1
|
Kang C, Li X, Yang X, Cheng X, Zhang D, Wei X. Voltage-gated potassium channels associated with head and neck cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189340. [PMID: 40318770 DOI: 10.1016/j.bbcan.2025.189340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Head and neck cancer (HNC) is a common disease in otorhinolaryngology. Its prevalence is higher in men than in women and is mostly related to tobacco, alcohol and viral infections. Despite significant advances in the treatment of HNC in recent years, the mortality rate is still high and most patients are diagnosed at an advanced stage, and the prognosis for these patients is even worse. Earlier metastasis makes the treatment of HNC trickier. Therefore, actively seeking ways to treat HNC more effectively has been the goal of head and neck surgeons. Potassium (K+) channels are the most diverse ion channels found in all areas of life. Voltage-gated potassium (Kv) channels are the most important subfamily of K+ channels. Multiple Kv channels are associated with the development of HNC. This review focuses on several Kv channels associated with HNC.
Collapse
Affiliation(s)
- Chenglin Kang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaomei Li
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Xiaolong Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaoling Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Dengxiao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xudong Wei
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Haas B, Roth I, Säcker L, Wos-Maganga M, Beltzig L, Kaina B. Apoptotic and senolytic effects of hERG/Eag1 channel blockers in combination with temozolomide in human glioblastoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03955-w. [PMID: 40126672 DOI: 10.1007/s00210-025-03955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
Temozolomide (TMZ) concomitant with radiotherapy is the first-line treatment for glioblastoma. However, treatment resistance is frequently observed in patients. Cellular senescence (CSEN) induced by TMZ has been proposed to be one underlying mechanism resulting in resting cells, causing inflammation and possibly recurrences if senescent cells re-enter the cell cycle after treatment. Inhibition of the K+ channels human ether-à-go-go type 1 (Eag1) and human ether-à-go-go-related gene (hERG) has shown promising effects in several tumor types including glioblastoma through growth inhibition and induction of apoptosis. In the present study, we analyzed the impact of hERG/Eag1 inhibition on apoptosis and CSEN on its own and in combination with TMZ in a panel of human glioblastoma cell lines and primary glioblastoma cells. hERG/Eag1 protein expression was determined by Western blotting and immunocytochemistry. Cytotoxicity of astemizole and terfenadine alone or in combination with TMZ was assessed by MTT assays. Apoptotic yields were determined by Annexin V/propidium iodide staining, and CSEN was quantified by determining SA-β-galactosidase levels through flow cytometry. We observed a similar protein expression of hERG and Eag1 in all glioblastoma cell lines and primary glioblastoma cells. Astemizole and terfenadine were cytotoxic in glioblastoma cells at low micromolar concentrations (5-10 µM range) through induction of apoptosis. In combination with TMZ, both drugs synergistically sensitized glioblastoma cells to TMZ-induced apoptosis. Moreover, astemizole reduced significantly the TMZ-induced CSEN level, indicating its impact on CSEN induction. Here, we show for the first time that blocking hERG/Eag1 channels in glioblastoma cells can relief TMZ-induced CSEN and synergistically ameliorates cytotoxicity through the induction of apoptosis.
Collapse
Affiliation(s)
- Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| | - Inken Roth
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campus Platz 1, 51379, Leverkusen, Germany
| | - Luisa Säcker
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campus Platz 1, 51379, Leverkusen, Germany
| | - Maria Wos-Maganga
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Lea Beltzig
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| |
Collapse
|
4
|
Benn KW, Yuan PH, Chong HK, Stylii SS, Luwor RB, French CR. hERG channel agonist NS1643 strongly inhibits invasive astrocytoma cell line SMA-560. PLoS One 2024; 19:e0309438. [PMID: 39240809 PMCID: PMC11379238 DOI: 10.1371/journal.pone.0309438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/08/2024] Open
Abstract
Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.
Collapse
Affiliation(s)
- Kieran W Benn
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick H Yuan
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Harvey K Chong
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Stanley S Stylii
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher R French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Arcangeli A, Iorio J, Duranti C. Targeting the hERG1 and β1 integrin complex for cancer treatment. Expert Opin Ther Targets 2024; 28:145-157. [PMID: 38372580 DOI: 10.1080/14728222.2024.2318449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Despite great advances, novel therapeutic targets and strategies are still needed, in particular for some carcinomas in the metastatic stage (breast cancer, colorectal cancer, pancreatic ductal adenocarcinoma and the clear cell renal carcinoma). Ion channels may be considered good cancer biomarkers and targets for antineoplastic therapy. These concepts are particularly relevant considering the hERG1 potassium channel as a novel target for antineoplastic therapy. AREAS COVERED A great deal of evidence demonstrates that hERG1 is aberrantly expressed in human cancers, in particular in aggressive carcinomas. A relevant cornerstone was the discovery that, in cancer cells, the channel is present in a very peculiar conformation, strictly bound to the β1 subunit of integrin receptors. The hERG1/β1 integrin complex does not occur in the heart. Starting from this evidence, we developed a novel single chain bispecific antibody (scDb-hERG1-β1), which specifically targets the hERG1/β1 integrin complex and exerts antineoplastic effects in preclinical experiments. EXPERT OPINION Since hERG1 blockade cannot be pursued for antineoplastic therapy due to the severe cardiac toxic effects (ventricular arrhythmias) that many hERG1 blockers exert, different strategies must be identified to specifically target hERG1 in cancer. The targeting of the hERG1/β1 integrin complex through the bispecific antibody scDb-hERG1-β1 can overcome such hindrances.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Sesto Fiorentino (FI), Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| |
Collapse
|
6
|
Zhou J, Yang X, Liu Y, Guo J, Liu Z, Li Y, Bai Y, Xing Y, Wu J, Hu D. Mefloquine improves pulmonary fibrosis by inhibiting the KCNH2/Jak2/Stat3 signaling pathway in macrophages. Biomed Pharmacother 2024; 171:116138. [PMID: 38237352 DOI: 10.1016/j.biopha.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease characterized by severe pulmonary fibrosis, for which there is an urgent need for effective therapeutic agents. Mefloquine (Mef) is a quinoline compound primarily used for the treatment of malaria. However, high doses (>25 mg/kg) may lead to side effects such as cardiotoxicity and psychiatric disorders. Here, we found that low-dose Mef (5 mg/kg) can safely and effectively treat IPF mice. Functionally, Mef can improve the pulmonary function of IPF mice (PIF, PEF, EF50, VT, MV, PENH), alleviating pulmonary inflammation and fibrosis by inhibiting macrophage activity. Mechanically, Mef probably regulates the Jak2/Stat3 signaling pathway by binding to the 492HIS site of Potassium voltage-gated channel subfamily H member 2 (KCNH2) protein in macrophages, inhibiting the secretion of macrophage inflammatory and fibrotic factors. In summary, Mef may inhibit macrophage activity by binding to KCNH2 protein, thereby slowing down the progress of IPF.
