1
|
Zhou L, van Bree N, Boutin L, Ryu J, Moussaud S, Liu M, Otrocka M, Olsson M, Falk A, Wilhelm M. High-throughput neural stem cell-based drug screening identifies S6K1 inhibition as a selective vulnerability in sonic hedgehog-medulloblastoma. Neuro Oncol 2024; 26:1685-1699. [PMID: 38860311 PMCID: PMC11376459 DOI: 10.1093/neuonc/noae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant brain tumors in children. Current treatments have increased overall survival but can lead to devastating side effects and late complications in survivors, emphasizing the need for new, improved targeted therapies that specifically eliminate tumor cells while sparing the normally developing brain. METHODS Here, we used a sonic hedgehog (SHH)-MB model based on a patient-derived neuroepithelial stem cell system for an unbiased high-throughput screen with a library of 172 compounds with known targets. Compounds were evaluated in both healthy neural stem cells (NSCs) and tumor cells derived from the same patient. Based on the difference of cell viability and drug sensitivity score between normal cells and tumor cells, hit compounds were selected and further validated in vitro and in vivo. RESULTS We identified PF4708671 (S6K1 inhibitor) as a potential agent that selectively targets SHH-driven MB tumor cells while sparing NSCs and differentiated neurons. Subsequent validation studies confirmed that PF4708671 inhibited the growth of SHH-MB tumor cells both in vitro and in vivo, and that knockdown of S6K1 resulted in reduced tumor formation. CONCLUSIONS Overall, our results suggest that inhibition of S6K1 specifically affects tumor growth, whereas it has less effect on non-tumor cells. Our data also show that the NES cell platform can be used to identify potentially effective new therapies and targets for SHH-MB.
Collapse
Affiliation(s)
- Leilei Zhou
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Niek van Bree
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lola Boutin
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jinhye Ryu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Simon Moussaud
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Olsson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Guptta P, Sakthivel S, Teo WW, Naing YT, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Sun L, Giguere V, Chow PKH, Ghosh S, McDonnell DP, Yen PM, Singh BK. Esrra regulates Rplp1-mediated translation of lysosome proteins suppressed in metabolic dysfunction-associated steatohepatitis and reversed by alternate day fasting. Mol Metab 2024; 87:101997. [PMID: 39032642 PMCID: PMC11327444 DOI: 10.1016/j.molmet.2024.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Guptta
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Wei Wen Teo
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Kabilesh Arul
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Pierce K H Chow
- Dept of Surgery, Singapore General Hospital and Dept. of Surgical Oncology, National Cancer Centre 169608, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
3
|
Muduli K, Pradhan J, Prusty M, Samal AP, Reddy KS, Elangovan S. Estrogen-related receptor alpha (ERRα) promotes the migration, invasion and angiogenesis of breast cancer stem cell-like cells. Med Oncol 2024; 41:78. [PMID: 38393411 DOI: 10.1007/s12032-024-02329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Breast cancer progression, metastasis and recurrence are largely driven by breast cancer stem cells (BCSCs), which constitute a subset of tumor cells exhibiting stem cell characteristics. In this study, we evaluated the role of estrogen-related receptor alpha (ERRα) in the migration, invasion and angiogenesis of BCSCs. The inhibition of ERRα using XCT790 or knockdown of ERRα using shRNA inhibited the mammosphere formation efficiency, as well as the migration and invasion of BCSCs derived from the mammospheres of MCF7 and MDA-MB-231 (MB231) cells. Conversely, the overexpression of ERRα significantly increased the migration and invasion of BCSCs derived from the mammosphere. In addition, the XCT790 treatment or shERRα significantly downregulated the epithelial-mesenchymal transition (EMT), as evidenced by the downregulation in the expression of vimentin, Snail, Slug and N-cadherin in the mammospheres of MCF7 and MB231 cells. The chorioallantoic membrane assay showed that the conditioned media from XCT790-treated and shERRα cells significantly inhibited blood vessel formation and vessel length. Furthermore, XCT790 treatment or shERRα also downregulated the expression of molecular markers of angiogenesis, such as VEGF-A and Ang-2 in the mammospheres. Conversely, the overexpression of ERRα in MCF7 cells significantly increased both EMT and angiogenesis. These findings suggest that ERRα inhibits the migration, invasion and angiogenesis of BCSCs, suggesting as a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Kartik Muduli
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Jagannath Pradhan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Monica Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Archana Priyadarshini Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
4
|
Vanacker JM, Forcet C. ERRα: unraveling its role as a key player in cell migration. Oncogene 2024; 43:379-387. [PMID: 38129506 DOI: 10.1038/s41388-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions. ERRα is a global regulator of energy metabolism, and it is also highly involved in bone homeostasis, development, differentiation, immunity and cancer progression. Importantly, in some instances, the regulation of these biological processes relies on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely controls the cell migratory potential.
Collapse
Affiliation(s)
- Jean-Marc Vanacker
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Fard SS, Holz MK. Regulation of mRNA translation by estrogen receptor in breast cancer. Steroids 2023; 200:109316. [PMID: 37806603 PMCID: PMC10841406 DOI: 10.1016/j.steroids.2023.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Breast cancer is one of the leading causes of cancer-related fatalities and the most often diagnosed malignancy in women globally. Dysregulation of sex hormone signaling pathways mediated by the estrogen receptor (ER) in breast cancer is well characterized. Although ER is known to promote cell growth and survival by altering gene transcription, recent research suggests that its effects in cancers are also mediated through dysregulation of protein synthesis. This implies that ER can coordinately affect gene expression through both translational and transcriptional pathways, leading to the development of malignancy. In this review, we will cover the current understanding of how the ER controls mRNA translation in breast cancer and discuss any potential clinical implications of this phenomenon.
