1
|
Macrì R, Bava I, Scarano F, Mollace R, Musolino V, Gliozzi M, Greco M, Foti D, Tucci L, Maiuolo J, Carresi C, Tavernese A, Palma E, Muscoli C, Mollace V. In Vitro Evaluation of Ferutinin Rich- Ferula communis L., ssp. glauca, Root Extract on Doxorubicin-Induced Cardiotoxicity: Antioxidant Properties and Cell Cycle Modulation. Int J Mol Sci 2023; 24:12735. [PMID: 37628916 PMCID: PMC10454821 DOI: 10.3390/ijms241612735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The clinical use of anthracycline Doxorubicin as an antineoplastic drug in cancer therapy is limited by cardiotoxic effects that can lead to congestive heart failure. Recent studies have shown several promising activities of different species of the genus Ferula belonging to the Apiaceae Family. Ferula communis is the main source of Ferutinin-a bioactive compound isolated from many species of Ferula-studied both in vitro and in vivo because of their different effects, such as estrogenic, antioxidant, anti-inflammatory, and also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. However, the potential protective role of Ferutinin in myocardium impairment, caused by chemotherapeutic drugs, still represents an unexplored field. The aim of this study was to test the effects of Ferutinin rich-Ferula communis L. root extract (FcFE) at different concentrations on H9C2 cells. Moreover, we evaluated its antioxidant properties in cardiomyocytes in order to explore new potential therapeutic activities never examined before in other experimental works. FcFE, at a concentration of 0.25 µM, in the H9C2 line, significantly reduced the ROS production induced by H2O2 (50 µM and 250 µM) and traced the cell mortality of the H9C2 co-treated with Ferutinin 0.25 µM and Doxorubicin (0.5 µM and 1 µM) to control levels. These results showed that FcFE could protect against Doxorubicin-induced cardiotoxicity. Further molecular characterization of this natural compound may open the way for testing FcFE at low concentrations in vivo and in clinical studies as an adjuvant in cancer therapy in association with anthracyclines to prevent side effects on heart cells.
Collapse
Affiliation(s)
- Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (D.F.)
| | - Daniela Foti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (D.F.)
| | - Luigi Tucci
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
2
|
Bhadra K. A Mini Review on Molecules Inducing Caspase-Independent Cell Death: A New Route to Cancer Therapy. Molecules 2022; 27:molecules27196401. [PMID: 36234938 PMCID: PMC9572491 DOI: 10.3390/molecules27196401] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most anticancer treatments trigger tumor cell death through apoptosis, where initiation of proteolytic action of caspase protein is a basic need. But under certain circumstances, apoptosis is prevented by the apoptosis inhibitor proteins, survivin and Hsp70. Several drugs focusing on classical programmed death of the cell have been reported to have low anti-tumorogenic potency due to mutations in proteins involved in the caspase-dependent programmed cell death with intrinsic and extrinsic pathways. This review concentrates on the role of anti-cancer drug molecules targeting alternative pathways of cancer cell death for treatment, by providing a molecular basis for the new strategies of novel anti-cancer treatment. Under these conditions, active agents targeting alternative cell death pathways can be considered as potent chemotherapeutic drugs. Many natural compounds and other small molecules, such as inorganic and synthetic compounds, including several repurposing drugs, are reported to cause caspase-independent cell death in the system. However, few molecules indicated both caspase-dependent as well caspase-free cell death in specific cancer lines. Cancer cells have alternative methods of caspase-independent programmed cell death which are equally promising for being targeted by small molecules. These small molecules may be useful leads for rational therapeutic drug design, and can be of potential interest for future cancer-preventive strategies.