Collapse
Affiliation(s)
- Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Xuelian Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ziqin Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yunyun Li
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| | - Yingru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China.
| |
Collapse
|
7
|
Al-Gizawiy MM, Wujek RT, Alhajala HS, Cobb JM, Prah MA, Doan NB, Connelly JM, Chitambar CR, Schmainda KM. Potent in vivo efficacy of oral gallium maltolate in treatment-resistant glioblastoma. Front Oncol 2024; 13:1278157. [PMID: 38288102 PMCID: PMC10822938 DOI: 10.3389/fonc.2023.1278157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Background Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways. Methods In vitro irradiated adult GBM U-87 MG cells were tested for cell viability and allowed to reach confluence prior to stereotactic implantation into the right striatum of male and female athymic rats. Advanced MRI at 9.4T was carried out weekly starting two weeks after implantation. Daily oral GaM (50mg/kg) or vehicle were provided on tumor confirmation. Longitudinal MRI parameters were processed for enhancing tumor ROIs in OsiriX 8.5.1 (lite) with Imaging Biometrics Software (Imaging Biometrics LLC). Statistical analyses included Cox proportional hazards regression models, Kaplan-Meier survival plots, linear mixed model comparisons, and t-statistic for slopes comparison as indicator of tumor growth rate. Results In this study we demonstrate non-invasively, using longitudinal MRI surveillance, the potent antineoplastic effects of GaM in a novel rat xenograft model of trGBM, as evidenced by extended suppression of tumor growth (23.56 mm3/week untreated, 5.76 mm3/week treated, P < 0.001), a blunting of tumor perfusion, and a significant survival benefit (median overall survival: 30 days untreated, 56 days treated; P < 0.001). The therapeutic effect was confirmed histologically by the presence of abundant cytotoxic cellular swelling, a significant reduction in proliferation markers (P < 0.01), and vessel normalization characterized by prominent vessel pruning, loss of branching, and uniformity of vessel lumina. Xenograft tumors in the treatment group were further characterized by an absence of an invasive edge and a significant reduction in both, MIB-1% and mitotic index (P < 0.01 each). Transferrin receptor and ferroportin expression in GaM-treated tumors illustrated cellular iron deprivation. Additionally, treatment with GaM decreased the expression of pro-angiogenic markers (von Willebrand Factor and VEGF) and increased the expression of anti-angiogenic markers, such as Angiopoietin-2. Conclusion Monotherapy with the iron-mimetic GaM profoundly inhibits trGBM growth and significantly extends disease-specific survival in vivo.
Collapse
Affiliation(s)
- Mona M. Al-Gizawiy
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert T. Wujek
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hisham S. Alhajala
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan M. Cobb
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ninh B. Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher R. Chitambar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Wang W, Zhang Y, Li X, E Q, Jiang Z, Shi Q, Huang Y, Wang J, Huang Y. KCNA1 promotes the growth and invasion of glioblastoma cells through ferroptosis inhibition via upregulating SLC7A11. Cancer Cell Int 2024; 24:7. [PMID: 38172959 PMCID: PMC10765868 DOI: 10.1186/s12935-023-03199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The high invasiveness and infiltrative nature of Glioblastoma (GBM) pose significant challenges for surgical removal. This study aimed to investigate the role of KCNA1 in GBM progression. METHODS CCK8, colony formation assay, scratch assay, transwell assay, and 3D tumor spheroid invasion assays were to determine how KCNA1 affects the growth and invasion of GBM cells. Subsequently, to confirm the impact of KCNA1 in ferroptosis, western blot, transmission electron microscopy and flow cytometry were conducted. To ascertain the impact of KCNA1 in vivo, patient-derived orthotopic xenograft models were established. RESULTS In functional assays, KCNA1 promotes the growth and invasion of GBM cells. Besides, KCNA1 can increase the expression of SLC7A11 and protect cells from ferroptosis. The vivo experiments demonstrated that knocking down KCNA1 inhibited the growth and infiltration of primary tumors in mice and extended survival time. CONCLUSION Therefore, our research suggests that KCNA1 may promote tumor growth and invasion by upregulating the expression of SLC7A11 and inhibiting ferroptosis, making it a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Weichao Wang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Yang Zhang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xuetao Li
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Qinzi E
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Zuoyu Jiang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Qikun Shi
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Yu Huang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China
| | - Jian Wang
- Department of Neurosurgery, TaiCang Hospital of Traditional Chinese Medicine, Suzhou, 215000, China.
| | - Yulun Huang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215000, China.
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
9
|
Uppalapati SS, Guha L, Kumar H, Mandoli A. Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction. Curr Cancer Drug Targets 2024; 24:245-270. [PMID: 37424349 DOI: 10.2174/1568009623666230707155145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| |
Collapse
|
10
|
Furutani K. Facilitation of hERG Activation by Its Blocker: A Mechanism to Reduce Drug-Induced Proarrhythmic Risk. Int J Mol Sci 2023; 24:16261. [PMID: 38003453 PMCID: PMC10671758 DOI: 10.3390/ijms242216261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias.
Collapse
Affiliation(s)
- Kazuharu Furutani
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
11
|
Wang C, Zhang Y. Current Application of Nanoparticle Drug Delivery Systems to the Treatment of Anaplastic Thyroid Carcinomas. Int J Nanomedicine 2023; 18:6037-6058. [PMID: 37904863 PMCID: PMC10613415 DOI: 10.2147/ijn.s429629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Anaplastic thyroid carcinomas (ATCs) are a rare subtype of thyroid cancers with a low incidence but extremely high invasiveness and fatality. The treatment of ATCs is very challenging, and currently, a comprehensive individualized therapeutic strategy involving surgery, radiotherapy (RT), chemotherapy, BRAF/MEK inhibitors (BRAFi/MEKi) and immunotherapy is preferred. For ATC patients in stage IVA/IVB, a surgery-based comprehensive strategy may provide survival benefits. Unfortunately, ATC patients in IVC stage barely get benefits from the current treatment. Recently, nanoparticle delivery of siRNAs, targeted drugs, cytotoxic drugs, photosensitizers and other agents is considered as a promising anti-cancer treatment. Nanoparticle drug delivery systems have been mainly explored in the treatment of differentiated thyroid cancer (DTC). With the rapid development of drug delivery techniques and nanomaterials, using hybrid nanoparticles as the drug carrier to deliver siRNAs, targeted drugs, immune drugs, chemotherapy drugs and phototherapy drugs to ATC patients have become a hot research field. This review aims to describe latest findings of nanoparticle drug delivery systems in the treatment of ATCs, thus providing references for the further analyses.
Collapse
Affiliation(s)
- Chonggao Wang
- Department of Thyroid Surgery, Nanjing Hospital of Chinese Medicine, Nanjing, 210001, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, 210001, People’s Republic of China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
12
|
Becchetti A. Interplay of Ca 2+ and K + signals in cell physiology and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:15-46. [PMID: 38007266 DOI: 10.1016/bs.ctm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
13
|
Sala C, Staderini M, Lottini T, Duranti C, Angelini G, Constantin G, Arcangeli A. Expression of the ether-a-gò-gò-related gene 1 channel during B and T lymphocyte development: role in BCR and TCR signaling. Front Immunol 2023; 14:1111471. [PMID: 37744334 PMCID: PMC10515723 DOI: 10.3389/fimmu.2023.1111471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
The functional relevance of K+ and Ca2+ ion channels in the "Store Operated Calcium Entry" (SOCE) during B and T lymphocyte activation is well proven. However, their role in the process of T- and B- cell development and selection is still poorly defined. In this scenario, our aim was to characterize the expression of the ether à-go-go-related gene 1 (ERG1) and KV1.3 K+ channels during the early stages of mouse lymphopoiesis and analyze how they affect Ca2+signaling, or other signaling pathways, known to mediate selection and differentiation processes of lymphoid clones. We provide here evidence that the mouse (m)ERG1 is expressed in primary lymphoid organs, bone marrow (BM), and thymus of C57BL/6 and SV129 mice. This expression is particularly evident in the BM during the developmental stages of B cells, before the positive selection (large and small PreB). mERG1 is also expressed in all thymic subsets of both strains, when lymphocyte positive and negative selection occurs. Partially overlapping results were obtained for KV1.3 expression. mERG1 and KV1.3 were expressed at significantly higher levels in B-cell precursors of mice developing an experimental autoimmune encephalomyelitis (EAE). The pharmacological blockage of ERG1 channels with E4031 produced a significant reduction in intracellular Ca2+ after lymphocyte stimulation in the CD4+ and double-positive T-cell precursors' subsets. This suggests that ERG1 might contribute to maintaining the electrochemical gradient responsible for driving Ca2+ entry, during T-cell receptor signaling which sustains lymphocyte selection checkpoints. Such role mirrors that performed by the shaker-type KV1.3 potassium channel during the activation process of mature lymphocytes. No effects on Ca2+ signaling were observed either in B-cell precursors after blocking KV1.3 with PSORA-4. In the BM, the pharmacological blockage of ERG1 channels produced an increase in ERK phosphorylation, suggesting an effect of ERG1 in regulating B-lymphocyte precursor clones' proliferation and checkpoint escape. Overall, our results suggest a novel physiological function of ERG1 in the processes of differentiation and selection of lymphoid precursors, paving the way to further studies aimed at defining the expression and role of ERG1 channels in immune-based pathologies in addition to that during lymphocyte neoplastic transformation.
