1
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
2
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
3
|
Black AR, Black JD. The complexities of PKCα signaling in cancer. Adv Biol Regul 2021; 80:100769. [PMID: 33307285 PMCID: PMC8141086 DOI: 10.1016/j.jbior.2020.100769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
Protein kinase C α (PKCα) is a ubiquitously expressed member of the PKC family of serine/threonine kinases with diverse functions in normal and neoplastic cells. Early studies identified anti-proliferative and differentiation-inducing functions for PKCα in some normal tissues (e.g., regenerating epithelia) and pro-proliferative effects in others (e.g., cells of the hematopoietic system, smooth muscle cells). Additional well documented roles of PKCα signaling in normal cells include regulation of the cytoskeleton, cell adhesion, and cell migration, and PKCα can function as a survival factor in many contexts. While a majority of tumors lose expression of PKCα, others display aberrant overexpression of the enzyme. Cancer-related mutations in PKCα are uncommon, but rare examples of driver mutations have been detected in certain cancer types (e. g., choroid gliomas). Here we review the role of PKCα in various cancers, describe mechanisms by which PKCα affects cancer-related cell functions, and discuss how the diverse functions of PKCα contribute to tumor suppressive and tumor promoting activities of the enzyme. We end the discussion by addressing mutations and expression of PKCα in tumors and the clinical relevance of these findings.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. Int J Mol Sci 2020; 21:ijms21249511. [PMID: 33327545 PMCID: PMC7765031 DOI: 10.3390/ijms21249511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.
Collapse
|
5
|
Ma B, Khazali A, Shao H, Jiang Y, Wells A. Expression of E-cadherin and specific CXCR3 isoforms impact each other in prostate cancer. Cell Commun Signal 2019; 17:164. [PMID: 31831069 PMCID: PMC6909607 DOI: 10.1186/s12964-019-0489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Carcinoma cells shift between epithelial and mesenchymal phenotypes during cancer progression, as defined by surface presentation of the cell-cell cohesion molecule E-cadherin, affecting dissemination, progression and therapy responsiveness. Concomitant with the loss of E-cadherin during the mesenchymal transition, the predominant receptor isoform for ELR-negative CXC ligands shifts from CXCR3-B to CXCR3-A which turns this classical G-protein coupled receptor from an inhibitor to an activator of cell migration, thus promoting tumor cell invasiveness. We proposed that CXCR3 was not just a coordinately changed receptor but actually a regulator of the cell phenotype. Methods Immunoblotting, immunofluorescence, quantitative real-time PCR and flow cytometry assays investigated the expression of E-cadherin and CXCR3 isoforms. Intrasplenic inoculation of human prostate cancer (PCa) cells with spontaneous metastasis to the liver analyzed E-cadherin and CXCR3-B expression during cancer progression in vivo. Results We found reciprocal regulation of E-cadherin and CXCR3 isoforms. E-cadherin surface expression promoted CXCR3-B presentation on the cell membrane, and to a lesser extent increased its mRNA and total protein levels. In turn, forced expression of CXCR3-A reduced E-cadherin expression level, whereas CXCR3-B increased E-cadherin in PCa. Meanwhile, a positive correlation of E-cadherin and CXCR3-B expression was found both in experimental PCa liver micro-metastases and patients’ tissue. Conclusions CXCR3-B and E-cadherin positively correlated in vitro and in vivo in PCa cells and liver metastases, whereas CXCR3-A negatively regulated E-cadherin expression. These results suggest that CXCR3 isoforms may play important roles in cancer progression and dissemination via diametrically regulating tumor’s phenotype.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh, S713 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 Huaihai Xi Road, Quanshan, Xuzhou, Jiangsu, 221002, People's Republic of China. .,Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, USA.
| | - Ahmad Khazali
- Department of Pathology, University of Pittsburgh, S713 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA.,Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hanshuang Shao
- Department of Pathology, University of Pittsburgh, S713 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA
| | - Yuhan Jiang
- Department of Pathology, University of Pittsburgh, S713 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, S713 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA. .,Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Wells A, Clark A, Bradshaw A, Ma B, Edington H. The great escape: How metastases of melanoma, and other carcinomas, avoid elimination. Exp Biol Med (Maywood) 2019; 243:1245-1255. [PMID: 30764707 DOI: 10.1177/1535370218820287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Cancers kill mainly because metastatic disease is resistant to systemic therapies. It was hoped that newer targeted and immunomodulatory interventions could overcome these issues. However, recent findings point to a generalized resistance to elimination imparted by both cancer-intrinsic and -extrinsic changes to provide survival advantages to the disseminated tumor cells. Here, we present a novel conceptual framework for the microenvironmental inputs and changes that contribute to this generalized therapeutic resistance. In addition we address the issues of experimental systems in terms of studying this phenomenon with their advantages and limitations. This is meant to spur studies into this critical aspect of tumor progression that directly leads to cancer mortality.