Collapse
Affiliation(s)
- Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, Kalyani 741235, India
| |
Collapse
|
3
|
Durante M, Frosini M, Chiaino E, Fusi F, Gamberucci A, Gorelli B, Chegaev K, Riganti C, Saponara S. Sdox, a H 2S releasing anthracycline, with a safer profile than doxorubicin toward vasculature. Vascul Pharmacol 2022; 143:106969. [PMID: 35149209 DOI: 10.1016/j.vph.2022.106969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023]
Abstract
Sdox is a synthetic H2S-releasing doxorubicin (Dox) less cardiotoxic and more effective than Dox in pre-clinical, Dox-resistant tumour models. The well-known anthracycline vascular toxicity, however, might limit Sdox clinical use. This study aimed at evaluating Sdox vascular toxicity in vitro, using Dox as reference compound. Both vascular smooth muscle A7r5 and endothelial EA.hy926 cells were more sensitive to Dox than Sdox, although both drugs equally increased intracellular free radical levels. Sdox released H2S in both cell lines. The H2S scavenger hydroxocobalamin partially reverted Sdox-induced cytotoxicity in A7r5, but not in EA.hy926 cells, suggesting a role for H2S in smooth muscle cell death. Markers of Sdox-induced apoptosis were significantly lower than, in A7r5 cells, and comparable to those of Dox in EA.hy926 cells. In A7r5 cells, Dox increased the activity of caspase 3, 8, and 9, Sdox affecting only that of caspase 3. Moreover, both drugs induced comparable DNA damage in A7r5 cells, while Sdox was less toxic than Dox in Ea.hy926 cells. In fresh aorta rings, only Dox weakly increased phenylephrine-induced contraction when endothelium was present. In rings cultured with both drugs for 7 days, Sdox blunted phenylephrine- and high K+-induced contractions though at a concentration 10-fold higher than that of Dox. In conclusion, Sdox may represent the prototype of an innovative anthracycline, effective against Dox-resistant tumours, displaying a more favourable vascular toxicity profile compared to the parent compound.
Collapse
Affiliation(s)
- Miriam Durante
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Elda Chiaino
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Alessandra Gamberucci
- Dipartimento di Medicina Molecolare e dello Sviluppo, Università di Siena, Siena, Italy
| | - Beatrice Gorelli
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy
| | - Konstantin Chegaev
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università di Torino, Torino, Italy
| | - Simona Saponara
- Dipartimento di Scienze della Vita, Università di Siena, Siena, Italy.
| |
Collapse
|
4
|
Design, efficient synthesis, docking studies, and anticancer evaluation of new quinoxalines as potential intercalative Topo II inhibitors and apoptosis inducers. Bioorg Chem 2020; 104:104255. [DOI: 10.1016/j.bioorg.2020.104255] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
|
5
|
Chen CC, Hong HJ, Hao WR, Cheng TH, Liu JC, Sung LC. Nicorandil prevents doxorubicin-induced human umbilical vein endothelial cell apoptosis. Eur J Pharmacol 2019; 859:172542. [PMID: 31319070 DOI: 10.1016/j.ejphar.2019.172542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023]
Abstract
Nicorandil is an adenosine triphosphate-sensitive potassium channel opener with additional antioxidant properties. Doxorubicin (DOX) is an anticancer drug that exerts oxidation-mediated adverse cardiovascular effects. This study examined the effects of nicorandil on DOX-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs) and underlying intracellular signaling mechanisms. Cultured HUVECs were pretreated with nicorandil (0.1, 0.3, 1, 3, and 10 μM) for 12 h and then treated with DOX (1 μM) for 24 h. Cell viability and cytotoxicity were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, respectively. Cell apoptosis was examined using a caspase-3 activity assay, and DNA fragmentation was detected through TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) staining. Western blot analysis was conducted to determine the related protein expression. DOX markedly increased reactive oxygen species production, p53 expression, caspase-3 activity, cleaved caspase-3 levels, and TUNEL-positive cell numbers but reduced Bcl-2 expression and intracellular antioxidant enzyme levels; these effects were effectively antagonized through nicorandil (3 μM, 12 h) pretreatment, which resulted in HUVECs being protected from DOX-induced apoptosis. Activating transcription factor 3 (ATF3), a stress-induced transcription factor, was induced by nicorandil (3 μM). Furthermore, nicorandil (3 μM) enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) translocation and heme oxygenase-1 (HO-1) expression. ATF3 short interfering RNA significantly attenuated nicorandil-mediated Nrf2 translocation, HO-1 expression, and inhibitory effects on DOX-stimulated reactive oxygen species production and cell apoptosis. In summary, nicorandil may protect HUVECs from DOX-induced apoptosis, in part through ATF3-mediated Nrf2/HO-1 signaling pathways, which potentially protect the vessels from severe DOX toxicity.