Collapse
Affiliation(s)
- Cesare Sala
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Martina Staderini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Lottini T, Duranti C, Iorio J, Martinelli M, Colasurdo R, D’Alessandro FN, Buonamici M, Coppola S, Devescovi V, La Vaccara V, Coppola A, Coppola R, Lastraioli E, Arcangeli A. Combination Therapy with a Bispecific Antibody Targeting the hERG1/β1 Integrin Complex and Gemcitabine in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:2013. [PMID: 37046674 PMCID: PMC10093586 DOI: 10.3390/cancers15072013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents an unmet medical need. Difficult/late diagnosis as well as the poor efficacy and high toxicity of chemotherapeutic drugs result in dismal prognosis. With the aim of improving the treatment outcome of PDAC, we tested the effect of combining Gemcitabine with a novel single chain bispecific antibody (scDb) targeting the cancer-specific hERG1/β1 integrin complex. First, using the scDb (scDb-hERG1-β1) in immunohistochemistry (IHC), Western blot (WB) analysis and immunofluorescence (IF), we confirmed the presence of the hERG1/β1 integrin complex in primary PDAC samples and PDAC cell lines. Combining Gemcitabine with scDb-hERG1-β1 improved its cytotoxicity on all PDAC cells tested in vitro. We also tested the combination treatment in vivo, using an orthotopic xenograft mouse model involving ultrasound-guided injection of PDAC cells. We first demonstrated good penetration of the scDb-hERG1-β1 conjugated with indocyanine green (ICG) into tumour masses by photoacoustic (PA) imaging. Next, we tested the effects of the combination at either therapeutic or sub-optimal doses of Gemcitabine (25 or 5 mg/kg, respectively). The combination of scDb-hERG1-β1 and sub-optimal doses of Gemcitabine reduced the tumour masses to the same extent as the therapeutic doses of Gemcitabine administrated alone; yielded increased survival; and was accompanied by minimised side effects (toxicity). These data pave the way for a novel therapeutic approach to PDAC, based on the combination of low doses of a chemotherapeutic drug (to minimize adverse side effects and the onset of resistance) and the novel scDb-hERG1-β1 targeting the hERG1/β1 integrin complex as neoantigen.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Michele Martinelli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Franco Nicolás D’Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Matteo Buonamici
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Valentina Devescovi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Vincenzo La Vaccara
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | | | - Roberto Coppola
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
15
|
Multipurpose E-bioplatform targeting Kv channels in whole cancer cells and evaluating of their potential therapeutics. Anal Chim Acta 2022; 1231:340397. [DOI: 10.1016/j.aca.2022.340397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
|
16
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Zeng R, Li Y, He DM, Sun MZ, Huang WQ, Wang YH, Zhuo YM, Chen JJ, Chen TH, Guo JH, Huang J. Potassium channel-related genes are a novel prognostic signature for the tumor microenvironment of renal clear cell carcinoma. Front Oncol 2022; 12:1013324. [PMID: 36237326 PMCID: PMC9552761 DOI: 10.3389/fonc.2022.1013324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for 80% of renal cell carcinomas (RCCs), and its morbidity and prognosis are unfavorable. Surgical resection is the first-line treatment for ccRCC, but the oncogenesis of ccRCC is very complex. With the development of high-throughput sequencing technology, it is necessary to analyze the transcriptome to determine more effective treatment methods. The tumor microenvironment (TME) is composed of tumor cells, various immune-infiltrating cells, fibroblasts, many cytokines, and catalysts. It is a complex system with a dynamic balance that plays an essential role in tumor growth, invasion, and metastasis. Previous studies have confirmed that potassium channels can affect the immune system, especially T lymphocytes that require potassium channel activation. However, the effect of potassium channels on the TME of ccRCC remains to be studied. Therefore, this study aims to construct a prognostic signature for ccRCC patients based on potassium ion channel-related genes (PCRGs), assess patient risk scores, and divide patients into high- and low-risk groups based on the cutoff value. In addition, we investigated whether there were differences in immune cell infiltration, immune activator expression, somatic mutations, and chemotherapeutic responses between the high- and low-risk groups. Our results demonstrate that the PCRG signature can accurately assess patient prognosis and the tumor microenvironment and predict chemotherapeutic responses. In summary, the PCRG signature could serve as an auxiliary tool for the precision treatment of ccRCC.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yi Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong-ming He
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Meng-zhu Sun
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wen-qing Huang
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yu-hang Wang
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-min Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun-jiang Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Tai-heng Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jing-hui Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Jing-hui Guo, ; Jun Huang,
| | - Jun Huang
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Jing-hui Guo, ; Jun Huang,
| |
Collapse
|
18
|
Iorio J, Antonuzzo L, Scarpi E, D’Amico M, Duranti C, Messerini L, Sparano C, Caputo D, Lavacchi D, Borzomati D, Antonelli A, Nibid L, Perrone G, Coppola A, Coppola R, di Costanzo F, Lastraioli E, Arcangeli A. Prognostic role of hERG1 Potassium Channels in Neuroendocrine Tumours of the Ileum and Pancreas. Int J Mol Sci 2022; 23:10623. [PMID: 36142530 PMCID: PMC9504580 DOI: 10.3390/ijms231810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
hERG1 potassium channels are widely expressed in human cancers of different origins, where they affect several key aspects of cellular behaviour. The present study was designed to evaluate the expression and clinical relevance of hERG1 protein in cancer tissues from patients suffering from neuroendocrine tumours (NETs) of ileal (iNETs) and pancreatic (pNETs) origin, with available clinicopathological history and follow-up. The study was carried out by immunohistochemistry with an anti-hERG1 monoclonal antibody. In a subset of samples, a different antibody directed against the hERG1/β1 integrin complex was also used. The analysis showed for the first time that hERG1 is expressed in human NETs originating from either the ileum or the pancreas. hERG1 turned out to have a prognostic value in NETs, showing (i) a statistically significant positive impact on OS of patients affected by ileal NETs, regardless the TNM stage; (ii) a statistically significant positive impact on OS of patients affected by aggressive (TNM stage IV) disease, either ileal or pancreatic; (iii) a trend to a negative impact on OS of patients affected by less aggressive (TNM stage I-III) disease, either ileal or pancreatic. Moreover, in order to evaluate whether ERG1 was functionally expressed in a cellular model of pNET, the INS1E rat insulinoma cell line was used, and it emerged that blocking ERG1 with a specific inhibitor of the channel (E4031) turned out in a significant reduction in cell proliferation.