Collapse
Affiliation(s)
- Shahrzad S Fard
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA; Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
6
|
Muduli K, Prusty M, Pradhan J, Samal AP, Sahu B, Roy DS, Reddy KS, Elangovan S. Estrogen-Related Receptor Alpha (ERRα) Promotes Cancer Stem Cell-Like Characteristics in Breast Cancer. Stem Cell Rev Rep 2023; 19:2807-2819. [PMID: 37584854 DOI: 10.1007/s12015-023-10605-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Cancer stem cells drive tumor initiation, invasion, metastasis and recurrence. In the present study, we have evaluated the role of ERRα in the maintenance of breast cancer stem cells (BCSCs) using breast cancer cell lines. The inhibition of ERRα with the inverse agonist, XCT-790, or the knockdown of ERRα in breast cancer cells significantly reduced the mammosphere formation efficiency and mammosphere size along with a significant reduction in the CD44+/CD24- BCSCs. Treatment with XCT-790 significantly downregulated expression of the transcription factors involved in stem cell maintenance such as Oct4, Klf4, Sox2, Nanog and c-Myc in the mammosphere forming stem cells of MCF7 and MDA-MB-231. In addition, XCT-790 induced cell cycle arrest and apoptosis in the mammosphere-forming cells. The knockdown or inhibition of ERRα downregulated the expression of Notch1 and β-catenin, whereas the overexpression of ERRα in MCF7 cells upregulated the expression of these proteins. Moreover, the inhibition of ERRα synergistically enhanced the efficacy of paclitaxel in inhibiting the BCSCs. These results show that ERRα is crucial for the maintenance of BCSCs and suggest that ERRα could be a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Kartik Muduli
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Monica Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Jagannath Pradhan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Archana Priyadarshini Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Bikash Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Debanjan Singha Roy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
7
|
Kubat Oktem E, Demir U, Yazar M, Arga KY. Three candidate anticancer drugs were repositioned by integrative analysis of the transcriptomes of species with different regenerative abilities after injury. Comput Biol Chem 2023; 106:107934. [PMID: 37487250 DOI: 10.1016/j.compbiolchem.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Regeneration is a homeostatic process that involves the restoration of cells and body parts. Most of the molecular mechanisms and signalling pathways involved in wound healing, such as proliferation, have also been associated with cancer cell growth, suggesting that cancer is an over/unhealed wound. In this study, we examined differentially expressed genes in spinal cord samples from regenerative organisms (axolotl and zebrafish) and nonregenerative organisms (mouse and rat) compared to intact control spinal cord samples using publicly available transcriptomics data and bioinformatics analyses. Based on these gene signatures, we investigated 3 small compounds, namely cucurbitacin I, BMS-754807, and PHA-793887 as potential candidates for the treatment of cancer. The predicted target genes of the repositioned compounds were mainly enriched with the greatest number of genes in cancer pathways. The molecular docking results on the binding affinity between the repositioned compounds and their target genes are also reported. The repositioned 3 small compounds showed anticancer effect both in 2D and 3D cell cultures using the prostate cancer cell line as a model. We propose cucurbitacin I, BMS-754807, and PHA-793887 as potential anticancer drug candidates. Future studies on the mechanisms associated with the revealed gene signatures and anticancer effects of these three small compunds would allow scientists to develop therapeutic approaches to combat cancer. This research contributes to the evaluation of mechanisms and gene signatures that either limit or cause cancer, and to the development of new cancer therapies by establishing a link between regeneration and carcinogenesis.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Ummuhan Demir
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Turkey; Istanbul Medeniyet University, Science and Advanced Technology Research Center (BILTAM), Istanbul, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey; Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, Istanbul, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Kraaijvanger R, Ambarus CA, Damen J, van der Vis JJ, Kazemier KM, Grutters JC, van Moorsel CHM, Veltkamp M. Simultaneous Assessment of mTORC1, JAK/STAT, and NLRP3 Inflammasome Activation Pathways in Patients with Sarcoidosis. Int J Mol Sci 2023; 24:12792. [PMID: 37628972 PMCID: PMC10454122 DOI: 10.3390/ijms241612792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The unknown etiology of sarcoidosis, along with the variability in organ involvement and disease course, complicates the effective treatment of this disease. Based on recent studies, the cellular inflammatory pathways involved in granuloma formation are of interest regarding possible new treatment options, such as the mechanistic (formerly mammalian) target of rapamycin complex 1 (mTORC1) pathway, the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, and the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome pathway. The aim of this study was to explore the potential coexpression of these three inflammatory pathways in patients with sarcoidosis and see whether possible differences were related to disease outcome. The tissue of 60 patients with sarcoidosis was used to determine the activity of these three signaling pathways using immunohistochemistry. The activation of NLRP3 was present in 85% of all patients, and the activation of mTORC1 and JAK/STAT was present in 49% and 50% of patients, respectively. Furthermore, the presence of NLRP3 activation at diagnosis was associated with a chronic disease course of sarcoidosis. Our finding of different new conceptual inflammatory tissue phenotypes in sarcoidosis could possibly guide future treatment studies using the available inhibitors of either NLRP3, JAK-STAT, and mTORC1 inhibitors in a more personalized medicine approach.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.)
| | - Carmen A. Ambarus
- Interstitial Lung Diseases Center of Excellence, Pathologie DNA, Department of Pathology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Jan Damen
- Pathologie DNA, Department of Pathology, Jeroen Bosch Hospital, 5223 GZ ‘s-Hertogenbosch, The Netherlands
| | - Joanne J. van der Vis
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.)
- Department of Clinical Chemistry, St Antonius ILD Center of Excellence, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Karin M. Kazemier
- Center of Translational Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Division of Heart and Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Jan C. Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.)
- Division of Heart and Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Coline H. M. van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.)
| | - Marcel Veltkamp
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.)