Collapse
Affiliation(s)
- Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
6
|
Rahmani Kukia N, Rasmi Y, Abbasi A, Koshoridze N, Shirpoor A, Burjanadze G, Saboory E. Bio-Effects of TiO2 Nanoparticles on Human Colorectal Cancer and Umbilical Vein Endothelial Cell Lines. Asian Pac J Cancer Prev 2018; 19:2821-2829. [PMID: 30361551 PMCID: PMC6291037 DOI: 10.22034/apjcp.2018.19.10.2821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Due to the possible biomedical potential of nanoparticles, titanium dioxide nanoparticles (TiO2 NPs)
have received great attention in cancer research. Although selectivity of cytotoxicity with TiO2 NPs in various cells is
clinically significant comparisons of cancer and non-cancer cells have been limited. Therefore, we here studied exposure
to TiO2 NPs in colorectal cancer cells (CRCs) and human umbilical vein endothelial cells (HUVECs). Methods: After
characterization of TiO2 NPs, culture and treatment of cells (HCT116, HT29 and HUVEC), viability was assessed by
MTT assay and in terms of morphological features. Acridine orange (AO) and propidium iodide (PI) assays were carried
out to estimate the incidence of apoptosis. The RT-PCR method was also employed to evaluate the expression of P53,
Bax, Bcl-2 and Caspase 3. Results: Exposure to increasing concentrations of TiO2 NPs enhanced overall cell survival
of HCT116 cells and reduced the Bcl-2 and Caspase 3 expression while the ratio of Bax/Bcl-2 was down-regulated.
TiO2 NPs at 400 and 50 μg/ml concentrations suppressed cell proliferation and induced apoptosis of HT29 cells and
also up-regulated P53 and Bax at the mRNA level, enhanced the Bax/Bcl-2 ratio and eventually up-regulated Caspase
3 mRNA. Although, inhibition of cell proliferation in HUVECs was seen at 200 and 400 μg/ml TiO2 NPs, it was not
marked. Conclusion: TiO2 NPs have selective bio-effects on exposed cells with dose- and cell-dependent influence on
viability. Cell proliferation in HCT116 as a metastatic colorectal cancer cell line appeared to be stimulated via multiple
signaling pathways, with promotion of apoptosis in less metastatic cells at 50 and 400 μg/ml concentrations. This was
associated with elevated P53, Bax and Caspase 3 mRNA and reduced Bcl-2 expression. However, TiO2 NPs did not
exert any apparent significant effects on HUVECs as hyperproliferative angiogenic cells.
Collapse
Affiliation(s)
- Nasim Rahmani Kukia
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | | | | | | | | | | | |
Collapse
|
7
|
Hong YM, Lee H, Cho MS, Kim KC. Apoptosis and remodeling in adriamycin-induced cardiomyopathy rat model. KOREAN JOURNAL OF PEDIATRICS 2017; 60:365-372. [PMID: 29234360 PMCID: PMC5725342 DOI: 10.3345/kjp.2017.60.11.365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 11/27/2022]
Abstract
Purpose The mechanism for the pathogenesis of adriamycin (ADR)-induced cardiomyopathy is not yet known. Different hypotheses include the production of free radicals, an interaction between ADR and nuclear components, and a disruption in cardiac-specific gene expression. Apoptosis has also been proposed as being involved in cardiac dysfunction. The purpose of this study was to determine if apoptosis might play a role in ADR-induced cardiomyopathy. Methods Male Sprague-Dawley rats were separated into 2 groups: the control group (C group) and the experimental group (ADR 5 mg/wk for 3 weeks through intraperitoneal injections; A group). Echocardiographic images were obtained at week 3. Changes in caspase-3, B-cell leukemia/lymphoma (Bcl)-2, Bcl-2-associated X (Bax), interleukin (IL)-6, tumor necrosis factor-α, brain natriuretic peptide (BNP), troponin I, collagen 1, and collagen 3 protein expression from the left ventricle tissues of C and A group rats were determined by Western blot. Results Ascites and heart failure as well as left ventricular hypertrophy were noted in the A group. Ejection fraction and shortening fraction were significantly lower in the A group by echocardiography. The expression of caspase-3, Bax, IL-6, BNP, collagen 1, and collagen 3 were significantly higher in the A group as compared with the C group. Protein expression of Bcl-2 decreased significantly in the A group compared with the C group. Conclusion ADR induced an upregulation of caspase-3, Bax, IL-6, and collagen, as well as a depression in Bcl-2. Thus, apoptosis and fibrosis may play an important role in ADR-induced cardiomyopathy.