Collapse
Affiliation(s)
- Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Clotilde Sparano
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Damiano Caputo
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Daniele Lavacchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Domenico Borzomati
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Alice Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Lorenzo Nibid
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Pathology Unit, Campus Bio-Medico University, 00128 Rome, Italy
| | - Giuseppe Perrone
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Pathology Unit, Campus Bio-Medico University, 00128 Rome, Italy
| | - Alessandro Coppola
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Roberto Coppola
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | | | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| |
Collapse
|
19
|
Becchetti A, Duranti C, Arcangeli A. Dynamics and physiological meaning of complexes between ion channels and integrin receptors: the case of Kv11.1. Am J Physiol Cell Physiol 2022; 322:C1138-C1150. [PMID: 35442831 DOI: 10.1152/ajpcell.00107.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cellular functions are regulated by a complex interplay of diffuse and local signals. Experimental work in cell physiology has led to recognize that understanding a cell's dynamics requires a deep comprehension of local fluctuations of cytosolic regulators. Macromolecular complexes are major determinants of local signaling. Multi-enzyme assemblies limit the diffusion restriction to reaction kinetics by direct exchange of metabolites. Likewise, close coupling of ion channels and transporters modulate the ion concentration around a channel mouth or transporter binding site. Extreme signal locality is brought about by conformational coupling between membrane proteins, as is typical of mechanotransduction. A paradigmatic case is integrin-mediated cell adhesion. Sensing the extracellular microenvironment and providing an appropriate response is essential in growth and development and has innumerable pathological implications. The process involves bidirectional signal transduction by complex supra-molecular structures that link integrin receptors to ion channels and transporters, growth factor receptors, cytoskeletal elements and other regulatory elements. The dynamics of such complexes is only beginning to be understood. A thoroughly studied example is the association between integrin receptors and the voltage-gated K+ channels Kv11.1. These channels are widely expressed in early embryos, where their physiological roles are poorly understood and apparently different from the shaping of action potential firing in the adult. Hints about these roles come from studies in cancer cells, where Kv11.1 is often overexpressed and appears to re-assume functions, such as controlling cell proliferation/differentiation, apoptosis and migration. Kv11.1 is implicated in these processes through its linking to integrin subunits.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| |
Collapse
|
20
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
21
|
Fnu G, Weber GF. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front Oncol 2022; 11:765329. [PMID: 34988012 PMCID: PMC8721045 DOI: 10.3389/fonc.2021.765329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Georg F Weber
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| |
Collapse
|
22
|
Wang D, Liu C, Liu H, Meng Y, Lin F, Gu Y, Wang H, Shang M, Tong C, Sachinidis A, Ying Q, Li L, Peng L. ERG1 plays an essential role in rat cardiomyocyte fate decision by mediating AKT signaling. Stem Cells 2021; 39:443-457. [PMID: 33426760 DOI: 10.1002/stem.3328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
ERG1, a potassium ion channel, is essential for cardiac action potential repolarization phase. However, the role of ERG1 for normal development of the heart is poorly understood. Using the rat embryonic stem cells (rESCs) model, we show that ERG1 is crucial in cardiomyocyte lineage commitment via interactions with Integrin β1. In the mesoderm phase of rESCs, the interaction of ERG1 with Integrin β1 can activate the AKT pathway by recruiting and phosphorylating PI3K p85 and focal adhesion kinase (FAK) to further phosphorylate AKT. Activation of AKT pathway promotes cardiomyocyte differentiation through two different mechanisms, (a) through phosphorylation of GSK3β to upregulate the expression levels of β-catenin and Gata4; (b) through promotion of nuclear translocation of nuclear factor-κB by phosphorylating IKKβ to inhibit cell apoptosis, which occurs due to increased Bcl2 expression. Our study provides solid evidence for a novel role of ERG1 on differentiation of rESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Yilei Meng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Fang Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yanqiong Gu
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hanrui Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China
| | - Chang Tong
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Agapios Sachinidis
- University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC), Cologne, Germany
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Institute of Medical Genetics, Tongji University, Shanghai, People's Republic of China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, People's Republic of China.,Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Pontisso I, Combettes L. Role of Sigma-1 Receptor in Calcium Modulation: Possible Involvement in Cancer. Genes (Basel) 2021; 12:139. [PMID: 33499031 PMCID: PMC7911422 DOI: 10.3390/genes12020139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.
Collapse
Affiliation(s)
- Ilaria Pontisso
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| | - Laurent Combettes
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
24
|
Shugg T, Dave N, Amarh E, Assiri AA, Pollok KE, Overholser BR. Letrozole targets the human ether-a-go-go-related gene potassium current in glioblastoma. Basic Clin Pharmacol Toxicol 2020; 128:357-365. [PMID: 33040444 DOI: 10.1111/bcpt.13515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022]
Abstract
Aberrant expression of human ether-a-go-go-related gene (hERG) potassium channels has been implicated in the pathophysiology of glioblastoma (GBM). Letrozole has demonstrated efficacy in pre-clinical GBM models. The objective of this research was to assess the potential for hERG inhibition by letrozole to mediate efficacy in GBM. hERG currents were assessed using patch-clamp electrophysiology in an overexpression system during treatment with letrozole, exemestane or vehicle (dimethyl sulphoxide). Relative to vehicle, peak hERG tail current density was reduced when treated with 300 nmol/L and 1 µmol/L letrozole but not when treated with exemestane (up to 1 µmol/L). Cell proliferation was assessed in cultured glioblastoma cell lines (U87 and U373) treated with letrozole, exemestane, doxazosin (hERG blocker) or vehicle. Letrozole, but not exemestane, reduced cell proliferation relative to vehicle in U87 and U373 cells. The associations between expression of hERG (KCNH2), aromatase (CYP19A1) and the oestrogen receptors (ESR1 and ESR2) and time to all-cause mortality were assessed in GBM patients within The Cancer Genome Atlas (TCGA) database. hERG expression was associated with reduced overall survival in the TCGA GBM cohort. Future work is warranted to investigate hERG expression as a potential biomarker to predict the therapeutic potential of hERG inhibitors in GBM.
Collapse
Affiliation(s)
- Tyler Shugg
- Department of Pharmacy Practice, Purdue University College of Pharmacy, West Lafayette, IN, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nimita Dave
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Enoch Amarh
- Department of Pharmacy Practice, Purdue University College of Pharmacy, West Lafayette, IN, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abdullah A Assiri
- Department of Pharmacy Practice, Purdue University College of Pharmacy, West Lafayette, IN, USA.,Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Karen E Pollok
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian R Overholser
- Department of Pharmacy Practice, Purdue University College of Pharmacy, West Lafayette, IN, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Wang FYF, Wang-Gou SY, Cao H, Jiang N, Yang Q, Huang Q, Huang CH, Li XJ. Proteomics identifies EGF-like domain multiple 7 as a potential therapeutic target for epidermal growth factor receptor-positive glioma. Cancer Commun (Lond) 2020; 40:518-530. [PMID: 32888253 PMCID: PMC7571400 DOI: 10.1002/cac2.12092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/04/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Glioma, the most frequent primary tumor of the central nervous system, has poor prognosis. The epidermal growth factor receptor (EGFR) pathway and angiogenesis play important roles in glioma growth, invasion, and recurrence. The present study aimed to use proteomic methods to probe into the role of the EGF‐EGFR‐angiogenesis axis in the tumorigenesis of glioma and access the therapeutic efficacy of selumetinib on glioma. Methods Proteomic profiling was used to characterize 200 paired EGFR‐positive and EGFR‐negative glioma tissues of all pathological types. The quantitative mass spectrometry data were used for systematic analysis of the proteomic profiles of 10 EGFR‐positive and 10 EGFR‐negative glioma cases. Consensus‐clustering analysis was used to screen target proteins. Immunofluorescence analysis, cell growth assay, and intracranial xenograft experiments were used to verify and test the therapeutic effect of selumetinib on glioma. Results Advanced proteomic screening demonstrated that the expression of EGF‐like domain multiple 7 (EGFL7) was higher in EGFR‐positive tumor tissues than in EGFR‐negative tumor tissues. In addition, EGFL7 could act as an activator in vitro and in vivo to promote glioma cell proliferation. EGFL7 was associated strongly with EGFR and prognosis. EGFL7 knockdown effectively suppressed glioma cell proliferation. Selumetinib treatment showed tumor reduction effect in EGFR‐positive glioblastoma xenograft mouse model. Conclusions EGFL7 is a potential diagnostic biomarker and therapeutic target of glioma. Selumetinib could target the EGFR pathway and possibly improve the prognosis of EGFR‐positive glioma.