- Division of Heart and Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
9
|
Musheyev D, Miller E, Birnbaum N, Miller E, Erblich S, Schuck A, Alayev A. Inhibition of ERK signaling for treatment of ERRα positive TNBC. PLoS One 2023; 18:e0283047. [PMID: 37163498 PMCID: PMC10171695 DOI: 10.1371/journal.pone.0283047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/28/2023] [Indexed: 05/12/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women and triple-negative breast cancer (TNBC), in particular, is an aggressive and highly metastatic type of breast cancer that does not respond to established targeted therapies and is associated with poor prognosis and worse survival. Previous studies identified a subgroup of triple-negative breast cancer patients with high expression of estrogen related receptor alpha (ERRα) that has better prognosis when treated with tamoxifen. We therefore set out to identify common targets of tamoxifen and ERRα in the context of TNBC using phosphoproteomic analysis. In this study, we discovered that phosphorylation of mitogen-activated protein kinase 1 (MAPK1) is regulated by tamoxifen as well as ERRα. Additionally, we showed that inhibition of MAPK signaling together with the use of a selective ERRα inverse agonist, XCT-790, leads to a significant upregulation of apoptosis and paves way for the therapeutic use of MAPK inhibitors for treatment of ERRα expressing TNBC.
Collapse
Affiliation(s)
- David Musheyev
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, New York, United States of America
| | - Esther Miller
- Department of Biology, Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Natania Birnbaum
- Department of Biology, Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Elisheva Miller
- Department of Biology, Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Shoshana Erblich
- Department of Mechanical Engineering, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Alyssa Schuck
- Department of Biology, Stern College for Women, Yeshiva University, New York, New York, United States of America
| | - Anya Alayev
- Department of Biology, Stern College for Women, Yeshiva University, New York, New York, United States of America
| |
Collapse
|
10
|
Jimeno R, Mouron S, Salgado R, Loi S, Pérez-Mies B, Sánchez-Bayona R, Manso L, Martínez M, Garrido-García A, Serrano-Pardo R, Colomer R, Quintela-Fandino M. Tumor P70S6K hyperactivation is inversely associated with tumor-infiltrating lymphocytes in triple-negative breast cancer. Clin Transl Oncol 2023; 25:1124-1131. [PMID: 36508123 PMCID: PMC10025236 DOI: 10.1007/s12094-022-03006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is characterized by large heterogeneity and relative lack of available targeted therapies. To find therapeutic strategies for distinct patients with TNBC, several approaches have been used for TNBC clustering, including recently immune and phosphoproteomic patterns. Based on 70-kDa ribosomal protein S6 kinase (P70S6K)-TNBC clustering, the current study explores the immune profiling in TNBC tumors. METHODS Stromal tumor-infiltrating lymphocytes (sTILs) were evaluated in human TNBC tumor samples. Furthermore, immunohistochemistry staining for CD8, CD4, Foxp3, and CD20 was performed in tissue microarrays (TMA) sections. RESULTS Histological analysis showed decreased sTILs, CD20+ cells, and CD8+/CD4+ ratio in high phosphorylated P70S6K (p-P70S6K) tumors. Moreover, p-P70S6K score was directly correlated with CD4+ and Foxp3+ T cells, while it was inversely correlated with CD8+/CD4+ and CD8+/Foxp3+ ratios. CONCLUSION sTIL infiltration and lymphocyte profiling vary in the context of hyperactivation of P70S6K in TNBC tumors.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Breast Cancer Clinical Research Unit, Clinical Research Program, CNIO, Madrid, Spain
| | - Silvana Mouron
- Breast Cancer Clinical Research Unit, Clinical Research Program, CNIO, Madrid, Spain
| | - Roberto Salgado
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Pathology, GZA-ZNA, Antwerp, Belgium
| | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Belén Pérez-Mies
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
- Faculty of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
- CIBERONC, Madrid, Spain
| | | | - Luis Manso
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mario Martínez
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana Garrido-García
- Department of Medical Oncology, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Ramón Colomer
- Department of Medical Oncology, Hospital Universitario La Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Clinical Research Program, CNIO, Madrid, Spain.
- Medical Oncology, Hospital Universitario de Fuenlabrada, Madrid, Spain.
- Endowed Chair of Personalised Precision Medicine, Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Ruiz-Whalen DM, Aichele CP, Dyson ER, Gallen KC, Stark JV, Saunders JA, Simonet JC, Ventresca EM, Fuentes IM, Marmol N, Moise E, Neubert BC, Riggs DJ, Self AM, Alexander JI, Boamah E, Browne AJ, Correa I, Foster MJ, Harrington N, Holiday TJ, Henry RA, Lee EH, Longo SM, Lorenz LD, Martinez E, Nikonova A, Radu M, Smith SC, Steele LA, Strochlic TI, Archer NF, Aykit YJ, Bolotsky AJ, Boyle M, Criollo J, Eldor O, Cruz G, Fortuona VN, Gounder SD, Greenwood N, Ji KW, Johnson A, Lara S, Montanez B, Saurman M, Singh T, Smith DR, Stapf CA, Tondapu T, Tsiobikas C, Habas R, O'Reilly AM. Gaining Wings to FLY: Using Drosophila Oogenesis as an Entry Point for Citizen Scientists in Laboratory Research. Methods Mol Biol 2023; 2626:399-444. [PMID: 36715918 DOI: 10.1007/978-1-0716-2970-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.
