1
|
McKee CD, Peel AJ, Hayman DTS, Suu-Ire R, Ntiamoa-Baidu Y, Cunningham AA, Wood JLN, Webb CT, Kosoy MY. Ectoparasite and bacterial population genetics and community structure indicate extent of bat movement across an island chain. Parasitology 2024; 151:708-721. [PMID: 38785194 PMCID: PMC11474020 DOI: 10.1017/s0031182024000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Few studies have examined the genetic population structure of vector-borne microparasites in wildlife, making it unclear how much these systems can reveal about the movement of their associated hosts. This study examined the complex host–vector–microbe interactions in a system of bats, wingless ectoparasitic bat flies (Nycteribiidae), vector-borne microparasitic bacteria (Bartonella) and bacterial endosymbionts of flies (Enterobacterales) across an island chain in the Gulf of Guinea, West Africa. Limited population structure was found in bat flies and Enterobacterales symbionts compared to that of their hosts. Significant isolation by distance was observed in the dissimilarity of Bartonella communities detected in flies from sampled populations of Eidolon helvum bats. These patterns indicate that, while genetic dispersal of bats between islands is limited, some non-reproductive movements may lead to the dispersal of ectoparasites and associated microbes. This study deepens our knowledge of the phylogeography of African fruit bats, their ectoparasites and associated bacteria. The results presented could inform models of pathogen transmission in these bat populations and increase our theoretical understanding of community ecology in host–microbe systems.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - David T. S. Hayman
- Molecular Epidemiology and Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Richard Suu-Ire
- School of Veterinary Medicine, University of Ghana, Accra, Ghana
| | - Yaa Ntiamoa-Baidu
- Centre for Biodiversity Conservation Research, University of Ghana, Accra, Ghana
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | | | - James L. N. Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Colleen T. Webb
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Fagre AC, Islam A, Reeves WK, Kading RC, Plowright RK, Gurley ES, McKee CD. Bartonella Infection in Fruit Bats and Bat Flies, Bangladesh. MICROBIAL ECOLOGY 2023; 86:2910-2922. [PMID: 37656196 DOI: 10.1007/s00248-023-02293-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Bats harbor diverse intracellular Bartonella bacteria, but there is limited understanding of the factors that influence transmission over time. Investigation of Bartonella dynamics in bats could reveal general factors that control transmission of multiple bat-borne pathogens, including viruses. We used molecular methods to detect Bartonella DNA in paired bat (Pteropus medius) blood and bat flies in the family Nycteribiidae collected from a roost in Faridpur, Bangladesh between September 2020 and January 2021. We detected high prevalence of Bartonella DNA in bat blood (35/55, 64%) and bat flies (59/60, 98%), with sequences grouping into three phylogenetic clades. Prevalence in bat blood increased over the study period (33% to 90%), reflecting an influx of juvenile bats in the population and an increase in the prevalence of bat flies. Discordance between infection status and the clade/genotype of detected Bartonella was also observed in pairs of bats and their flies, providing evidence that bat flies take blood meals from multiple bat hosts. This evidence of bat fly transfer between hosts and the changes in Bartonella prevalence during a period of increasing nycteribiid density support the role of bat flies as vectors of bartonellae. The study provides novel information on comparative prevalence and genetic diversity of Bartonella in pteropodid bats and their ectoparasites, as well as demographic factors that affect Bartonella transmission and potentially other bat-borne pathogens.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| | | | - Will K Reeves
- C.P. Gillette Museum of Arthropod Diversity, Fort Collins, CO, USA
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, CO, USA
| | - Raina K Plowright
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Clifton D McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Montecino-Latorre D, Goldstein T, Kelly TR, Wolking DJ, Kindunda A, Kongo G, Bel-Nono SO, Kazwala RR, Suu-Ire RD, Barker CM, Johnson CK, Mazet JAK. Seasonal shedding of coronavirus by straw-colored fruit bats at urban roosts in Africa. PLoS One 2022; 17:e0274490. [PMID: 36107832 PMCID: PMC9477308 DOI: 10.1371/journal.pone.0274490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
The straw-colored fruit bat (Eidolon helvum) is a pteropodid whose conservation is crucial for maintaining functional connectivity of plant populations in tropical Africa. Land conversion has pushed this species to adapt to roosting in urban centers across its range. These colonies often host millions of individuals, creating intensive human-bat contact interfaces that could facilitate the spillover of coronaviruses shed by these bats. A better understanding of coronavirus dynamics in these roosts is needed to identify peak times of exposure risk in order to propose evidence-based management that supports safe human-bat coexistence, as well as the conservation of this chiropteran. We studied the temporal patterns of coronavirus shedding in E. helvum, by testing thousands of longitudinally-collected fecal samples from two spatially distant urban roosts in Ghana and Tanzania. Shedding of coronaviruses peaked during the second part of pup weaning in both roosts. Assuming that coronavirus shedding is directly related to spillover risk, our results indicate that exposure mitigation should target reducing contact between people and E. helvum roosts during the pup "weaning" period. This recommendation can be applied across the many highly-populated urban sites occupied by E. helvum across Africa.
