemia-reperfusion injury. We investigated whether ubiquitin conjugase 9 (Ubc9), the E2 conjugase for SUMOylation, is associated with neuroprotection induced by isoflurane preconditioning (IsoPC). In vitro, Ubc9 protein expression was evaluated at 4 and 24 h after reoxygenation. The role of Ubc9 in the neuroprotective effect was assessed in the presence or absence of Ubc9 small interfering RNA (siRNA). In vivo, rats were preconditionally exposed for 1 h to 2 % isoflurane for five consecutive days followed by middle cerebral artery occlusion. Neurobehavioral scores and infarction volume were determined at different times after reperfusion. The role of Ubc9 in ischemic tolerance was evaluated by intracerebroventricular microinjection with the Ubc9 siRNA. We showed that isoflurane preconditioning improved the cell viability of the SH-SY5Y cells that were challenged by oxygen-glucose deprivation. It also reduced brain infarct volumes and improved neurologic outcomes in the focal cerebral ischemic rat. The expression of Ubc9 was upregulated by isoflurane preconditioning. Knockdown of Ubc9 significantly attenuated the isoflurane preconditioning-induced neuroprotective effects. Isoflurane preconditioning-induced neuroprotection against ischemic injuries is mediated by Ubc9. These results suggest a novel mechanism for isoflurane preconditioning-induced tolerance to cerebral ischemia.
Collapse
Affiliation(s)
- Li Tong
- Department of Anesthesiology, Xijing Hospital, Xi'an, Shaanxi, 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Meller CL, Meller R, Simons RP, Podrabsky JE. Patterns of ubiquitylation and SUMOylation associated with exposure to anoxia in embryos of the annual killifish Austrofundulus limnaeus. J Comp Physiol B 2014; 184:235-47. [PMID: 24337451 PMCID: PMC3957487 DOI: 10.1007/s00360-013-0791-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/06/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
Abstract
Embryos of the annual killifish Austrofundulus limnaeus acquire extreme tolerance to anoxia during embryonic development. These embryos can survive environmental and cellular conditions that would likely result in death in the majority of vertebrate cells, despite experiencing a massive loss of ATP. It is highly likely that the initial response to anoxia must quickly alter cellular physiology to reprogram cell signaling and metabolic pathways to support anaerobiosis. Covalent protein modifications are a mechanism that can quickly act to effect large-scale changes in protein structure and function and have been suggested by others to play a key role in mammalian ischemia tolerance. Using Western blot analysis, we explored patterns of protein ubiquitylation and SUMOylation in embryos of A. limnaeus exposed to anoxia and anoxic preconditioning. Surprisingly, we report stage-specific protein ubiquitylation patterns that suggest different mechanisms for altering protein turnover in dormant and actively developing embryos that both survive long-term anoxia. Anoxic preconditioning does not appear to alter levels of ubiquitin conjugates in a unique manner. Global SUMOylation of proteins does not change in response to anoxia, but there are stage-specific changes in SUMOylation of specific protein bands. Contrary to other systems, global changes in protein SUMOylation may not be required to support long-term tolerance to anoxia in embryos of A. limnaeus. These data lead us to conclude that embryos of A. limnaeus respond to anoxia in a unique manner compared to other vertebrate models of anoxia tolerance and may provide novel mechanisms for engineering vertebrate tissues to survive long-term anoxia.
Collapse
Affiliation(s)
- Camie L Meller
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA
| | | | | | | |
Collapse
|
13
|
Silveirinha V, Stephens GJ, Cimarosti H. Molecular targets underlying SUMO-mediated neuroprotection in brain ischemia. J Neurochem 2013; 127:580-91. [PMID: 23786482 DOI: 10.1111/jnc.12347] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
SUMOylation (small ubiquitin-like modifier conjugation) is an important post-translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin-like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO-modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.
Collapse
Affiliation(s)
- Vasco Silveirinha
- School of Pharmacy, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| | | | | |
Collapse
|
14
|
Lee YJ, Hallenbeck JM. SUMO and ischemic tolerance. Neuromolecular Med 2013; 15:771-81. [PMID: 23775726 DOI: 10.1007/s12017-013-8239-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
Hibernating squirrels slow blood flow to a crawl, but sustain no damage to brain or other tissues. This phenomenon provides an excellent model of natural tolerance to ischemia. Small ubiquitin-like modifier (SUMO) is a 100-residue peptide that modifies other proteins by being attached to the epsilon amino group of specific lysine residues. The discovery of massive SUMOylation (by both SUMO-1 and SUMO-2/3) occurring in the brains of 13-lined ground squirrels (Ictidomys tridecemlineatus) during hibernation torpor had opened the door to the studies on SUMO and ischemic tolerance reviewed here. Ischemic stress was shown to increase the levels of SUMO conjugation, especially SUMO-2/3, mostly during reperfusion in animal models and during restoration of oxygen and glucose in cell culture systems. Over-expression or depletion of SUMOs and/or Ubc9 (the SUMO E2 conjugating enzyme) increases or decreases (respectively) the levels of SUMO conjugates. Elevated global SUMO conjugations were shown to cytoprotect from ischemic insults; conversely, depressed SUMOylation sensitized cells. Global protein conjugation not only by SUMOs, but also by other ubiquitin-like modifiers (ULMs) including NEDD8, ISG15, UFM1 and FUB1 was shown to be significantly increased in the brains of hibernating ground squirrels during torpor. These increases in multiple ULM conjugations may orchestrate the cellular events in hibernating ground squirrels that induce a state of natural tolerance through their multipronged effects. Certain miRNAs such as the miR-200 family and the miR-182 family were shown, at least partly, to control the levels of these ULM conjugations. Lowering the levels of these miRNAs leads to an increase in global SUMOylation/ULM conjugation, thereby providing the tolerance to ischemia. This suggests that these miRNAs may be good targets for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Yang-ja Lee
- Stroke Branch, National Institute of Neurological Disease and Stroke, National Institutes of Health (NINDS/NIH), Bldg10/Rm5B06, MSC 1401, 10 Center Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|