Collapse
Affiliation(s)
- Dara M Ruiz-Whalen
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
- eCLOSE Institute, Huntingdon Valley, PA, USA.
| | - Christopher P Aichele
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Ebony R Dyson
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Katherine C Gallen
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Jennifer V Stark
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jasmine A Saunders
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jacqueline C Simonet
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Arcadia University, Glenside, PA, USA
| | - Erin M Ventresca
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Albright College, Reading, PA, USA
| | - Isabela M Fuentes
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nyellis Marmol
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Emly Moise
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Benjamin C Neubert
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Devon J Riggs
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Ava M Self
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jennifer I Alexander
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Ernest Boamah
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Amanda J Browne
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Iliana Correa
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Maya J Foster
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nicole Harrington
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Troy J Holiday
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ryan A Henry
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Wilkes University, Wilkes-Barre, PA, USA
| | - Eric H Lee
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sheila M Longo
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Laurel D Lorenz
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Esteban Martinez
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Anna Nikonova
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Maria Radu
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shannon C Smith
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lindsay A Steele
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Todd I Strochlic
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA, USA
| | - Nicholas F Archer
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Y James Aykit
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Adam J Bolotsky
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Megan Boyle
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jennifer Criollo
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Oren Eldor
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gabriela Cruz
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Valerie N Fortuona
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Shreeya D Gounder
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nyim Greenwood
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kayla W Ji
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aminah Johnson
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Sophie Lara
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Maxwell Saurman
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tanu Singh
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel R Smith
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Catherine A Stapf
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tarang Tondapu
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Alana M O'Reilly
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
- eCLOSE Institute, Huntingdon Valley, PA, USA.
| |
Collapse
|
12
|
Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death Dis 2022; 13:646. [PMID: 35879299 PMCID: PMC9314331 DOI: 10.1038/s41419-022-05081-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
As a substrate and major effector of the mammalian target of rapamycin complex 1 (mTORC1), the biological functions of ribosomal protein S6 kinase (S6K) have been canonically assigned for cell size control by facilitating mRNA transcription, splicing, and protein synthesis. However, accumulating evidence implies that diverse stimuli and upstream regulators modulate S6K kinase activity, leading to the activation of a plethora of downstream substrates for distinct pathobiological functions. Beyond controlling cell size, S6K simultaneously plays crucial roles in directing cell apoptosis, metabolism, and feedback regulation of its upstream signals. Thus, we comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for S6K and shed light on S6K as a potential therapeutic target for cancers.
Collapse
|
13
|
Barker CG, Petsalaki E, Giudice G, Sero J, Ekpenyong EN, Bakal C, Petsalaki E. Identification of phenotype-specific networks from paired gene expression-cell shape imaging data. Genome Res 2022; 32:750-765. [PMID: 35197309 PMCID: PMC8997347 DOI: 10.1101/gr.276059.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the discovery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.
Collapse
Affiliation(s)
- Charlie George Barker
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Eirini Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Julia Sero
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emmanuel Nsa Ekpenyong
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Chris Bakal
- Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
14
|
Nelson AT, Wang Y, Nelson ER. TLX, an Orphan Nuclear Receptor With Emerging Roles in Physiology and Disease. Endocrinology 2021; 162:6360449. [PMID: 34463725 PMCID: PMC8462384 DOI: 10.1210/endocr/bqab184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/14/2022]
Abstract
TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Correspondence: Erik R. Nelson, PhD, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S Goodwin Ave (MC-114), Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Cholesterol-Induced Metabolic Reprogramming in Breast Cancer Cells Is Mediated via the ERRα Pathway. Cancers (Basel) 2021; 13:cancers13112605. [PMID: 34073320 PMCID: PMC8198778 DOI: 10.3390/cancers13112605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is increasing evidence that obesity and high circulating cholesterol levels are associated with an increased risk of recurrence and a higher mortality rate in breast cancer patients via altering the metabolic programming in breast cancer cells. However, the underlying molecular mechanism by which high cholesterol levels reprogram the metabolic pathways in breast cancer cells is not well-understood. We have previously demonstrated that cholesterol acts as an endogenous agonist of estrogen-related receptor α (ERRα), a strong regulator of cellular metabolism. The aim of the current study is to demonstrate whether cholesterol/obesity mediates its pathogenic effect in breast cancer cells via altering metabolic pathways in an ERRα-dependent manner. The findings of this study provide mechanistic insights into the link between cholesterol/obesity and metabolic reprogramming in breast cancer patients and reveal the metabolic vulnerabilities in such breast cancer patients that could be therapeutically targeted. Abstract The molecular mechanism underlying the metabolic reprogramming associated with obesity and high blood cholesterol levels is poorly understood. We previously reported that cholesterol is an endogenous ligand of the estrogen-related receptor alpha (ERRα). Using functional assays, metabolomics, and genomics, here we show that exogenous cholesterol alters the metabolic pathways in estrogen receptor-positive (ER+) and triple-negative breast cancer (TNBC) cells, and that this involves increased oxidative phosphorylation (OXPHOS) and TCA cycle intermediate levels. In addition, cholesterol augments aerobic glycolysis in TNBC cells although it remains unaltered in ER+ cells. Interestingly, cholesterol does not alter the metabolite levels of glutaminolysis, one-carbon metabolism, or the pentose phosphate pathway, but increases the NADPH levels and cellular proliferation, in both cell types. Importantly, we show that the above cholesterol-induced modulations of the metabolic pathways in breast cancer cells are mediated via ERRα. Furthermore, analysis of the ERRα metabolic gene signature of basal-like breast tumours of overweight/obese versus lean patients, using the GEO database, shows that obesity may modulate ERRα gene signature in a manner consistent with our in vitro findings with exogenous cholesterol. Given the close link between high cholesterol levels and obesity, our findings provide a mechanistic explanation for the association between cholesterol/obesity and metabolic reprogramming in breast cancer patients.