Collapse
Affiliation(s)
- Alan Wells
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,5 Hillman Cancer Centers of UPMC, Pittsburgh, PA 15232, USA
| | - Amanda Clark
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew Bradshaw
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Bo Ma
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,5 Hillman Cancer Centers of UPMC, Pittsburgh, PA 15232, USA
| | - Howard Edington
- 6 Department of Surgery, Allegheny Health Network, Pittsburgh, PA 15224, USA
| |
Collapse
|
7
|
Aguilar-Rojas A, Maya-Núñez G, Huerta-Reyes M, Pérez-Solis MA, Silva-García R, Guillén N, Olivo-Marin JC. Activation of human gonadotropin-releasing hormone receptor promotes down regulation of ARHGAP18 and regulates the cell invasion of MDA-MB-231 cells. Mol Cell Endocrinol 2018; 460:94-103. [PMID: 28709956 DOI: 10.1016/j.mce.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/29/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023]
Abstract
The Gonadotropin-Releasing Hormone Receptor (GnRHR) is expressed mainly in the gonadotrope membrane of the adenohypophysis and its natural ligand, the Gonadotropin-Releasing Hormone (GnRH), is produced in anterior hypothalamus. Furthermore, both molecules are also present in the membrane of cells derived from other reproductive tissues such as the breast, endometrium, ovary, and prostate, as well as in tumors derived from these tissues. The functions of GnRH receptor and its hormone in malignant cells have been related with the decrease of proliferation and the invasiveness of those tumors however, little is known about the molecules associated with the signaling pathways regulated by both molecules in malignant cells. To further analyze the potential mechanisms employed by the GnRHR/GnRH system to reduce the tumorigenesis of the highly invasive breast cancer cell line MDA-MB-231, we performed microarrays experiments to evaluated changes in genes expression and validate these modifications by functional assays. We show that activation of human GnRHR is able to diminish the expression and therefore functions of the Rho GTPase-Activating Protein 18 (ARHGAP18). Decrease of this GAP following GnRHR activation, correlates to the higher of cell adhesion and also with reduction of tumor cell invasion, supporting the notion that GnRHR triggers intracellular signaling pathways that acts through ARHGAP18. On the contrary, although a decline of cellular proliferation was observed during GnRHR activation in MDA-MB-231, this was independent of ARHGAP18 showing the complex system in which is involved the signaling pathways regulated by the GnRHR/GnRH system.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Medicina Reproductiva, UMAE No. 4, Ciudad de México, Mexico; Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, F-75015 Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3691, 25 Rue du Dr Roux, F-75015 Paris, France.
| | - Guadalupe Maya-Núñez
- Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Medicina Reproductiva, UMAE No. 4, Ciudad de México, Mexico
| | - Maira Huerta-Reyes
- IMSS, Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI (CMN-SXXI), Ciudad de México, Mexico
| | - Marco Allán Pérez-Solis
- Instituto Mexicano del Seguro Social (IMSS), Unidad de Investigación Médica en Medicina Reproductiva, UMAE No. 4, Ciudad de México, Mexico
| | - Raúl Silva-García
- IMSS, Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN-SXXI, Ciudad de México, Mexico
| | - Nancy Guillén
- Centre National de la Recherche Scientifique, CNRS-ERL9195, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, F-75015 Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3691, 25 Rue du Dr Roux, F-75015 Paris, France
| |
Collapse
|
8
|
Nandy SB, Lakshmanaswamy R. Cancer Stem Cells and Metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:137-176. [DOI: 10.1016/bs.pmbts.2017.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Ma B, Wheeler SE, Clark AM, Whaley DL, Yang M, Wells A. Liver protects metastatic prostate cancer from induced death by activating E-cadherin signaling. Hepatology 2016; 64:1725-1742. [PMID: 27482645 PMCID: PMC5074910 DOI: 10.1002/hep.28755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Liver is one of the most common sites of cancer metastasis. Once disseminated, the prognosis is poor as these tumors often display generalized chemoresistance, particularly for carcinomas that derive not from the aerodigestive tract. When these cancers seed the liver, the aggressive cells usually undergo a mesenchymal to epithelial reverting transition that both aids colonization and renders the tumor cells chemoresistant. In vitro studies demonstrate that hepatocytes drive this phenotypic shift. However, the in vivo evidence and the molecular signals that protect these cells from induced death are yet to be defined. Herein, we report that membrane surface E-cadherin-expressing prostate cancer cells were resistant to cell death by chemotherapeutic drugs but E-cadherin null cells or those expressing E-cadherin only in the cytoplasm were sensitive to death signals and chemotherapies both in vitro and in vivo. While cell-cell E-cadherin ligandation reduced mitogenesis, this chemoprotection was proliferation-independent as killing of both 5-ethynyl-2'-deoxyuridine-positive (or Ki67+ ) and 5-ethynyl-2'-deoxyuridine-negative (Ki67- ) cells was inversely related to membrane-bound E-cadherin. Inhibiting the canonical survival kinases extracellular signal-regulated protein kinases, protein kinase B, and Janus kinase, which are activated by chemotherapeutics in epithelial cell-transitioned prostate cancer, abrogated the chemoresistance both in cell culture and in animal models of metastatic cancer. For disseminated tumors, protein kinase B disruption in itself had no effect on tumor survival but was synergistic with chemotherapy, leading to increased killing. CONCLUSION Liver microenvironment-driven phenotypic switching of carcinoma cells and subsequent survival signaling results in activation of canonical survival pathways that protect the disseminated prostate cancer liver micrometastases in a proliferation-independent manner, and these pathways can be targeted as an adjuvant treatment to improve the efficacy of traditional chemotherapeutics (Hepatology 2016;64:1725-1742).
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA,Pittsburgh VA Healthcare System, Pittsburgh, PA
| | - Sarah E. Wheeler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA,Pittsburgh VA Healthcare System, Pittsburgh, PA
| | - Amanda M. Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Diana L. Whaley
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA,Pittsburgh VA Healthcare System, Pittsburgh, PA
| | - Min Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA. .,Pittsburgh VA Healthcare System, Pittsburgh, PA. .,University of Pittsburgh Cancer Institute, Pittsburgh, PA.