Collapse
Affiliation(s)
- Fei-Yi-Fan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Si-Yi Wang-Gou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Hang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Nian Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Qi Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Chun-Hai Huang
- Department of Neurosurgery, the First Affiliated Hospital of Jishou University, Jishou, Hunan, 416000, P. R. China
| | - Xue-Jun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
26
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
27
|
Iorio J, Duranti C, Lottini T, Lastraioli E, Bagni G, Becchetti A, Arcangeli A. K V11.1 Potassium Channel and the Na +/H + Antiporter NHE1 Modulate Adhesion-Dependent Intracellular pH in Colorectal Cancer Cells. Front Pharmacol 2020; 11:848. [PMID: 32587517 PMCID: PMC7297984 DOI: 10.3389/fphar.2020.00848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence indicates that ion channels and transporters cooperate in regulating different aspects of tumor pathophysiology. In cancer cells, H+/HCO3- transporters usually invert the transmembrane pH gradient typically observed in non-neoplastic cells, which is thought to contribute to cancer malignancy. To what extent the pH-regulating transporters are functionally linked to K+ channels, which are central regulators of cell membrane potential (Vm), is unclear. We thus investigated in colorectal cancer cells the implication of the pH-regulating transporters and KV11.1 (also known as hERG1) in the pH modifications stimulated by integrin-dependent cell adhesion. Colorectal cancer cell lines (HCT 116 and HT 29) were seeded onto β1 integrin-dependent substrates, collagen I and fibronectin. This led to a transient cytoplasmic alkalinization, which peaked at 90 min of incubation, lasted approximately 180 min, and was inhibited by antibodies blocking the β1 integrin. The effect was sensitive to amiloride (10 µM) and cariporide (5 µM), suggesting that it was mainly caused by the activity of the Na+/H+ antiporter NHE1. Blocking KV11.1 with E4031 shows that channel activity contributed to modulate the β1 integrin-dependent pHi increase. Interestingly, both NHE1 and KV11.1 modulated the colorectal cancer cell motility triggered by β1 integrin-dependent adhesion. Finally, the β1 integrin subunit, KV11.1 and NHE1 co-immunoprecipitated in colorectal cancer cells seeded onto Collagen I, suggesting the formation of a macromolecular complex following integrin-mediated adhesion. We conclude that the interaction between KV11.1, NHE1, and β1 integrin contributes to regulate colorectal cancer intracellular pH in relation to the tumor microenvironment, suggesting novel pharmacological targets to counteract pro-invasive and, hence, pro-metastatic behavior in colorectal cancer.
Collapse
Affiliation(s)
- Jessica Iorio
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Duranti
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tiziano Lottini
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Lastraioli
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Bagni
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Annarosa Arcangeli
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Tuna M, I Amos C, B Mills G. Acquired Uniparental Disomy Regions Are Associated with Disease Outcome in Patients with Oral Cavity and Oropharynx But Not Larynx Cancers. Transl Oncol 2020; 13:100763. [PMID: 32305020 PMCID: PMC7163079 DOI: 10.1016/j.tranon.2020.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Acquired uniparental disomy (aUPD) regions pinpoint homozygousity and monoallelic expressed genes. We analyzed The Cancer Genome Atlas single-nucleotide polymorphism arrays and expression data from oral cavity, oropharynx, and larynx cancers to identify frequency of aUPD in each tumor type and association of aUPD regions and differentially expressed genes in the regions with survival. Cox proportional hazard models were used for survival function; and Student’s t test, for differentially expressed genes between groups. The frequency of aUPD was highest in larynx cancers (88.35%) followed by oral cavity (81.11%) and oropharynx cancers (73.85%). In univariate analysis, 11 regions at chromosome 9p were associated with overall survival (OS) in oral cavity cancers. Two regions at chromosome 17p were associated with OS in oropharyngeal cancers, but no aUPD region was associated with survival in patients with larynx cancers. Overexpression of SIGMAR1, C9orf23, and HINT2 was associated with reduced OS in patients with oral cavity cancers, and upregulation of MED27 and YWHAE was associated with shorter OS in patients with oropharynx cancers. In multivariate analysis, four aUPD regions at chromosome 9p and overexpression of HINT2 were associated with shorter OS in oral cavity cancers, and overexpression of MED27 was associated with worse OS in patients with oropharynx cancers. aUPD regions and differentially expressed genes in those regions influence the outcome and may play a role in aggressiveness in oral cavity and oropharynx cancers but not in patients with larynx cancers.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Medicine, Baylor College of Medicine, Houston, TX.
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX; Institute of Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | - Gordon B Mills
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR; Precision Oncology, Knight Cancer Institute, Oregon Health Science University, Portland, OR
| |
Collapse
|
29
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
30
|
Assiri AA, Mourad N, Shao M, Kiel P, Liu W, Skaar TC, Overholser BR. MicroRNA 362-3p Reduces hERG-related Current and Inhibits Breast Cancer Cells Proliferation. Cancer Genomics Proteomics 2020; 16:433-442. [PMID: 31659098 DOI: 10.21873/cgp.20147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIM hERG potassium channels enhance tumor invasiveness and breast cancer proliferation. MicroRNA (miRNA) dysregulation during cancer controls gene regulation. The objective of this study was to identify miRNAs that regulate hERG expression in breast cancer. MATERIALS AND METHODS Putative miRNAs targeting hERG were identified by bioinformatic approaches and screened using a 3'UTR luciferase assay. Functional assessments of endogenous hERG regulation were made using whole-cell electrophysiology, proliferation assays, and cell-cycle analyses following miRNA, hERG siRNA, or control transfection. RESULTS miR-362-3p targeted hERG 3'UTR and was associated with higher survival rates in patients with breast cancer (HR=0.39, 95%CI=0.18-0.82). Enhanced miR-362-3p expression reduced hERG expression, peak current, and cell proliferation in cultured breast cancer cells (p<0.05). CONCLUSION miR-362-3p mediates the transcriptional regulation of hERG and is associated with survival in breast cancer. The potential for miR-362-3p to serve as a biomarker and inform therapeutic strategies warrants further investigation.
Collapse
Affiliation(s)
- Abdullah A Assiri
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, U.S.A.,Department of Clinical Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Noha Mourad
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, U.S.A.,College of Pharmacy, Manchester University, Fort Wayne, IN, U.S.A
| | - Minghai Shao
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, U.S.A
| | - Patrick Kiel
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, U.S.A
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A
| | - Todd C Skaar
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, U.S.A
| | - Brian R Overholser
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, IN, U.S.A. .,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, U.S.A
| |
Collapse
|
31
|
He S, Moutaoufik MT, Islam S, Persad A, Wu A, Aly KA, Fonge H, Babu M, Cayabyab FS. HERG channel and cancer: A mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1873:188355. [PMID: 32135169 DOI: 10.1016/j.bbcan.2020.188355] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The human ether-à-go-go related gene (HERG) encodes the alpha subunit of Kv11.1, which is a voltage-gated K+ channel protein mainly expressed in heart and brain tissue. HERG plays critical role in cardiac repolarization, and mutations in HERG can cause long QT syndrome. More recently, evidence has emerged that HERG channels are aberrantly expressed in many kinds of cancer cells and play important roles in cancer progression. HERG could therefore be a potential biomarker for cancer and a possible molecular target for anticancer drug design. HERG affects a number of cellular processes, including cell proliferation, apoptosis, angiogenesis and migration, any of which could be affected by dysregulation of HERG. This review provides an overview of available information on HERG channel as it relates to cancer, with focus on the mechanism by which HERG influences cancer progression. Molecular docking attempts suggest two possible protein-protein interactions of HERG with the ß1-integrin receptor and the transcription factor STAT-1 as novel HERG-directed therapeutic targeting which avoids possible cardiotoxicity. The role of epigenetics in regulating HERG channel expression and activity in cancer will also be discussed. Finally, given its inherent extracellular accessibility as an ion channel, we discuss regulatory roles of this molecule in cancer physiology and therapeutic potential. Future research should be directed to explore the possibilities of therapeutic interventions targeting HERG channels while minding possible complications.