Collapse
|
16
|
Cai W, Ni W, Jin Y, Li Y. TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling. Cancer Biomark 2021; 30:237-248. [PMID: 33136091 DOI: 10.3233/cbm-200039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a primary cause of cancer-patient mortality throughout the world. Thyroid hormone receptor interactor 13 (TRIP13) is a gene that expresses a protein involved in cell division, including tumorigenesis. Its expression is high in various human tumors; however, its role in LUAD cells remains undetermined. OBJECTIVE To investigate the TRIP13's role in the development of LUAD. METHODS Bioinformation analysis was used to analyze the expression of TRIP13 in LUAD tissues and the impact on the prognosis of LUAD; CRISPR/Cas9 was used to construct the cell lines; CCK-8 was used to explore the cell proliferation; Transwell assays was applied to exam the cell migration and cell invasion abilities; Western blot and immunoprecipitation was used to explore the relation between TRIP13 and AKT/mTORC1/c-Myc signaling pathway. RESULTS By analyzing LUAD data from The Cancer Genome Atlas and the Gene Expression Omnibus databases, we determined that TRIP13 is highly expressed in LUAD tissues and that this expression level has a negative impact on the patient mortality. TRIP13 has also proved to promote LUAD cell proliferation, migration, and invasion. In this study, we demonstrated that TRIP13 activates AKT/mTORC1/c-Myc signaling in these cells. CONCLUSION Our results have identified the role and potential mechanism by which TRIP13 affects LUAD cells, which may provide a useful marker for helping to diagnose this disease and create new therapies against it.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Ni
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai, China.,Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yin Jin
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyan Li
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Tang J, Liu T, Wen X, Zhou Z, Yan J, Gao J, Zuo J. Estrogen-related receptors: novel potential regulators of osteoarthritis pathogenesis. Mol Med 2021; 27:5. [PMID: 33446092 PMCID: PMC7809777 DOI: 10.1186/s10020-021-00270-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease that is associated with articular cartilage destruction, subchondral bone alterations, synovitis, and even joint deformity and the loss of joint function. Although current basic research on the pathogenesis of OA has made remarkable progress, our understanding of this disease still needs to be further improved. Recent studies have shown that the estrogen-related receptor (ERR) family members ERRα and ERRγ may play significant roles in the pathogenesis of OA. In this review, we refer to the latest research on ERRs and the pathogenesis of OA, elucidate the structure and physiopathological functions of the ERR orphan nuclear receptor family, and systematically examine the relationship between ERRs and OA at the molecular level. Moreover, we also discuss and predict the capacity of ERRs as potential targets in the clinical treatment of OA.
Collapse
Affiliation(s)
- Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Tong Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xinggui Wen
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jingtong Yan
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianpeng Gao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
18
|
Kounde CS, Tate EW. Photoactive Bifunctional Degraders: Precision Tools To Regulate Protein Stability. J Med Chem 2020; 63:15483-15493. [PMID: 33226810 DOI: 10.1021/acs.jmedchem.0c01542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted protein degradation with bifunctional degraders is positioned as a remarkable game-changing strategy to control cellular protein levels and promises a new therapeutic modality in drug discovery. Light activation of a degrader to achieve exquisite spatiotemporal control over protein stability in cells has attracted the interest of multiple research groups, with recent reports demonstrating optical control of proteolysis with chimeric molecules bearing photolabile or photoswitchable motifs. In this context of targeted proteolysis research spurring the emergence of innovative tools, we examine the design, synthesis, and properties of light-activated degraders. The significant impact of this approach in regulating disease-relevant protein levels in a light-dependent manner is highlighted with key examples, and future developments to fully harness the potential of light-induced protein degradation with photoactive bifunctional molecules are discussed.
Collapse
Affiliation(s)
- Cyrille S Kounde
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
19
|
Unraveling the multifaceted nature of the nuclear function of mTOR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118907. [PMID: 33189783 DOI: 10.1016/j.bbamcr.2020.118907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 01/25/2023]
Abstract
Positioned at the axis between the cell and its environment, mTOR directs a wide range of cellular activity in response to nutrients, growth factors, and stress. Our understanding of the role of mTOR is evolving beyond the spatial confines of the cytosol, and its role in the nucleus becoming ever more apparent. In this review, we will address various studies that explore the role of nuclear mTOR (nmTOR) in specific cellular programs and how these pathways influence one another. To understand the emerging roles of nuclear mTOR, we discuss data and propose plausible mechanisms to offer novel ideas, hypotheses, and future research directions.
Collapse
|
20
|
Cheng TYD, Omilian AR, Yao S, Sanchez PV, Polk LZ, Zhang W, Datta S, Bshara W, Ondracek RP, Davis W, Liu S, Hong CC, Bandera EV, Khoury T, Ambrosone CB. Body fatness and mTOR pathway activation of breast cancer in the Women's Circle of Health Study. NPJ Breast Cancer 2020; 6:45. [PMID: 33024820 PMCID: PMC7505987 DOI: 10.1038/s41523-020-00187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Energy imbalance has an important role in breast cancer prognosis. Hyperactive mechanistic Target of Rapamycin (mTOR) pathway is associated with breast tumor growth, but the extent to which body fatness is associated with mTOR pathway activities in breast cancer is unclear. We performed immunostaining for mTOR, phosphorylated (p)-mTOR, p-AKT, and p-p70S6K in tumor tissue from 590 women (464 African Americans/Blacks and 126 Whites) with newly diagnosed invasive breast cancer in the Women's Circle of Health Study. Anthropometric measures were taken by study staff, and body composition was measured by bioelectrical impedance analysis. Linear regressions were used to estimate percent differences in protein expression between categories of body mass index (BMI), waist circumference, waist/hip ratio, fat mass, fat mass index, and percent body fat. We observed that BMI ≥ 35.0 vs. <25 kg/m2 was associated with 108.3% (95% CI = 16.9%-270.9%) and 101.8% (95% CI = 17.0%-248.8%) higher expression in p-mTOR and normalized p-mTOR, i.e., p-mTOR/mTOR, respectively. Quartiles 4 vs. 1 of waist/hip ratio was associated with 41.8% (95% CI = 5.81%-89.9%) higher mTOR expression. Similar associations were observed for the body fat measurements, particularly in patients with estrogen receptor-negative (ER-) tumors, but not in those with ER+ tumors, although the differences in associations were not significant. This tumor-based study found positive associations between body fatness and mTOR pathway activation, evident by a p-mTOR expression, in breast cancer. Our findings suggest that mTOR inhibition can be a treatment strategy to prevent the recurrence of these tumors in obese individuals.