| |
Collapse
|
10
|
Ma B, Wells A. The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are involved in hepatocyte-mediated phenotypic switching in prostate cancer cells. J Biol Chem 2014; 289:11153-11161. [PMID: 24619413 DOI: 10.1074/jbc.m113.540237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The greatest challenge for the seeding of cancer in metastatic sites is integration into the ectopic microenvironment despite the lack of an orthotopic supportive environment and presence of pro-death signals concomitant with a localized "foreign-body" inflammatory response. In this metastatic location, many carcinoma cells display a reversion of the epithelial-to-mesenchymal transition that marks dissemination in the primary tumor mass. This mesenchymal to epithelial reverting transition (MErT) is thought to help seeding and colonization by protecting against cell death. We have previously shown that hepatocyte coculture induces the re-expression of E-cadherin via abrogation of autocrine EGFR signaling pathway in prostate cancer (PCa) cells and that this confers a survival advantage. Herein, we show that hepatocytes educate PCa to undergo MErT by modulating the activity of p38 and ERK1/2. Hepatocytes inhibited p38 and ERK1/2 activity in prostate cancer cells, which allowed E-cadherin re-expression. Introduction of constitutively active MEK6 and MEK1 to DU145 cells cocultured with hepatocytes abrogated E-cadherin re-expression. At least a partial phenotypic reversion can be achieved by suppression of p38 and ERK1/2 activation in DU145 cells even in the absence of hepatocytes. Interestingly, these mitogen-activated protein kinase activities were also triggered by re-expressed E-cadherin leading to p38 and ERK1/2 activity in PCa cells; these signals provide protection to PCa cells upon challenge with chemotherapy and cell death-inducing cytokines. We propose that distinct p38/ERK pathways are related to E-cadherin levels and function downstream of E-cadherin allowing, respectively, for hepatocyte-mediated MErT and tumor cell survival in the face of death signals.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh and Pittsburgh Veterans Affairs Medical Center, Pittsburgh Pennsylvania 15261
| | - Alan Wells
- Department of Pathology, University of Pittsburgh and Pittsburgh Veterans Affairs Medical Center, Pittsburgh Pennsylvania 15261.
| |
Collapse
|
11
|
Limonta P, Manea M. Gonadotropin-releasing hormone receptors as molecular therapeutic targets in prostate cancer: Current options and emerging strategies. Cancer Treat Rev 2013; 39:647-63. [DOI: 10.1016/j.ctrv.2012.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022]
|
12
|
Jones J, Grizzle W, Wang H, Yates C. MicroRNAs that affect prostate cancer: emphasis on prostate cancer in African Americans. Biotech Histochem 2013; 88:410-24. [PMID: 23901944 DOI: 10.3109/10520295.2013.807069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although concerted efforts have been directed toward eradicating health disparities in the United States, the disease and mortality rates for African American men still are among the highest in the world. We focus here on the role of microRNAs (miRNAs) in the signaling pathways of androgen receptors and growth factors that promote the progression of prostate cancer to more aggressive disease. We explore also how differential expression of miRNAs contributes to aggressive prostate cancer including that of African Americans.
Collapse
Affiliation(s)
- J Jones
- Department of Biology and Center for Cancer Research, Tuskegee University , Tuskegee, Alabama
| | | | | | | |
Collapse
|
13
|
Park MK, Kanaho YI, Enomoto M. Regulation of the cell proliferation and migration as extra-pituitary functions of GnRH. Gen Comp Endocrinol 2013; 181:259-64. [PMID: 23032076 DOI: 10.1016/j.ygcen.2012.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 11/16/2022]
Abstract
GnRH was originally identified as a hypothalamic factor which promotes gonadotropin release from the pituitary and was named gonadotropin-releasing hormone (GnRH). However, broad tissue distributions of GnRH and the GnRH receptor in various extrapituitary tissues and organs have been revealed and it has been suggested that GnRH has extrapituitary effects such as neuromodulation, immunomodulation, and regulation of follicular atresia and ovulation. Although a number of studies have been performed on these effects, little is known about the molecular mechanisms and physiological settings in which GnRH exerts its activities in extrapituitary organs or tissues. Our recent studies had demonstrated that GnRH is able to regulate both cell proliferation and cell migration at much lower concentration than that in the peripheral circulation by using human carcinoma cell lines. Moreover, stimulating activity of GnRH on the developing chick embryonic GnRH neurons was also demonstrated and strongly suggests possible involvement of GnRH in some of extrapituitary functions. This mini-review intends to provide solid evidence of GnRH activity in the regulation of cell proliferation and migration and its physiological relevance in extra-pituitary functions. Recent other research, including that in various invertebrates, provides new insight into the evolutionary scenarios of GnRH signaling systems, and GnRH functions. Both proliferating and migrating activities are important fundamental cellular activities and could provide an important clue into understanding what the driving force behind the evolution of the GnRH signaling system was.