Collapse
Affiliation(s)
- Siyi He
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Saadul Islam
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Amit Persad
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Adam Wu
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada; Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
32
|
Clarithromycin inhibits autophagy in colorectal cancer by regulating the hERG1 potassium channel interaction with PI3K. Cell Death Dis 2020; 11:161. [PMID: 32123164 PMCID: PMC7052256 DOI: 10.1038/s41419-020-2349-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
We have studied how the macrolide antibiotic Clarithromycin (Cla) regulates autophagy, which sustains cell survival and resistance to chemotherapy in cancer. We found Cla to inhibit the growth of human colorectal cancer (CRC) cells, by modulating the autophagic flux and triggering apoptosis. The accumulation of cytosolic autophagosomes accompanied by the modulation of autophagic markers LC3-II and p62/SQSTM1, points to autophagy exhaustion. Because Cla is known to bind human Ether-à-go-go Related Gene 1 (hERG1) K+ channels, we studied if its effects depended on hERG1 and its conformational states. By availing of hERG1 mutants with different gating properties, we found that fluorescently labelled Cla preferentially bound to the closed channels. Furthermore, by sequestering the channel in the closed conformation, Cla inhibited the formation of a macromolecular complex between hERG1 and the p85 subunit of PI3K. This strongly reduced Akt phosphorylation, and stimulated the p53-dependent cell apoptosis, as witnessed by late caspase activation. Finally, Cla enhanced the cytotoxic effect of 5-fluorouracil (5-FU), the main chemotherapeutic agent in CRC, in vitro and in a xenograft CRC model. We conclude that Cla affects the autophagic flux by impairing the signaling pathway linking hERG1 and PI3K. Combining Cla with 5-FU might be a novel therapeutic option in CRC.
Collapse
|
33
|
hERG1 and CA IX expression are associated with disease recurrence in surgically resected clear cell renal carcinoma. Eur J Surg Oncol 2019; 46:209-215. [PMID: 31679954 DOI: 10.1016/j.ejso.2019.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In search of novel prognostic biomarkers for clear cell renal carcinoma (ccRCC), we analysed the expression of several proteins related to angiogenesis and hypoxia. METHODS A monocentric study on 30 consecutive surgical samples from surgically-treated ccRCC patients with a 10-year follow up was performed. The following proteins were analysed by immunohistochemistry: Vascular Endothelial Growth Factor- A (VEGF-A), Platelet-Derived Growth Factor β Receptor (PDGFRβ), VEGF-receptor 1 (Flt1), VEGF-receptor 2 (KDR), Glucose Transporter 1 (GLUT1), Carbonic anhydrase IX (CA-IX) and the hERG1 potassium channel. Data were analysed in conjunction with the clinico-pathological characteristics of the patients and follow up. RESULTS All the proteins were expressed in the samples, with statistically significant associations of VEGF-A with PDGFRβ and Flt1 and hERG1 with CA IX. Notably, hERG1 and CAIX co-immunoprecipitated in primary ccRCC samples and survival analysis showed that the positivity for hERG1 and CA IX had a negative impact on Recurrence Free Survival (RFS) at the univariate analysis. At the multivariate analysis only hERG1 maintained its statistically significant negative impact. CONCLUSIONS hERG1 expression can be exploited to predict recurrence in surgically-treated ccRCC patients. hERG1 channels form a multiprotein complex with the pH regulator CA IX in primary ccRCC samples their potential use as therapeutic target might be suggested.
Collapse
|
34
|
Hernandez-Resendiz I, Hartung F, Pardo LA. Antibodies Targeting K V Potassium Channels: A Promising Treatment for Cancer. Bioelectricity 2019; 1:180-187. [PMID: 34471820 DOI: 10.1089/bioe.2019.0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated potassium channels are transmembrane proteins that allow flow of potassium across the membrane to regulate ion homeostasis, cell proliferation, migration, cell volume, and specific processes such as muscular contraction. Aberrant function or expression of potassium channels can underlie pathologies ranging from heart arrhythmia to cancer; the expression of potassium channels is altered in many types of cancer and that alteration correlates with malignancy and poor prognosis. Targeting potassium channels therefore constitutes a promising approach for cancer therapy. In this review, we discuss strategies to target a particular family of potassium channels, the voltage-gated potassium channels (KV) where a reasonable structural understanding is available. We also discuss the possible obstacles and advantages of such a strategy.
Collapse
Affiliation(s)
| | - Franziska Hartung
- AG Oncophysiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Luis A Pardo
- AG Oncophysiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
35
|
Iorio J, Petroni G, Duranti C, Lastraioli E. Potassium and Sodium Channels and the Warburg Effect: Biophysical Regulation of Cancer Metabolism. Bioelectricity 2019; 1:188-200. [PMID: 34471821 PMCID: PMC8370285 DOI: 10.1089/bioe.2019.0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ion channels are progressively emerging as a novel class of membrane proteins expressed in several types of human cancers and regulating the different aspects of cancer cell behavior. The metabolism of cancer cells, usually composed by a variable proportion of respiration, glycolysis, and glutaminolysis, leads to the excessive production of acidic metabolic products. The presence of these acidic metabolites inside the cells results in intracellular acidosis, and hinders survival and proliferation. For this reason, tumor cells activate mechanisms of pH control that produce a constitutive increase in intracellular pH (pHi) that is more acidic than the extracellular pH (pHe). This condition forms a perfect microenvironment for metastatic progression and may be permissive for some of the acquired characteristics of tumors. Recent analyses have revealed complex interconnections between oncogenic activation, ion channels, hypoxia signaling and metabolic pathways that are dysregulated in cancer. Here, we summarize the molecular mechanisms of the Warburg effect and hypoxia and their association. Moreover, we discuss the recent findings concerning the involvement of ion channels in various aspects of the Warburg effect and hypoxia, focusing on the role of Na+ and K+ channels in hypoxic and metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Ion Channel Targeting with Antibodies and Antibody Fragments for Cancer Diagnosis. Antibodies (Basel) 2019; 8:antib8020033. [PMID: 31544839 PMCID: PMC6640718 DOI: 10.3390/antib8020033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The antibody era has greatly impacted cancer management in recent decades. Indeed, antibodies are currently applied for both cancer diagnosis and therapy. For example, monoclonal antibodies are the main constituents of several in vitro diagnostics, which are applied at many levels of cancer diagnosis. Moreover, the great improvement provided by in vivo imaging, especially for early-stage cancer diagnosis, has traced the path for the development of a complete new class of antibodies, i.e., engineered antibody fragments. The latter embody the optimal characteristics (e.g., low renal retention, rapid clearance, and small size) which make them ideal for in vivo applications. Furthermore, the present review focuses on reviewing the main applications of antibodies and antibody fragments for solid cancer diagnosis, both in vitro and in vivo. Furthermore, we review the scientific evidence showing that ion channels represent an almost unexplored class of ideal targets for both in vitro and in vivo diagnostic purposes. In particular, we review the applications, in solid cancers, of monoclonal antibodies and engineered antibody fragments targeting the voltage-dependent ion channel Kv 11.1, also known as hERG1.
Collapse
|
37
|
Manoli S, Coppola S, Duranti C, Lulli M, Magni L, Kuppalu N, Nielsen N, Schmidt T, Schwab A, Becchetti A, Arcangeli A. The Activity of Kv 11.1 Potassium Channel Modulates F-Actin Organization During Cell Migration of Pancreatic Ductal Adenocarcinoma Cells. Cancers (Basel) 2019; 11:cancers11020135. [PMID: 30678127 PMCID: PMC6406627 DOI: 10.3390/cancers11020135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cell migration exerts a pivotal role in tumor progression, underlying cell invasion and metastatic spread. The cell migratory program requires f-actin re-organization, generally coordinated with the assembly of focal adhesions. Ion channels are emerging actors in regulating cell migration, through different mechanisms. We studied the role of the voltage dependent potassium channel KV 11.1 on cell migration of pancreatic ductal adenocarcinoma (PDAC) cells, focusing on its effects on f-actin organization and dynamics. Cells were cultured either on fibronectin (FN) or on a desmoplastic matrix (DM) with the addition of a conditioned medium produced by pancreatic stellate cells (PSC) maintained in hypoxia (Hypo-PSC-CM), to better mimic the PDAC microenvironment. KV11.1 was essential to maintain stress fibers in a less organized arrangement in cells cultured on FN. When PDAC cells were cultured on DM plus Hypo-PSC-CM, KV11.1 activity determined the organization of cortical f-actin into sparse and long filopodia, and allowed f-actin polymerization at a high speed. In both conditions, blocking KV11.1 impaired PDAC cell migration, and, on cells cultured onto FN, the effect was accompanied by a decrease of basal intracellular Ca2+ concentration. We conclude that KV11.1 is implicated in sustaining pro-metastatic signals in pancreatic cancer, through a reorganization of f-actin in stress fibers and a modulation of filopodia formation and dynamics.