Collapse
Affiliation(s)
- Ting-Yuan David Cheng
- Department of Epidemiology, University of Florida, Gainesville, FL USA
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Pamela V Sanchez
- Department of Epidemiology, University of Florida, Gainesville, FL USA
| | - Latasia Z Polk
- Department of Epidemiology, University of Florida, Gainesville, FL USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL USA
| | - Wiam Bshara
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Rochelle Payne Ondracek
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ USA
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| |
Collapse
|
21
|
Ghanbari F, Mader S, Philip A. Cholesterol as an Endogenous Ligand of ERRα Promotes ERRα-Mediated Cellular Proliferation and Metabolic Target Gene Expression in Breast Cancer Cells. Cells 2020; 9:E1765. [PMID: 32717915 PMCID: PMC7463712 DOI: 10.3390/cells9081765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 01/20/2023] Open
Abstract
Breast cancer is the 2nd leading cause of cancer-related death among women. Increased risk of breast cancer has been associated with high dietary cholesterol intake. However, the underlying mechanisms are not known. The nuclear receptor, estrogen-related receptor alpha (ERRα), plays an important role in breast cancer cell metabolism, and its overexpression has been linked to poor survival. Here we identified cholesterol as an endogenous ligand of ERRα by purification from human pregnancy serum using a GST-ERRα affinity column and liquid chromatography-tandem mass spectrometry (LC-MS/MS). We show that cholesterol interacts with ERRα and induces its transcriptional activity in estrogen receptor positive (ER+) and triple negative breast cancer (TNBC) cells. In addition, we show that cholesterol enhances ERRα-PGC-1α interaction, induces ERRα expression itself, augments several metabolic target genes of ERRα, and increases cell proliferation and migration in both ER+ and TNBC cells. Furthermore, the stimulatory effect of cholesterol on metabolic gene expression, cell proliferation, and migration requires the ERRα pathway. These findings provide a mechanistic explanation for the increased breast cancer risk associated with high dietary cholesterol and possibly the pro-survival effect of statins in breast cancer patients, highlighting the clinical relevance of lowering cholesterol levels in breast cancer patients overexpressing ERRα.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 1A4, Canada;
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 1J7, Canada;
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 1A4, Canada;
| |
Collapse
|
22
|
Chen Y, Zhou Y, Han F, Zhao Y, Tu M, Wang Y, Huang C, Fan S, Chen P, Yao X, Guan L, Yu AM, Gonzalez FJ, Huang M, Bi H. A novel miR-1291-ERRα-CPT1C axis modulates tumor cell proliferation, metabolism and tumorigenesis. Theranostics 2020; 10:7193-7210. [PMID: 32641987 PMCID: PMC7330864 DOI: 10.7150/thno.44877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: MicroRNAs are known to influence the development of a variety of cancers. Previous studies revealed that miR-1291 has antiproliferative functions in cancer cells. Carnitine palmitoyltransferase 1C (CPT1C) has a vital role in mitochondrial energy metabolism and modulation of cancer cell proliferation. Since both miR-1291 and CPT1C regulate tumor cell metabolism and cancer progression, we hypothesized that they might be regulated synergistically. Methods: A series of cell phenotype indicators, such as BrdU, colony formation, cell cycle, ATP production, ROS accumulation and cell ability to resist metabolic stress, were performed to clarify the effects of miR-1291 and ERRα expression on tumor cell proliferation and metabolism. A xenograft tumor model was used to evaluate cell tumorigenesis. Meta-analysis and bioinformatic prediction were applied in the search for the bridge-link between miR-1291 and CPT1C. RT-qPCR, western-blot and IHC analysis were used for the detection of mRNA and protein expression. Luciferase assays and ChIP assays were conducted for in-depth mechanism studies. Results: The expression of miR-1291 inhibited growth and tumorigenesis as a result of modulation of metabolism. CPT1C expression was indirectly and negatively correlated with miR-1291 levels. ESRRA was identified as a prominent differentially expressed gene in both breast and pancreatic cancer samples, and estrogen-related receptor α (ERRα) was found to link miR-1291 and CPT1C. MiR-1291 targeted ERRα and CPT1C was identified as a newly described ERRα target gene. Moreover, ERRα was found to influence cancer cell metabolism and proliferation, consistent with the cellular changes caused by miR-1291. Conclusion: This study demonstrated the existence and mechanism of action of a novel miR-1291-ERRα-CPT1C cancer metabolism axis that may provide new insights and strategies for the development of miRNA-based therapies for malignant cancers.
Collapse
Affiliation(s)
- Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Fangwei Han
- School of Public Health, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Yingyuan Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Meijuan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yongtao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Can Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Shicheng Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Panpan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Xinpeng Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Lihuan Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China 510006
| |
Collapse
|
23
|
Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. Int J Mol Sci 2020; 21:ijms21041199. [PMID: 32054043 PMCID: PMC7072743 DOI: 10.3390/ijms21041199] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of protein translation, metabolism, cell growth and proliferation. It forms two complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1 is frequently deregulated in many cancers, including breast cancer, and is an important target for cancer therapy. The immunosuppressant drug rapamycin and its analogs that inhibit mTOR are currently being evaluated for their potential as anti-cancer agents, albeit with limited efficacy. mTORC1 mediates its function via its downstream targets 40S ribosomal S6 kinases (S6K) and eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). There are two homologs of S6K: S6K1 and S6K2. Most of the earlier studies focused on S6K1 rather than S6K2. Because of their high degree of structural homology, it was generally believed that they behave similarly. Recent studies suggest that while they may share some functions, they may also exhibit distinct or even opposite functions. Both homologs have been implicated in breast cancer, although how they contribute to breast cancer may differ. The purpose of this review article is to compare and contrast the expression, structure, regulation and function of these two S6K homologs in breast cancer.