Collapse
Affiliation(s)
- Min Kyun Park
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
14
|
Aguilar-Rojas A, Huerta-Reyes M, Maya-Núñez G, Arechavaleta-Velásco F, Conn PM, Ulloa-Aguirre A, Valdés J. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231. BMC Cancer 2012; 12:550. [PMID: 23176180 PMCID: PMC3518142 DOI: 10.1186/1471-2407-12-550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/25/2012] [Indexed: 11/17/2022] Open
Abstract
Background Gonadotropin-releasing hormone (GnRH) and its receptor (GnRHR) are both expressed by a number of malignant tumors, including those of the breast. In the latter, both behave as potent inhibitors of invasion. Nevertheless, the signaling pathways whereby the activated GnRH/GnRHR system exerts this effect have not been clearly established. In this study, we provide experimental evidence that describes components of the mechanism(s) whereby GnRH inhibits breast cancer cell invasion. Methods Actin polymerization and substrate adhesion was measured in the highly invasive cell line, MDA-MB-231 transiently expressing the wild-type or mutant DesK191 GnRHR by fluorometry, flow cytometric analysis, and confocal microscopy, in the absence or presence of GnRH agonist. The effect of RhoA-GTP on stress fiber formation and focal adhesion assembly was measured in MDA-MB-231 cells co-expressing the GnRHRs and the GAP domain of human p190Rho GAP-A or the dominant negative mutant GAP-Y1284D. Cell invasion was determined by the transwell migration assay. Results Agonist-stimulated activation of the wild-type GnRHR and the highly plasma membrane expressed mutant GnRHR-DesK191 transiently transfected to MDA-MB-231 cells, favored F-actin polymerization and substrate adhesion. Confocal imaging allowed detection of an association between F-actin levels and the increase in stress fibers promoted by exposure to GnRH. Pull-down assays showed that the effects observed on actin cytoskeleton resulted from GnRH-stimulated activation of RhoA GTPase. Activation of this small G protein favored the marked increase in both cell adhesion to Collagen-I and number of focal adhesion complexes leading to inhibition of the invasion capacity of MDA-MB-231 cells as disclosed by assays in Transwell Chambers. Conclusions We here show that GnRH inhibits invasion of highly invasive breast cancer-derived MDA-MB-231 cells. This effect is mediated through an increase in substrate adhesion promoted by activation of RhoA GTPase and formation of stress fibers and focal adhesions. These observations offer new insights into the molecular mechanisms whereby activation of overexpressed GnRHRs affects cell invasion potential of this malignant cell line, and provide opportunities for designing mechanism-based adjuvant therapies for breast cancer.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Argentina No, 1, Col, Centro, 62790, Xochitepec, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|
15
|
Limonta P, Montagnani Marelli M, Mai S, Motta M, Martini L, Moretti RM. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev 2012; 33:784-811. [PMID: 22778172 DOI: 10.1210/er.2012-1014] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crucial role of pituitary GnRH receptors (GnRH-R) in the control of reproductive functions is well established. These receptors are the target of GnRH agonists (through receptor desensitization) and antagonists (through receptor blockade) for the treatment of steroid-dependent pathologies, including hormone-dependent tumors. It has also become increasingly clear that GnRH-R are expressed in cancer tissues, either related (i.e. prostate, breast, endometrial, and ovarian cancers) or unrelated (i.e. melanoma, glioblastoma, lung, and pancreatic cancers) to the reproductive system. In hormone-related tumors, GnRH-R appear to be expressed even when the tumor has escaped steroid dependence (such as castration-resistant prostate cancer). These receptors are coupled to a G(αi)-mediated intracellular signaling pathway. Activation of tumor GnRH-R by means of GnRH agonists elicits a strong antiproliferative, antimetastatic, and antiangiogenic (more recently demonstrated) activity. Interestingly, GnRH antagonists have also been shown to elicit a direct antitumor effect; thus, these compounds behave as antagonists of GnRH-R at the pituitary level and as agonists of the same receptors expressed in tumors. According to the ligand-induced selective-signaling theory, GnRH-R might assume various conformations, endowed with different activities for GnRH analogs and with different intracellular signaling pathways, according to the cell context. Based on these consistent experimental observations, tumor GnRH-R are now considered a very interesting candidate for novel molecular, GnRH analog-based, targeted strategies for the treatment of tumors expressing these receptors. These agents include GnRH agonists and antagonists, GnRH analog-based cytotoxic (i.e. doxorubicin) or nutraceutic (i.e. curcumin) hybrids, and GnRH-R-targeted nanoparticles delivering anticancer compounds.
Collapse
Affiliation(s)
- Patrizia Limonta
- Section of Biomedicine and Endocrinology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Nuclear Kaiso indicates aggressive prostate cancers and promotes migration and invasiveness of prostate cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1836-46. [PMID: 22974583 DOI: 10.1016/j.ajpath.2012.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 12/13/2022]
Abstract
Kaiso, a p120 catenin-binding protein, is expressed in the cytoplasmic and nuclear compartments of cells; however, the biological consequences and clinical implications of a shift between these compartments have yet to be established. Herein, we report an enrichment of nuclear Kaiso expression in cells of primary and metastatic prostate tumors relative to the normal prostate epithelium. Nuclear expression of Kaiso correlates with Gleason score (P < 0.001) and tumor grade (P < 0.001). There is higher nuclear expression of Kaiso in primary tumor/normal matched samples and in primary tumors from African American men (P < 0.0001). We further found that epidermal growth factor (EGF) receptor up-regulates Kaiso at the RNA and protein levels in prostate cancer cell lines, but more interestingly causes a shift of cytoplasmic Kaiso to the nucleus that is reversed by the EGF receptor-specific kinase inhibitor, PD153035. In both DU-145 and PC-3 prostate cancer cell lines, Kaiso inhibition (short hairpin RNA-Kaiso) decreased cell migration and invasion even in the presence of EGF. Further, Kaiso directly binds to the E-cadherin promoter, and inhibition of Kaiso in PC-3 cells results in increased E-cadherin expression, as well as re-establishment of cell-cell contacts. In addition, Kaiso-depleted cells show more epithelial morphology and a reversal of the mesenchymal markers N-cadherin and fibronectin. Our findings establish a defined oncogenic role of Kaiso in promoting the progression of prostate cancer.