Collapse
Affiliation(s)
- Sagar Manoli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Stefano Coppola
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Matteo Lulli
- Department of Experimental Biochemical and Clinical Sciences, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy.
| | - Lara Magni
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Nirmala Kuppalu
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Nikolaj Nielsen
- Institut für Physiologie II, Robert-Koch-Str. 27b, D-48149 Münster, Germany.
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, D-48149 Münster, Germany.
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
38
|
Lee G, Ryu HJ, Choi JW, Kang H, Yang WI, Yang IS, Seo MK, Kim S, Yoon SO. Characteristic gene alterations in primary gastrointestinal T- and NK-cell lymphomas. Leukemia 2019; 33:1797-1832. [PMID: 30675012 PMCID: PMC6755973 DOI: 10.1038/s41375-018-0309-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/22/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Gunho Lee
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Graduate Program for Nanomedical Science, Yonsei University, Seoul, Republic of Korea
| | - Hyang Joo Ryu
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Ji Woon Choi
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hyundeok Kang
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Ick Yang
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - In Seok Yang
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
40
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
41
|
Miyoshi F, Shinohara Y, Kambe A, Kuya K, Murakami A, Kurosaki M, Ogawa T. Utility of intravoxel incoherent motion magnetic resonance imaging and arterial spin labeling for recurrent glioma after bevacizumab treatment. Acta Radiol 2018; 59:1372-1379. [PMID: 29471670 DOI: 10.1177/0284185118759707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Detecting recurrence of glioma on magnetic resonance imaging (MRI) is getting more and more important, especially after administration of new anti-tumor agent. However, it is still hard to identify. Purpose To examine the utility of intravoxel incoherent motion (IVIM) MRI and arterial spin labeling-cerebral blood flow (ASL-CBF) for recurrent glioma after initiation of bevacizumab (BEV) treatment. Material and Methods Thirteen patients (7 men, 6 women; age range = 41-82 years) with glioma (high grade, n = 11; low grade, n = 2) were enrolled in the study. IVIM parameters including apparent diffusion coefficient (ADC), true diffusion coefficient (D), and perfusion fraction (f) were obtained with 14 different b-values. We identified tumor progression during BEV therapy by MRI monitoring consisting of diffusion-weighted imaging (DWI), fluid-attenuated inversion recovery (FLAIR) imaging, and contrast-enhanced T1-weighted (CE-T1W) imaging by measuring tumor area. We also measured each parameter of IVIM and ASL-CBF, and calculated relative ADC (rADC), relative D (rD), relative f (rf), and relative CBF (rCBF) by obtaining the ratio between each area and the contralateral cerebral white matter. We calculated the rate of change (Δ) by subtracting values from those from the preceding MRI study, and obtained Spearman's rank correlation coefficient (rs). Results Tumor progression was identified in nine patients (high grade, n = 7; low grade, n = 2). Negative correlations were identified between ΔrD and ΔDWI area (rs = -0.583), and between ΔrD and ΔCE-T1W imaging area (rs = -0.605). Conclusion Tumor progression after BEV treatment can be identified by decreasing rD.
Collapse
Affiliation(s)
- Fuminori Miyoshi
- Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yuki Shinohara
- Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Atsushi Kambe
- Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Keita Kuya
- Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Atsushi Murakami
- Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masamichi Kurosaki
- Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Toshihide Ogawa
- Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
42
|
Lefranc F, Le Rhun E, Kiss R, Weller M. Glioblastoma quo vadis: Will migration and invasiveness reemerge as therapeutic targets? Cancer Treat Rev 2018; 68:145-154. [PMID: 30032756 DOI: 10.1016/j.ctrv.2018.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of the current review is to highlight, on one hand, the fact that the migratory pattern of glioma cells is the major obstacle to combat them with chemotherapy, and on the other one, the new treatment strategies to overcome this obstacle. METHODS This review surveys several membrane and extracellular molecules involved in glioma cell migration, invasiveness and resistance to apoptosis. RESULTS This review focuses on signaling pathways implicated in the positive regulation of glioblastoma cell migration, including glutamate and ion channel networks, microtubes and membrane-derived extracellular vesicles (EV) containing microRNAs. Glioma cells release glutamate to the extracellular matrix, inducing neuronal cell death, which may facilitate glioma growth and invasion. Glioma cell migration and invasion are further facilitated through ion channels and transporters that modify cellular volume. Microtubes and EV promote connections and communication among glioma cells and with the microenvironment and are associated with progression and resistance to therapy. Potential therapies linked to these pathways for glioblastoma are being developed. CONCLUSION Our view is evolving from an intracellular view of the complex intracellular signaling pathways to one of orchestral machinery, including connections between heterogeneous tumoral and nontumoral cells and with the microenvironment through channels, microtubes, and extracellular miRNA, generating different signals at different times. All of these elements give rise to a new perspective for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme; Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Emilie Le Rhun
- University of Lille, U-1192, F-59000 Lille, France; Inserm, U-1192, F-59000 Lille, France; CHU Lille, General and Stereotaxic Neurosurgery Service, F-59000 Lille, France
| | | | - Michael Weller
- Department of Neurology, University Hospital & University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| |
Collapse
|
43
|
Reactive Astrocytes in Glioblastoma Multiforme. Mol Neurobiol 2018; 55:6927-6938. [PMID: 29363044 DOI: 10.1007/s12035-018-0880-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
Abstract
Despite the multidisciplinary integration in the therapeutic management of glioblastoma multiforme (GBM), the prognosis of GBM patients is poor. There is growing recognition that the cells in the tumor microenvironment play a vital role in regulating the progression of glioma. Astrocytes are an important component of the blood-brain barrier (BBB) as well as the tripartite synapse neural network to promote bidirectional communication with neurons under physiological conditions. Emerging evidence shows that tumor-associated reactive astrocytes interact with glioma cells and facilitate the progression, aggression, and survival of tumors by releasing different cytokines. Communication between reactive astrocytes and glioma cells is further promoted through ion channels and ion transporters, which augment the migratory capacity and invasiveness of tumor cells by modifying H+ and Ca2+ concentrations and stimulating volume changes in the cell. This in part contributes to the loss of epithelial polarization, initiating epithelial-mesenchymal transition. Therefore, this review will summarize the recent findings on the role of reactive astrocytes in the progression of GBM and in the development of treatment-resistant glioma. In addition, the involvement of ion channels and transporters in bridging the interactions between tumor cells and astrocytes and their potential as new therapeutic anti-tumor targets will be discussed.
Collapse
|
44
|
Soriani O, Rapetti-Mauss R. Sigma 1 Receptor and Ion Channel Dynamics in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:63-77. [PMID: 28315265 DOI: 10.1007/978-3-319-50174-1_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SigmaR1 is a multitasking chaperone protein which has mainly been studied in CNS physiological and pathophysiological processes such as pain, memory, neurodegenerative diseases (amyotrophic lateral sclerosis , Parkinson's and Alzheimer's diseases, retinal neurodegeneration ), stroke and addiction . Strikingly, G-protein and ion channels are the main client protein fami lies of this atypical chaperone and the recent advances that have been performed for the last 10 years demonstrate that SigmaR1 is principally activated following tissue injury and disease development to promote cell survival. In this chapter, we synthesize the data enhancing our comprehension of the interaction between SigmaR1 and ion channels and the unexpected consequences of such functional coupling in cancer development. We also describe a model in which the pro-survival functions of SigmaR1 observed in CNS pathologies are hijacked by cancer cells to shape their electrical signature and behavior in response to the tumor microenvironment .
Collapse
Affiliation(s)
- Olivier Soriani
- University of Nice Sophia Antipolis, CNRS, Inserm, iBV, 06108, Nice, France.