Collapse
Affiliation(s)
- Diego Montecino-Latorre
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Terra R. Kelly
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - David J. Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Adam Kindunda
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Godphrey Kongo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Rudovick R. Kazwala
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Richard D. Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christine Kreuder Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Jonna A. K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
4
|
Glennon EE, Becker DJ, Peel AJ, Garnier R, Suu-Ire RD, Gibson L, Hayman DTS, Wood JLN, Cunningham AA, Plowright RK, Restif O. What is stirring in the reservoir? Modelling mechanisms of henipavirus circulation in fruit bat hosts. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190021. [PMID: 31401962 PMCID: PMC6711305 DOI: 10.1098/rstb.2019.0021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pathogen circulation among reservoir hosts is a precondition for zoonotic spillover. Unlike the acute, high morbidity infections typical in spillover hosts, infected reservoir hosts often exhibit low morbidity and mortality. Although it has been proposed that reservoir host infections may be persistent with recurrent episodes of shedding, direct evidence is often lacking. We construct a generalized SEIR (susceptible, exposed, infectious, recovered) framework encompassing 46 sub-models representing the full range of possible transitions among those four states of infection and immunity. We then use likelihood-based methods to fit these models to nine years of longitudinal data on henipavirus serology from a captive colony of Eidolon helvum bats in Ghana. We find that reinfection is necessary to explain observed dynamics; that acute infectious periods may be very short (hours to days); that immunity, if present, lasts about 1-2 years; and that recurring latent infection is likely. Although quantitative inference is sensitive to assumptions about serology, qualitative predictions are robust. Our novel approach helps clarify mechanisms of viral persistence and circulation in wild bats, including estimated ranges for key parameters such as the basic reproduction number and the duration of the infectious period. Our results inform how future field-based and experimental work could differentiate the processes of viral recurrence and reinfection in reservoir hosts. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Emma E Glennon
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, QLD 4111, Australia
| | - Romain Garnier
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.,Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Richard D Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4442, New Zealand
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
5
|
Hayman DTS, Luis AD, Restif O, Baker KS, Fooks AR, Leach C, Horton DL, Suu-Ire R, Cunningham AA, Wood JLN, Webb CT. Maternal antibody and the maintenance of a lyssavirus in populations of seasonally breeding African bats. PLoS One 2018; 13:e0198563. [PMID: 29894488 PMCID: PMC5997331 DOI: 10.1371/journal.pone.0198563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 05/18/2018] [Indexed: 12/24/2022] Open
Abstract
Pathogens causing acute disease and death or lasting immunity require specific spatial or temporal processes to persist in populations. Host traits, such as maternally-derived antibody (MDA) and seasonal birthing affect infection maintenance within populations. Our study objective is to understand how viral and host traits lead to population level infection persistence when the infection can be fatal. We collected data on African fruit bats and a rabies-related virus, Lagos bat virus (LBV), including through captive studies. We incorporate these data into a mechanistic model of LBV transmission to determine how host traits, including MDA and seasonal birthing, and viral traits, such as incubation periods, interact to allow fatal viruses to persist within bat populations. Captive bat studies supported MDA presence estimated from field data. Captive bat infection-derived antibody decayed more slowly than MDA, and while faster than estimates from the field, supports field data that suggest antibody persistence may be lifelong. Unobserved parameters were estimated by particle filtering and suggest only a small proportion of bats die of disease. Pathogen persistence in the population is sensitive to this proportion, along with MDA duration and incubation period. Our analyses suggest MDA produced bats and prolonged virus incubation periods allow viral maintenance in adverse conditions, such as a lethal pathogen or strongly seasonal resource availability for the pathogen in the form of seasonally pulsed birthing.