Collapse
|
17
|
Chao Y, Wu Q, Shepard C, Wells A. Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 2012; 29:39-50. [PMID: 21964676 PMCID: PMC3991430 DOI: 10.1007/s10585-011-9427-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/19/2011] [Indexed: 01/05/2023]
Abstract
Post-extravasation survival is a key rate-limiting step of metastasis; however, not much is known about the factors that enable survival of the metastatic cancer cell at the secondary site. Furthermore, metastatic nodules are often refractory to current therapies, necessitating the elucidation of molecular changes that affect the chemosensitivity of metastases. Drug resistance exhibited by tumor spheroids has been shown to be mediated by cell adhesion and can be abrogated by addition of E-cadherin blocking antibody. We have previously shown that hepatocyte coculture induces the re-expression of E-cadherin in breast and prostate cancer cells. In this study, we show that this E-cadherin re-expression confers a survival advantage, particularly in the liver microenvironment. E-cadherin re-expression in MDA-MB-231 breast cancer cells resulted in increased attachment to hepatocytes. This heterotypic adhesion between cancer cells and secondary organ parenchymal cells activated ERK MAP kinase, suggesting a functional pro-survival role for E-cadherin during metastatic colonization of the liver. In addition, breast cancer cells that re-expressed E-cadherin in hepatocyte coculture were more chemoresistant compared to 231-shEcad cells unable to re-express E-cadherin. Similar results were obtained in DU-145 prostate cancer cells induced to re-express E-cadherin in hepatocyte coculture or following chemical induction by the GnRH agonist buserelin or the EGFR inhibitor PD153035. These results suggest that E-cadherin re-expression and other molecular changes imparted by a partial mesenchymal to epithelial reverting transition at the secondary site increase post-extravasation survival of the metastatic cancer cell and may help to elucidate why chemotherapy commonly fails to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Yvonne Chao
- Department of Pathology, Pittsburgh VAMC and University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
18
|
Reams RR, Kalari KR, Wang H, Odedina FT, Soliman KF, Yates C. Detecting gene-gene interactions in prostate disease in African American men. Infect Agent Cancer 2011; 6 Suppl 2:S1. [PMID: 21992608 PMCID: PMC3194179 DOI: 10.1186/1750-9378-6-s2-s1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most common male malignancy in the United States is prostate cancer; however its rate of occurrence varies significantly among ethnic groups. In a previous cDNA microarray study on CaP tumors from African American (AA) and Caucasian (CA) patients, we identified 97 candidate genes that exhibited opposite gene expression polarity with respect to race groups; genes up-regulated in AA were simultaneously down-regulated in CA. PURPOSE The purpose of this study was to narrow the 97 member gene list, to a smaller number of genes in order to focus studies on a limited number of genes/SNPs that might explain prostate cancer disparity in African Americans. METHODS We performed genotype-phenotype, SNP and expression transcript levels correlations using HapMap Yoruba population with 85 of our 97 prostate candidate genes using SCAN database. RESULTS Findings revealed an association of SNPs surrounding ABCD3 gene with basal gene expression of RanGAP1 is important in prostate tumors in AA. Hence, to confirm our results in clinical biospecimen, we monitored expression of ABCD3 in a novel panel of African American and Caucasian prostate cancer paired cell lines. The LNCaP, C4-2B showed 2-fold increase; MDA-2PC-2B cell line, derived from AA, showed highest fold-change, 10-fold. The EGFR over expressing DU-145 WT cell line exhibited a 4-fold increase in expression relative to non transfected DU-145 prostate cell lines. Furthermore, Ingenuity Network analysis implicated our AA prostate candidate genes are involved in three network hubs, ERK, MapK and NFkB pathways. CONCLUSIONS Taken together, these findings are intriguing because other members of the ABC gene family, namely, ABCC3, ABCD1, and ABCD2 have been shown to confer chemoresistance in certain cancer types. Equally important, is the fact that activation of the MapK/ERK pathway via EGFR stimulation is vital for increased transcription of numerous cancer related genes. It is especially noteworthy that overexpression of EGFR has been widely observed in AA prostate tumors. Collectively our findings lead us to think that a novel signaling cascade, through which increased aggressiveness and chemoresistance is achieved, may explain prostate cancer health disparity in AA males and the nature of aggressive CaP tumors in general.
Collapse
Affiliation(s)
- R Renee Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 2011; 9:1608-20. [PMID: 21840933 DOI: 10.1158/1541-7786.mcr-10-0568] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer metastasis consists of a sequential series of events, and the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are recognized as critical events for metastasis of carcinomas. A current area of focus is the histopathological similarity between primary and metastatic tumors, and MET at sites of metastases has been postulated to be part of the process of metastatic tumor formation. Here, we summarize accumulating evidence from experimental studies that directly supports the role of MET in cancer metastasis, and we analyze the main mechanisms that regulate MET or reverse EMT in carcinomas. Given the critical role of MET in metastatic tumor formation, the potential to effectively target the MET process at sites of metastasis offers new hope for inhibiting metastatic tumor formation.
Collapse
Affiliation(s)
- Dianbo Yao
- Department of Hepatobiliary and Splenic Surgery, Shengjing Hospital of China Medical University, Heping District, Shenyang 110004, Liaoning Province, China
| | | | | |
Collapse
|
20
|
Theodore S, Sharp S, Zhou J, Turner T, Li H, Miki J, Ji Y, Patel V, Yates C, Rhim JS. Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. Int J Oncol 2011; 37:1477-82. [PMID: 21042716 DOI: 10.3892/ijo_00000800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Research into molecular and genetic mechanisms underlying prostate carcinogenesis in high-risk African American men would be greatly advanced by in vitro models of African American prostate tumors representing primary tumors. However, the generation of immortalized primary African American prostate cancer cells that will accurately reflect the in situ characteristics of malignant epithelium is currently limited but is greatly needed. We have successfully established immortalized cell lines of a pair of non-malignant and malignant tumors derived from an African American prostate cancer patient with HPV-16E6E7 (RC-77N/E and RC-77T/E). RC-77N/E and RC-77T/E cells are currently growing well at passage 40. Both cells exhibit epithelial morphology and are androgen sensitive. The RC-77T/E cells produced tumors in SCID mice whereas the RC-77N/E cells produced no tumor in SCID mice. These cells expressed androgen-regulated prostate-specific homobox gene, NKX 3.1, epithelial cell specific cytokeratn 8, androgen receptor (AR), prostate specific antigen (PSA), and p16. Chromosome analysis showed that both cell lines are similar; near diploid human male (XY) with most chromosome counts in the 45-48 range. However, RC-77T/E cell line has new marker chromosomes: M1B=del/t(4;?)(q28;?), M5=16q+ in addition to those observed in the RC-77N/E cell line (M1=del(4)(q28q34)+hsr in some, M1A=t(4q;?),M2=der(9?),M2A=del(M2p-),M3=iso(?), M4=der(22?)). This is the first documented case of the establishment of pair of non-malignant and malignant tumors derived from an African American prostate cancer patient. These models will provide novel tools to study the molecular and genetic mechanisms of prostate carcinogenesis, especially for high-risk African American men.