Collapse
|
24
|
Ye X, Guo J, Zhang H, Meng Q, Ma Y, Lin R, Yi X, Lu H, Bai X, Cheng J. The enhanced expression of estrogen-related receptor α in human bladder cancer tissues and the effects of estrogen-related receptor α knockdown on bladder cancer cells. J Cell Biochem 2019; 120:13841-13852. [PMID: 30977157 DOI: 10.1002/jcb.28657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 01/15/2023]
Abstract
Estrogen-related receptor α (ERRα) belongs to the superfamily of nuclear orphan receptors. However, the role of ERRα in bladder cancer remains unknown. This study examined the expression of ERRα in bladder cancer tissues and explored the molecular mechanisms of ERRα in bladder cancer progression. The expression of ERRα in bladder cancer tissues from 61 patients was determined by immunohistochemistry. We performed quantitative real-time polymerase chain reaction assay to detect the gene expression levels and carried out Western blot assay to measure protein levels. In vitro functional assays, including colony formation, Cell Counting Kit-8, Transwell invasion, and migration assays, were performed to detect bladder cancer cell growth, proliferation, invasion, and migration, respectively. Flow cytometry was used to determine the cell apoptotic rate of bladder cancer cells. Among the 61 detected bladder cancer tissues, 39 bladder cancer tissues showed positive ERRα immunoreactivity. Higher ERRα immunoreactivity score was significantly associated with TNM stage, tumor grade, distant metastasis, and poor survival in patients with bladder cancer. Univariate and multivariate analyses showed that ERRα immunoreactivity was an independent prognostic factor for overall survival in patients with bladder cancer. ERRα was found to be upregulated in bladder cancer cell lines, and knockdown of ERRα suppressed bladder cancer cell growth, proliferation, invasion, and migration; promoted bladder cancer cell apoptosis; and inhibited the epithelial-mesenchymal transition of bladder cancer cells. On the other hand, bladder cancer cell proliferation, invasion, and migration were significantly enhanced after cells were transfected with an ERRα-overexpressing vector. In vivo tumor growth and metastasis assays showed that ERRα knockdown resulted in remarkable inhibition of tumor growth and tumor metastasis in nude mice. Collectively, our results suggest that the enhanced expression of ERRα may play a key role in the development and progression of bladder cancer and ERRα may serve as an important prognostic factor for bladder cancer.
Collapse
Affiliation(s)
- Xinqing Ye
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen Minimally Invasive Engineering Center, Shenzhen, China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Hongxiang Zhang
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qinggui Meng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Ma
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rui Lin
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianlin Yi
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haoyuan Lu
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianzhong Bai
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiwen Cheng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Sohretoglu D, Zhang C, Luo J, Huang S. ReishiMax inhibits mTORC1/2 by activating AMPK and inhibiting IGFR/PI3K/Rheb in tumor cells. Signal Transduct Target Ther 2019; 4:21. [PMID: 31637001 PMCID: PMC6799808 DOI: 10.1038/s41392-019-0056-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) extracts, as dietary supplements, have been found to exert potent anticancer activity, which is attributed to the presence of polysaccharides and triterpenes. However, the molecular mechanism underlying the anticancer action of G. lucidum extracts remains to be investigated. Here, we show that ReishiMax GLp, containing G. lucidum polysaccharides and triterpenes (GLPT), inhibited cell proliferation and induced cell death in human lung cancer cells (A549 and A427) and simultaneously suppressed the signaling pathways of mammalian target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2), respectively. Mechanistically, GLPT downregulated the phosphorylation and protein levels of insulin-like growth factor 1 receptor (IGFR) and phosphoinositide 3-kinase (PI3K) as well as the protein level of RAS homolog enriched in brain (Rheb). In addition, GLPT also activated the AMP-activated protein kinase (AMPK) network. This was evidenced by observations that GLPT increased the phosphorylation of AMPKα (T172) and its substrates tuberous sclerosis complex 2 (TSC2, S1387) and regulatory-associated protein of mTOR (raptor, S792). Ectopic expression of dominant-negative AMPKα partially mitigated the inhibitory effect of GLPT on mTORC1, indicating that GLPT inhibits mTORC1 partly by activating AMPK. The results suggest that G. lucidum extracts exert anticancer action at least partly by suppressing mTORC1/2 signaling via activation of AMPK and inhibition of IGFR/PI3K/Rheb in tumor cells.