Collapse
Affiliation(s)
- David T. S. Hayman
- Molecular Epidemiology and Public Health Laboratory (EpiLab), Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Angela D. Luis
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, Montana, United States of America
| | - Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kate S. Baker
- Institute for Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), New Haw, Surrey, United Kingdom
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Clint Leach
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - James L. N. Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Colleen T. Webb
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
6
|
Peel AJ, Baker KS, Hayman DTS, Broder CC, Cunningham AA, Fooks AR, Garnier R, Wood JLN, Restif O. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci Rep 2018; 8:3859. [PMID: 29497106 PMCID: PMC5832774 DOI: 10.1038/s41598-018-22236-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
Abstract
Spatiotemporally-localised prediction of virus emergence from wildlife requires focused studies on the ecology and immunology of reservoir hosts in their native habitat. Reliable predictions from mathematical models remain difficult in most systems due to a dearth of appropriate empirical data. Our goal was to study the circulation and immune dynamics of zoonotic viruses in bat populations and investigate the effects of maternally-derived and acquired immunity on viral persistence. Using rare age-specific serological data from wild-caught Eidolon helvum fruit bats as a case study, we estimated viral transmission parameters for a stochastic infection model. We estimated mean durations of around 6 months for maternally-derived immunity to Lagos bat virus and African henipavirus, whereas acquired immunity was long-lasting (Lagos bat virus: mean 12 years, henipavirus: mean 4 years). In the presence of a seasonal birth pulse, the effect of maternally-derived immunity on virus persistence within modelled bat populations was highly dependent on transmission characteristics. To explain previous reports of viral persistence within small natural and captive E. helvum populations, we hypothesise that some bats must experience prolonged infectious periods or within-host latency. By further elucidating plausible mechanisms of virus persistence in bat populations, we contribute to guidance of future field studies.
Collapse
Affiliation(s)
- Alison J Peel
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, 4111, Australia.
| | - Kate S Baker
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David T S Hayman
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814-4799, USA
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| | - Romain Garnier
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| |
Collapse
|
7
|
Peel AJ, Wood JLN, Baker KS, Breed AC, Carvalho AD, Fernández-Loras A, Gabrieli HS, Gembu GC, Kakengi VA, Kaliba PM, Kityo RM, Lembo T, Mba FE, Ramos D, Rodriguez-Prieto I, Suu-Ire R, Cunningham AA, Hayman DTS. How Does Africa's Most Hunted Bat Vary Across the Continent? Population Traits of the Straw-Coloured Fruit Bat (Eidolon helvum) and Its Interactions with Humans. ACTA CHIROPTEROLOGICA 2017. [DOI: 10.3161/15081109acc2017.19.1.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alison J. Peel
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | - James L. N. Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | - Kate S. Baker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | - Andrew C. Breed
- Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Arlindo De Carvalho
- Direção Geral de Ambiente, Avenida Kwame Krhuma-Caixa Postal 1023, São Tomé, São Tomé e Príncipe
| | - Andrés Fernández-Loras
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom
| | - Harrison Sadiki Gabrieli
- Tanzania Veterinary Laboratory Agency (TVLA), Ministry of Livestock Development and Fisheries (MLDF), P.O. Box 1026, Tanga, Tanzania
| | - Guy-Crispin Gembu
- Faculté des Sciences, Université de Kisangani, Kisangani, République Démocratique du Congo
| | | | | | - Robert M. Kityo
- College of Natural Sciences, School of BioSciences, Department of Biological Sciences. Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, Scotland
| | - Fidel Esono Mba
- Instituto Nacional de Desarrollo Forestal y Manejo del Sistema de Áreas Protegidas (INDEFOR-AP), Calle Jesús Bakale S/N, Bata, Equatorial Guinea
| | - Daniel Ramos
- Parque Natural do Príncipe, Avenida Amilcar Cabral, Cidade de Santo António, Ilha do Príncipe, São Tomé e Príncipe
| | - Iñaki Rodriguez-Prieto
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC 28006 Madrid, Spain
| | | | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom
| | - David T. S. Hayman
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| |
Collapse
|
8
|
Hayman DT, Peel AJ. Can survival analyses detect hunting pressure in a highly connected species? Lessons from straw-coloured fruit bats. BIOLOGICAL CONSERVATION 2016; 200:131-139. [PMID: 27499548 PMCID: PMC4965785 DOI: 10.1016/j.biocon.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 06/02/2023]
Abstract
Animal behaviour, social structure and population dynamics affect community structure, interspecific interactions, and a species' resilience to harvesting. Building on new life history information for the straw-coloured fruit bat (Eidolon helvum) from multiple localities across Africa, we used survival analyses based on tooth-cementum annuli data to test alternative hypotheses relating to hunting pressure, demography and population connectivity. The estimated annual survival probability across Africa was high (≥ 0.64), but was greatest in colonies with the highest proportion of males. This difference in sex survival, along with age and sex capture biases and out-of-phase breeding across the species' distribution, leads us to hypothesize that E. helvum has a complex social structure. We found no evidence for additive mortality in heavily hunted populations, with most colonies having high survival with constant risk of mortality despite different hunting pressure. Given E. helvum's slow life history strategy, similar survival patterns and rate among colonies suggest that local movement and regional migration may compensate for local excess hunting, but these were also not clearly detected. Our study suggests that spatio-temporal data are necessary to appropriately assess the population dynamics and conservation status of this and other species with similar traits.
Collapse
Affiliation(s)
- David T.S. Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand
| | - Alison J. Peel
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|