Collapse
Affiliation(s)
- Shaniece Theodore
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schubert A, Hawighorst T, Emons G, Gründker C. Agonists and antagonists of GnRH-I and -II reduce metastasis formation by triple-negative human breast cancer cells in vivo. Breast Cancer Res Treat 2011; 130:783-90. [PMID: 21279682 DOI: 10.1007/s10549-011-1358-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/17/2011] [Indexed: 12/31/2022]
Abstract
Metastasis to bone is a frequent problem of advanced breast cancer. Particularly breast cancers, which do not express estrogen and progesterone receptors and which have no overexpression/amplification of the HER2-neu gene, so called triple-negative breast cancers, are considered as very aggressive and possess a bad prognosis. About 60% of all human breast cancers and about 74% of triple-negative breast cancers express receptors for gonadotropin-releasing hormone (GnRH), which might be used as a therapeutic target. Recently, we could show that bone-directed invasion of human breast cancer cells in vitro is time- and dose-dependently reduced by GnRH analogs. In the present study, we have analyzed whether GnRH analogs are able to reduce metastases of triple-negative breast cancers in vivo. In addition, we have evaluated the effects of GnRH analogs on tumor growth. To quantify formation of metastasis by triple-negative MDA-MB-435 and MDA-MB-231 human breast cancers, we used a real-time PCR method based on detection of human-specific alu sequences measuring accurately the amount of human tumor DNA in athymic mouse organs. To analyze tumor growth, the volumes of breast cancer xenotransplants into nude mice were measured. We could demonstrate that GnRH analogs significantly reduced metastasis formation by triple-negative breast cancer in vivo. In addition, we could show that GnRH analogs significantly inhibited the growth of breast cancer into nude mice. Side effects were not detectable. In conclusion, GnRH analogs seem to be suitable drugs for an efficacious therapy for triple-negative, GnRH receptor-positive human breast cancers to prevent metastasis formation.
Collapse
Affiliation(s)
- Antje Schubert
- Department of Gynecology and Obstetrics, Georg-August-University, Robert-Koch-Street 40, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Yates C. Prostate tumor cell plasticity: a consequence of the microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:81-90. [PMID: 21901620 PMCID: PMC4119085 DOI: 10.1007/978-1-4614-0254-1_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During each step of prostate cancer metastasis, cancer displays phenotypic plasticity that is associated with the expression of both epithelial and mesenchymal properties or an epithelial to mesenchymal transition. This phenotypic transition is typically in response to microenvironment signals and is the basis for basic cancer cell survival (e.g. motility and invasion versus proliferation). In this review we discuss the loss and gain of E-cadherin expression as a marker of tumor plasticity throughout the steps of metastasis, and particularly focus on dynamic tumor-stromal interaction that induce a cancer cell-associated mesenchymal to epithelial reverting transition in the bone and liver microenvironments.
Collapse
Affiliation(s)
- Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
23
|
Siejka A, Schally AV, Block NL, Barabutis N. Mechanisms of inhibition of human benign prostatic hyperplasia in vitro by the luteinizing hormone-releasing hormone antagonist cetrorelix. BJU Int 2010; 106:1382-8. [PMID: 20151966 DOI: 10.1111/j.1464-410x.2010.09215.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the mechanism by which the luteinizing hormone-releasing hormone (LHRH) antagonist cetrorelix exerts its effects in men with benign prostatic hyperplasia (BPH), as it produces a long-lasting improvement in lower urinary tract symptoms that is only partly accounted for by the transient reduction in testosterone levels, and the beneficial results could be due to direct inhibitory effects of cetrorelix on the prostate exerted through prostatic LHRH receptors. MATERIALS AND METHODS Using the BPH-1 cell line we evaluated the effects of cetrorelix in vitro on the proliferation and the expression of receptors for LHRH, epidermal growth factor (EGF), α(1A) -adrenergic receptor, STAT-3 transcription factor and the response to growth factors insulin-like growth factor (IGF)-1 and -II and fibroblast growth factor (FGF)-2. RESULTS There was expression of LHRH receptors in the human BPH-1 cell line. Cetrorelix had inhibitory effects on the proliferation rate of BPH-1 cells, also reflected by the decrease in the expression of the proliferating cell nuclear antigen (PCNA). Cetrorelix inhibited the stimulatory effect of the growth factors IGF-I and -II and FGF-2 on the proliferation of this line. Cetrorelix also downregulated the expression of the receptors for LHRH and EGF, as well as of α(1A) -adrenergic receptors, and inhibited the activation of the STAT3 transcription factor. CONCLUSIONS The results show that in vitro cetrorelix can directly inhibit the proliferation rate of the human BPH-1 cell line by counteracting growth factors like IGF-I and -II and FGF-2, and downregulating the LHRH receptor and α-adrenergic receptors, as well as transcription factors.