Collapse
Affiliation(s)
- Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyeryon Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Min-Sun Cho
- Department of Pathology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 391:59-70. [DOI: 10.1007/s00210-017-1437-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
|
9
|
Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1182-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Chen YL, Tsai YT, Lee CY, Lee CH, Chen CY, Liu CM, Chen JJ, Loh SH, Tsai CS. Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway. PLoS One 2014; 9:e106812. [PMID: 25268131 PMCID: PMC4182104 DOI: 10.1371/journal.pone.0106812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/14/2014] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Regulation of the homeostasis of vascular endothelium is critical for the processes of vascular remodeling and angiogenesis under physiological and pathological conditions. Urotensin II (U-II), a potent vasoactive peptide, participates in vascular and myocardial remodeling after injury. We investigated the protective effect of U-II on doxorubicin (DOX)-induced apoptosis in cultured human umbilical vein endothelial cells (HUVECs) and the potential mechanisms involved in this process. Experimental Approach Cultured HUVECs were treated with vehicle, DOX (1 µM), U-II, or U-II plus DOX. Apoptosis was evaluated by DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining. Western blot analysis was employed to determine the related protein expression and flow cytometry assay was used to determine the TUNEL positive cells. Key Results U-II reduced the quantity of cleaved caspase-3 and cytosol cytochrome c and increased Bcl-2 expression, which results in protecting HUVECs from DOX-induced apoptosis. U-II induced Activating transcription factor 3 (ATF3) at both mRNA and protein levels in U-II-treated cells. Knockdown of ATF3 with ATF3 siRNA significantly reduced ATF3 protein levels and U-II protective effect under DOX-treated condition. U-II downregulated p53 expression in DOX-induced HUVECs apoptosis, and it rapidly activated extracellular signal-regulated protein kinase (ERK) and Akt. The DOX induced change of p53 was not affected by U-II antagonist (urantide) under ATF-3 knockdown. The inhibitory effect of U-II on DOX-increased apoptosis was attenuated by inhibitors of ERK (U0126) and PI3K/Akt (LY294002). Conclusion and Implications Our observations provide evidence that U-II protects HUVECs from DOX-induced apoptosis. ERK-Akt phosphorylation, ATF3 activation, and p53 downregulation may play a signal-transduction role in this process.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chung-Yi Lee
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-Hsing Lee
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan, Republic of China
| | - Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan, Republic of China
| | - Chi-Ming Liu
- School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan, Republic of China
| | - Jin-Jer Chen
- Division of Cardiology, Department of Internal Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, Republic of China
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
- Division of Cardiology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Shih-Hurng Loh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China
- * E-mail: (C-ST); (S-HL)
| | - Chien-Sung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- * E-mail: (C-ST); (S-HL)
| |
Collapse
|
11
|
Indumathy S, Dass CR. Finding chemo: the search for marine-based pharmaceutical drugs active against cancer. ACTA ACUST UNITED AC 2013; 65:1280-301. [PMID: 23927467 DOI: 10.1111/jphp.12097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/29/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Cancer affects the health of many people globally. The most common treatment that is used for cancer is chemotherapy, which has shown promising results but not without side effects. Some of these side effects jeopardise further treatment, and this eventually leads to advanced stages of malignancy and mortality. As a result, there is a need for better and safer anticancer compounds such as those found naturally. One of the most abundant natural environments to find such compounds is the sea, and this vast resource has been biomined since the 1950s. KEY FINDINGS There are currently three marine anticancer agents marketed (Yondelis, Cytosar-U and Halaven), with several others undergoing clinical trials. This review discusses marine-derived products in clinical use and in clinical trials, and discusses available literature on the growth suppression or pro-apoptotic properties of these compounds, and the molecular mechanisms underpinning these cell biological phenomena. SUMMARY The marine environment may hold promising anticancer compounds within its depths, warranting further research to be performed in this area, albeit with respect for the natural ecosystems that are being explored for drug discover and subsequently used for drug development.