Collapse
Affiliation(s)
- Didem Sohretoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR 06100 Ankara, Turkey
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 214064 Wuxi, Jiangsu Province China
| | - Jun Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
- College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 USA
| |
Collapse
|
26
|
Tao J, Zhang J, Du T, Xu X, Deng X, Chen S, Liu J, Chen Y, Liu X, Xiong M, Luo Y, Cheng H, Mao J, Cardon L, Gou M, Wei Y. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater 2019; 90:49-59. [PMID: 30930306 DOI: 10.1016/j.actbio.2019.03.047] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Nerve conduits provide an advanced tool for repairing the injured peripheral nerve that often causes disability and mortality. Currently, the efficiency of conduits in repairing peripheral nerve is unsatisfying. Here, we show a functional nanoparticle-enhanced nerve conduit for promoting the regeneration of peripheral nerves. This conduit, which consists of gelatin-methacryloyl (GelMA) hydrogels with drug loaded poly(ethylene glycol)- poly(3-caprolactone) (MPEG-PCL) nanoparticles dispersed in the hydrogel matrix, is rapidly fabricated by a continuous three-dimensional (3D) printing process. While the 3D-printed hydrogel conduit with customized size, shape and structure provides a physical microenvironment for axonal elongation, the nanoparticles sustained release the drug to facilitate the nerve regeneration. The drug, 4-((5,10-dimethyl-6-oxo-6,10-dihydro-5H-pyrimido[5,4-b]thieno[3,2-e][1,4]diazepin-2-yl)amino) benzenesulfonamide, is a Hippo pathway inhibitor with multiple functions including improving the proliferation and migration of Schwann cells and up-regulating neurotrophic factors genes. The descried functional nerve conduit efficiently induced the recovery of sciatic injuries in morphology, histopathology and functions in vivo, showing the potential clinical application in peripheral nerve repair. STATEMENTS OF SIGNIFICANCE: Functional nerve conduit provides a promising strategy alternative to autografts. In this work, we rapidly customized a nanoparticle-enhanced conduit by the continuous bioprinting process. This nanoparticle in the conduit can release a Hippo pathway inhibitor to facilitate the nerve regeneration and function restoration. The efficacy of the conduits is comparable to that of autograft, suggesting the potential clinical applications.
Collapse
Affiliation(s)
- Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China; School of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Xin Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shaochen Chen
- NanoEngineering Department, University of California, San Diego, USA
| | - Jinlu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Yi Luo
- Department of Orthopedics, West China Hospital of Sichuan University, Wai Nan Guo Xue Xiang 37#, 610041 Chengdu, Sichuan, China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Jian Mao
- School of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ludwig Cardon
- Center for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 915, Zwijnaarde, Ghent, Belgium
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| |
Collapse
|
27
|
De Vitto H, Bode AM, Dong Z. The PGC-1/ERR network and its role in precision oncology. NPJ Precis Oncol 2019; 3:9. [PMID: 30911677 PMCID: PMC6428848 DOI: 10.1038/s41698-019-0081-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulators include a superfamily of nuclear proteins referred to as co-activators and co-repressors, both of which are involved in controlling the functions of several nuclear receptors (NRs). The Nuclear Receptor Signaling Atlas (NURSA) has cataloged the composition of NRs, co-regulators, and ligands present in the human cell and their effort has been identified in more than 600 potential molecules. Given the importance of co-regulators in steroid, retinoid, and thyroid hormone signaling networks, hypothesizing that NRs/co-regulators are implicated in a wide range of pathologies are tempting. The co-activators known as peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) and their key nuclear partner, the estrogen-related receptor (ERR), are emerging as pivotal transcriptional signatures that regulate an extremely broad repertoire of mitochondrial and metabolic genes, making them very attractive drug targets for cancer. Several studies have provided an increased understanding of the functional and structural biology of nuclear complexes. However, more comprehensive work is needed to create different avenues to explore the therapeutic potential of NRs/co-activators in precision oncology. Here, we discuss the emerging data associated with the structure, function, and molecular biology of the PGC-1/ERR network and address how the concepts evolving from these studies have deepened our understanding of how to develop more effective treatment strategies. We present an overview that underscores new biological insights into PGC-1/ERR to improve cancer outcomes against therapeutic resistance. Finally, we discuss the importance of exploiting new technologies such as single-particle cryo-electron microscopy (cryo-EM) to develop a high-resolution biological structure of PGC-1/ERR, focusing on novel drug discovery for precision oncology.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| |
Collapse
|
28
|
Xu F, Xia Y, Feng Z, Lin W, Xue Q, Jiang J, Yu X, Peng C, Luo M, Yang Y, Wei Y, Yu L. Repositioning antipsychotic fluphenazine hydrochloride for treating triple negative breast cancer with brain metastases and lung metastases. Am J Cancer Res 2019; 9:459-478. [PMID: 30949404 PMCID: PMC6448056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023] Open
Abstract
Triple negative breast cancer (TNBC) patients have a high risk of brain metastases. This deadly disease represents a major challenge for successful treatment, in part because of the poor ability of drugs to penetrate the blood-brain barrier. Antipsychotic drugs show good bioavailability in the brain, and some of them have exhibited anticancer effects in several cancer types. In this study, we investigated the potential of repurposing fluphenazine hydrochloride (Flu) for the treatment of TNBC and the brain metastases. Our data showed that Flu inhibited survival of metastatic TNBC cells. It induced G0/G1 cell cycle arrest and promoted mitochondria-mediated intrinsic apoptosis in vitro. Pharmacokinetic studies in BALB/c mice showed a brain/plasma drug concentration ratio of Flu above 25 for at least 24 hours after dosing. Flu moderately suppressed tumor growth in a TNBC subcutaneous xenograft mouse model. Importantly, Flu exhibited good anti-metastatic potential in a mouse brain metastasis model with an inhibition rate of 85%. In addition, Flu showed a strong inhibitory effect on spontaneous lung metastasis. Moreover, Flu didn't cause serious side effects in the mice. Taken together, this study prompts further preclinical and clinical investigation into repurposing Flu for treating metastatic TNBC patients, which urgently need new treatment options.
Collapse
Affiliation(s)
- Fuyan Xu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan UniversityChengdu 610041, China
| | - Zhanzhan Feng
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Wentao Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Qiang Xue
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Jinrui Jiang
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Xi Yu
- Carey Bussiness School, Johns Hopkins UniversityBaltimore MD 21202, USA
| | - Cuiting Peng
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Min Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, Sichuan, China
| | - Yufei Yang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Yuquan Wei
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Luoting Yu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| |
Collapse
|
29
|
Orphan Nuclear Receptors in Colorectal Cancer. Pathol Oncol Res 2018; 24:815-819. [DOI: 10.1007/s12253-018-0440-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
|