Collapse
Affiliation(s)
- Agnieszka Siejka
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL, USA
| | | | | | | |
Collapse
|
24
|
Yates C, Shepard CR, Papworth G, Dash A, Beer Stolz D, Tannenbaum S, Griffith L, Wells A. Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res 2009; 97:225-46. [PMID: 17419948 DOI: 10.1016/s0065-230x(06)97010-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metastatic seeding leads to most of the morbidity from carcinomas. However, little is known of this key event as current methods to study the cellular behaviors utilize nonrepresentative in vitro models or follow indirect subsequent developments in vivo. Therefore, we developed a system to visualize over a multiday to multiweek period the interactions between tumor cells and target organ parenchyma. We employ an ex vivo microscale perfusion culture system that provides a tissue-relevant environment to assess metastatic seeding behavior. The bioreactor recreates many features of the fluid flow, scale, and biological functionality of a hepatic parenchyma, a common site of metastatic spread for a wide range of carcinomas. As a test of this model, prostate and breast carcinoma cells were introduced. Tumor cell invasion and expansion could be observed by two-photon microscopy of red fluorescent protein (RFP)- and CellTracker-labeled carcinoma cells against a green fluorescent protein (GFP)-labeled hepatic tissue bed over a 14-day period. Tumors visible to the naked eye could be formed by day 25, without evident necrosis in the >0.3-mm tumor mass. These tumor cells failed to grow in the absence of the supporting three-dimensional (3D) hepatic microtissue, suggesting paracrine or stromal support function for the liver structure in tumor progression. Initial ultrastructural studies suggest that early during the tumor-parenchyma interactions, there are extensive interactions between and accommodations of the cancer and host cells, suggesting that the tumor-related epithelial-mesenchymal transition (EMT) reverts, at least transiently, to promote metastatic seeding. In sum, our 3D ex vivo organotypic liver tissue system presents a critical vehicle to examine tumor-host interactions during cancer metastasis and/or invasion. It also circumvents current limitations in assays to assess early events in metastasis, and provides new approaches to study molecular events during tumor progression.
Collapse
Affiliation(s)
- Clayton Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheung LWT, Wong AST. Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 2008; 275:5479-95. [PMID: 18959738 DOI: 10.1111/j.1742-4658.2008.06677.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in locally produced, extrapituitary GnRH. GnRH receptor (GnRHR) was found to be expressed in normal human reproductive tissues (e.g. breast, endometrium, ovary, and prostate) and tumors derived from these tissues. Numerous studies have provided evidence for a role of GnRH in cell proliferation. More recently, we and others have reported a novel role for GnRH in other aspects of tumor progression, such as metastasis and angiogenesis. The multiple actions of GnRH could be linked to the divergence of signaling pathways that are activated by GnRHR. Recent observations also demonstrate cross-talk between GnRHR and growth factor receptors. Intriguingly, the classical G(alphaq)-11-phospholipase C signal transduction pathway, known to function in pituitary gonadotropes, is not involved in GnRH actions at nonpituitary targets. Herein, we review the key findings on the role of GnRH in the control of tumor growth, progression, and dissemination. The emerging role of GnRHR in actin cytoskeleton remodeling (small Rho GTPases), expression and/or activity of adhesion molecules (integrins), proteolytic enzymes (matrix metalloproteinases) and angiogenic factors is explored. The signal transduction mechanisms of GnRHR in mediating these activities is described. Finally, we discuss how a common GnRHR may mediate different, even opposite, responses to GnRH in the same tissue/cell type and whether an additional receptor(s) for GnRH exists.
Collapse
|
26
|
So WK, Cheng JC, Poon SL, Leung PCK. Gonadotropin-releasing hormone and ovarian cancer: a functional and mechanistic overview. FEBS J 2008; 275:5496-511. [DOI: 10.1111/j.1742-4658.2008.06679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Wells A, Yates C, Shepard CR. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 2008; 25:621-8. [PMID: 18600305 DOI: 10.1007/s10585-008-9167-1] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 03/13/2008] [Indexed: 12/31/2022]
Abstract
Cancer metastasis follows a sequential series of events, and many of the critical steps are distinctly similar to EMT-like transformations that occur during normal embryonic development. A current area of focus is the similarities between how cancer cells interact with the ectopic parenchyma after metastatic spread, and secondary developmental MET events that occur in epithelial tissues that have re-assembled within the embryo from mesenchymal cells. Accumulating evidence suggests a critical role for these secondary events, termed mesenchymal-epithelial transitions (MET) in development and mesenchymal-epithelial reverting transitions (MErT) in cancer. In this situation, metastatic seed cancer cells may inertly become part of the ectopic tissue and therefore surmount the metastatic inefficiencies to which most disseminated cancer cells succumb. Just as a critical EMT event is the downregulation or silencing of E-cadherin, we discuss the role of E-cadherin in cancer-associated MErT at distant metastatic sites and speculate on the implications for the fate of micrometastases that undergo a transition to being E-cadherin positive.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, Pittsburgh VA Medical Center and University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
28
|
Cáceres M, Tobar N, Guerrero J, Smith PC, Martínez J. c-jun-NH2JNK mediates invasive potential and EGFR activation by regulating the expression of HB-EGF in a urokinase-stimulated pathway. J Cell Biochem 2008; 103:986-93. [PMID: 17654528 DOI: 10.1002/jcb.21469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we demonstrated that tyrosine phosphorylation of EGFR and the autocrine expression of uPA and HB-EGF depend on the activity of c-jun amino-terminal kinase (JNK) in human prostatic DU-145 cells. These cells overexpress EGFR and produce a high amount of uPA. Treatment with either SP600125, a specific chemical inhibitor of JNK, or the expression of a dominant-negative JNK form inhibited autocrine production of uPA and HB-EGF, which block EGFR phosphorylation and mitigates invasive capacity. Our data provided evidence that in DU-145 cells, the maintenance of the activation level of EGFR, which determines the cellular invasive potential, operates through an autocrine loop involving the JNK-dependent production of uPA and HB-EGF activity. Moreover, we found that exogenously added uPA stimulates autocrine production of HB-EGF, and that blocking HB-EGF activity curbed DU-145 cell invasive potential.