- Bâtiment Sciences Naturelles; UFR Sciences, 06108, Nice, France.
| | | |
Collapse
|
45
|
pH-sensitive K+ channel TREK-1 is a novel target in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1994-2003. [DOI: 10.1016/j.bbadis.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/16/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
|
46
|
Wanke E, Gullo F, Dossi E, Valenza G, Becchetti A. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents. J Neurophysiol 2016; 116:2706-2719. [PMID: 27683885 PMCID: PMC5133298 DOI: 10.1152/jn.00509.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/22/2016] [Indexed: 01/11/2023] Open
Abstract
In neocortex networks, we simultaneously captured spikes and the slower astrocytes' K+and glutamate transporter (GluT) currents with the use of individual MEA electrodes. Inward and outward K+currents in different regions of the glial syncytium suggested that spatial buffering was operant. Moreover, in organotypic slices from ventral tegmental area and prefrontal cortex, the large GluT current amplitudes allowed to measure transporter currents with a single electrode. Our method allows direct study of the dynamic interplay of different cell types in excitable and nonexcitable tissue. Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K+ excess with background K+ channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K+ currents were blocked by 30 μM Ba2+, suggesting a major contribution of inwardly rectifying K+ currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K+ currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K+ buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue.
Collapse
Affiliation(s)
- Enzo Wanke
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Elena Dossi
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Gaetano Valenza
- Research Centre "E. Piaggio" and Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| |
Collapse
|
47
|
Pointer KB, Clark PA, Eliceiri KW, Salamat MS, Robertson GA, Kuo JS. Administration of Non-Torsadogenic human Ether-à-go-go-Related Gene Inhibitors Is Associated with Better Survival for High hERG-Expressing Glioblastoma Patients. Clin Cancer Res 2016; 23:73-80. [PMID: 27635088 DOI: 10.1158/1078-0432.ccr-15-3169] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/12/2016] [Accepted: 09/03/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE Glioblastoma is the most malignant primary brain tumor, with a median survival of less than 2 years. More effective therapeutic approaches are needed to improve clinical outcomes. EXPERIMENTAL DESIGN Glioblastoma patient-derived cells (GPDC) were isolated from patient glioblastomas and implanted in mice to form xenografts. IHC was performed for human Ether-à-go-go-Related Gene (hERG) expression and tumor proliferation. Sphere-forming assays with the hERG blocker E-4031 were performed on a high and low hERG-expressing lines. A glioblastoma tissue microarray (TMA; 115 patients) was used to correlate hERG expression with patient survival. Clinical data were analyzed to determine whether patient survival was affected by incidental administration of hERG inhibitory drugs and the correlative effect of patient glioblastoma hERG expression levels. RESULTS hERG expression was upregulated in glioblastoma xenografts with higher proliferative indices. High hERG-expressing GPDCs showed a reduction in sphere formation when treated with hERG inhibitors compared with low hERG-expressing GPDCs. Glioblastoma TMA analysis showed worse survival for glioblastoma patients with high hERG expression versus low expression-43.5 weeks versus 60.9 weeks, respectively (P = 0.022). Furthermore, patients who received at least one hERG blocker had a better survival rate compared with patients who did not (P = 0.0015). Subgroup analysis showed that glioblastoma patients with high hERG expression who received hERG blockers had improved survival (P = 0.0458). There was no difference in survival for low hERG-expressing glioblastoma patients who received hERG blockers (P = 0.4136). CONCLUSIONS Our findings suggest that hERG is a potential glioblastoma survival marker, and that already approved drugs with non-torsadogenic hERG inhibitory activity may potentially be repurposed as adjuvant glioblastoma therapy in high hERG-expressing glioblastoma patients. Clin Cancer Res; 23(1); 73-80. ©2016 AACRSee related commentary by Arcangeli and Becchetti, p. 3.
Collapse
Affiliation(s)
- Kelli B Pointer
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin.,Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul A Clark
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation (LOCI), University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - M Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gail A Robertson
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin. .,Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - John S Kuo
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin. .,Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Surgery, National University of Singapore, Singapore
| |
Collapse
|
48
|
Sala L, Yu Z, Ward-van Oostwaard D, van Veldhoven JP, Moretti A, Laugwitz KL, Mummery CL, IJzerman AP, Bellin M. A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med 2016; 8:1065-81. [PMID: 27470144 PMCID: PMC5009811 DOI: 10.15252/emmm.201606260] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-QT syndrome (LQTS) is an arrhythmogenic disorder characterised by prolongation of the QT interval in the electrocardiogram, which can lead to sudden cardiac death. Pharmacological treatments are far from optimal for congenital forms of LQTS, while the acquired form, often triggered by drugs that (sometimes inadvertently) target the cardiac hERG channel, is still a challenge in drug development because of cardiotoxicity. Current experimental models in vitro fall short in predicting proarrhythmic properties of new drugs in humans. Here, we leveraged a series of isogenically matched, diseased and genetically engineered, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients to test a novel hERG allosteric modulator for treating congenital LQTS, drug-induced LQTS or a combination of the two. By slowing IK r deactivation and positively shifting IK r inactivation, the small molecule LUF7346 effectively rescued all of these conditions, demonstrating in a human system that allosteric modulation of hERG may be useful as an approach to treat inherited and drug-induced LQTS Furthermore, our study provides experimental support of the value of isogenic pairs of patient hiPSC-CMs as platforms for testing drug sensitivities and performing safety pharmacology.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhiyi Yu
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Jacobus Pd van Veldhoven
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alessandra Moretti
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
49
|
Boursi B, Han HJ, Haynes K, Mamtani R, Yang YX. Ion channel blockers and glioblastoma risk and outcome: a nested case-control and retrospective cohort studies. Pharmacoepidemiol Drug Saf 2016; 25:1179-1185. [PMID: 27384764 DOI: 10.1002/pds.4054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Mutations in ion channels are common among patients with glioblastoma multiforme (GBM) and promote cell migration and invasion. We sought to evaluate the association between the use of specific ion channel blockers such as digoxin, amiodarone, diltiazem and verapamil and GBM risk and survival. METHODS We conducted a nested case-control study in a large primary care database from the UK. Cases were defined as all individuals with incident diagnosis of GBM during follow-up. For each case, up to four controls were selected using incidence density sampling. The primary exposure of interest was active treatment with each of the four ion channel blockers. We used conditional logistic regression to estimate odds ratios and 95% confidence interval (CI) for the association between ion channel blocker use and GBM risk. We then performed a Cox regression analysis among those diagnosed with GBM in order to evaluate the association between use of ion channel blockers and overall survival. Both analyses were adjusted to common confounders. RESULTS The study included 1076 cases and 4253 matched controls. There was no statistically significant difference between cases and controls in cardiac and metabolic risk factors. There was no change in GBM risk in active users of ion channel blockers compared with non-users. Among patients with GBM, active users of amiodarone had worse survival compared with never users with an HR of 4.41 (95%CI 1.95-9.96). There was no statistically significant change in survival among diltiazem, verapamil or digoxin users. CONCLUSION Treatment with specific ion channel blockers was not associated with the risk of GBM but was associated with worse survival in patients with GBM. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ben Boursi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Tel-Aviv University, Tel-Aviv, Israel
| | - Harry J Han
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Haynes
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronac Mamtani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu-Xiao Yang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Fernández-Valle Á, Rodrigo JP, Rodríguez-Santamarta T, Villaronga MÁ, Álvarez-Teijeiro S, García-Pedrero JM, Suárez-Fernández L, Lequerica-Fernández P, de Vicente JC. HERG1 potassium channel expression in potentially malignant disorders of the oral mucosa and prognostic relevance in oral squamous cell carcinoma. Head Neck 2016; 38:1672-1678. [DOI: 10.1002/hed.24493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Álvaro Fernández-Valle
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
| | - M. Ángeles Villaronga
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Juana M. García-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Laura Suárez-Fernández
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | | | - Juan Carlos de Vicente
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| |
Collapse
|