Collapse
Affiliation(s)
- Mónica Cáceres
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
29
|
Blair HC, Wells A, Isales CM. Pituitary glycoprotein hormone receptors in non-endocrine organs. Trends Endocrinol Metab 2007; 18:227-33. [PMID: 17588768 DOI: 10.1016/j.tem.2007.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/10/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Although glycoprotein hormones are usually regarded as pituitary-endocrine signals, their receptors can be found in non-endocrine tissues. High expression of selected receptors in the pituitary-endocrine axis is key to mammalian endocrine regulation. We hypothesize that peripheral receptor distribution during development and in secondary organs reflects older but still-applicable functions, with their concentration in the pituitary a more recent evolutionary advancement. We extrapolate additional functions of these receptors by analogy of homologous receptors in older phyla, with emphasis on the bony fishes (teleosts). Studies of the multiple roles of the glycoprotein hormone receptors are likely to uncover novel endocrine functions and axes, and highlight the potential of these receptors as novel therapeutic targets.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
30
|
Yates CC, Shepard CR, Stolz DB, Wells A. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer 2007; 96:1246-52. [PMID: 17406365 PMCID: PMC2360137 DOI: 10.1038/sj.bjc.6603700] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metastasis is a multi-step process wherein tumour cells detach from the primary mass, migrate through barrier matrices, gain access to conduits to disseminate, and subsequently survive and proliferate in an ectopic site. During the initial invasion stage, prostate carcinoma cells undergo epithelial–mesenchymal-like transition with gain of autocrine signalling and loss of E-cadherin, hallmarks that appear to enable invasion and dissemination. However, some metastases express E-cadherin, and we found close connections between prostate carcinoma cells and hepatocytes in a liver microtissue bioreactor. We hypothesise that phenotypic plasticity occurs late in prostate cancer progression at the site of ectopic seeding. Immunofluorescence staining for E-cadherin in co-cultures of hepatocytes and DU-145 prostate cancer cells revealed E-cadherin upregulation at peripheral sites of contact by day 2 of co-culture; E-cadherin expression also increased in PC-3 cells in co-culture. These carcinoma cells bound to hepatocytes in an E-cadherin-dependent manner. Although the signals by which the hepatocytes elicited E-cadherin expression remain undetermined, it appeared related to downregulation of epidermal growth factor receptor (EGFR) signalling. Inhibition of autocrine EGFR signalling increased E-cadherin expression and cell–cell heterotypic adhesion; further, expression of a downregulation-resistant EGFR variant prevented E-cadherin upregulation. These findings were supported by finding E-cadherin and catenins but not activated EGFR in human prostate metastases to the liver. We conclude that the term epithelial–mesenchymal transition only summarises the transient downregulation of E-cadherin for invasion with re-expression of E-cadherin being a physiological consequence of metastatic seeding.
Collapse
Affiliation(s)
- C C Yates
- Department of Pathology, University of Pittsburgh, and Pittsburgh VAMC, Pittsburgh, PA 15213, USA
| | - C R Shepard
- Department of Pathology, University of Pittsburgh, and Pittsburgh VAMC, Pittsburgh, PA 15213, USA
| | - D B Stolz
- Department of Cell Biology, University of Pittsburgh, and Pittsburgh VAMC, Pittsburgh, PA 15213, USA
| | - A Wells
- Department of Pathology, University of Pittsburgh, and Pittsburgh VAMC, Pittsburgh, PA 15213, USA
- E-mail:
| |
Collapse
|
31
|
von Alten J, Fister S, Schulz H, Viereck V, Frosch KH, Emons G, Gründker C. GnRH analogs reduce invasiveness of human breast cancer cells. Breast Cancer Res Treat 2006; 100:13-21. [PMID: 16758121 DOI: 10.1007/s10549-006-9222-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 03/11/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Bone, besides lung and liver, is one of the most preferential metastatic target sites for breast cancers. Although the precise molecular mechanisms underlying this preference need to be elucidated, it appears that bone microenvironments possess unique biological features that enable circulating cancer cells to home, survive and proliferate, and destroy bone. The majority of human breast cancers and in addition most breast cancer cell lines express GnRH receptors. Their proliferation is time- and dose-dependently reduced by GnRH-I and GnRH-II agonists by counteracting of the mitogenic signal transduction. METHODS We have established a coculture system of different breast cancer cell lines stable transfected with red fluorescence (DS-Red) and human primary osteoblasts (hOB) or MG63 human osteosarcoma cells to analyze tumor cell invasion to bone. RESULTS We could show that breast cancer cell invasion was increased when cocultured with hOB or MG63. Treatment with GnRH-I and GnRH-II analogs reduced the ability to invade a reconstituted basement membrane (Matrigel) and to migrate in response to the cellular stimulus. Searching for the molecular mechanisms we found that GnRH treatment reduces expression of the osteoblast derived chemokine SDF-1 by hOB or MG63 cells cocultured with breast cancer cells. CONCLUSION These data represent the first report that the activation of tumor GnRH receptors reduces the metastatic potential of breast cancer cells. The crosstalk between metastatic breast cancer cells and bone is critical to the development and progression of bone metastases. Disruption of this interaction will allow us to design mechanism-based effective and specific therapeutic interventions for bone metastases.
Collapse
Affiliation(s)
- Julia von Alten
- Department of Gynecology and Obstetrics, Georg-August-University, Robert-Koch-Street 40, D-37075 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Mimeault M, Batra SK. Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis 2005; 27:1-22. [PMID: 16195239 DOI: 10.1093/carcin/bgi229] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent advances on differently-expressed gene products and their functions during the progression from localized androgen-dependent states into androgen-independent and metastatic forms of prostate cancer are reported. The expression levels of numerous oncogenes and tumor suppressor genes in distinct prostatic cancer epithelial cell lines and tissues relative to normal prostate cells are described. This is carried out to identify the signaling elements that are altered during the initiation, progression and metastatic process of prostate cancer. Additional information on the interactions between certain deregulated signaling pathways such as androgen receptor (AR), estrogen receptors, epidermal growth factor receptor (EGFR), hedgehog and Wnt/beta-catenin cascades in controlling the proliferation, survival and invasion of tumor prostate epithelial cells during the disease progression is described. The emphasis is on the critical functions of the AR and EGF-EGFR systems at all stages during prostate carcinogenesis. Of therapeutic interest, new strategies for the diagnosis and treatment of localized and metastatic forms of prostate cancer by targeting multiple tumorigenic signaling elements are also reported.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|