Collapse
Affiliation(s)
- Sivanjah Indumathy
- College of Biomedicine and Health, Victoria University, St Albans, Vic, Australia
| | | |
Collapse
|
12
|
Carelli S, Hebda DM, Traversa MV, Messaggio F, Giuliani G, Marzani B, Benedusi A, Di Giulio AM, Gorio A. A specific combination of zeaxanthin, spermidine and rutin prevents apoptosis in human dermal papilla cells. Exp Dermatol 2012; 21:953-5. [PMID: 23088714 DOI: 10.1111/exd.12029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
Abstract
Hair follicle (HF) regression is characterized by the activation of apoptosis in HF cells. Dermal papilla cells play a leading role in the regulation of HF development and cycling. Human follicular dermal papilla cells (HFDPC) were used to investigate the protective activities of rutin, sperimidine and zeaxanthine. HFDP cell incubation with staurosporine caused apoptosis, which was completely inhibited by exposure to rutin (2.2 μM), spermidine (1 μM) and zeaxanthin (80 μM). These agents were much less effective when applied as single compounds. Moreover, treatment preserved the expression of anti-apoptotic molecules such as Bcl-2, MAP-kinases and their phosphorylated forms. In conclusion, the investigated agents may represent an effective treatment for the prevention of apoptosis, one of the leading events involved in hair bulb regression.
Collapse
|
13
|
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52:1213-25. [DOI: 10.1016/j.yjmcc.2012.03.006] [Citation(s) in RCA: 779] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
14
|
Abstract
Apoptosis is a tightly regulated physiologic process of programmed cell death that occurs in both normal and pathologic tissues. Numerous in vitro or in vivo studies have indicated that cardiomyocyte death through apoptosis and necrosis is a primary contributor to the progression of anthracycline-induced cardiomyopathy. There are now several pieces of evidence to suggest that activation of intrinsic and extrinsic apoptotic pathways contribute to anthracycline-induced apoptosis in the heart. Novel strategies were developed to address a wide variety of cardiotoxic mechanisms and apoptotic pathways by which anthracycline influences cardiac structure and function. Anthracycline-induced apoptosis provides a very valid representation of cardiotoxicity in the heart, an argument which has implications for the most appropriate animal models of damaged heart plus diverse pharmacological effects. In this review we describe various aspects of the current understanding of apoptotic cell death triggered by anthracycline. Differences in the sensitivity to anthracycline-induced apoptosis between young and adult hearts are also discussed.
Collapse
Affiliation(s)
- Jianjian Shi
- Riley Heart Research Center, Wells Center for Pediatric Research, Department of Pediatrics Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
15
|
Morrissy S, Xu B, Aguilar D, Zhang J, Chen QM. Inhibition of apoptosis by progesterone in cardiomyocytes. Aging Cell 2010; 9:799-809. [PMID: 20726854 DOI: 10.1111/j.1474-9726.2010.00619.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While gender-based differences in heart disease have raised the possibility that estrogen (ES) or progesterone (PG) may have cardioprotective effects, recent controversy regarding hormone replacement therapy has questioned the cardiac effects of these steroids. Using cardiomyocytes, we tested whether ES or PG has protective effects at the cellular level. We found that PG but not ES protects cardiomyocytes from apoptotic cell death induced by doxorubicin (Dox). PG inhibited apoptosis in a dose-dependent manner, by 12 ± 4.0% at 1 μm and 60 ± 1.0% at 10 μm. The anti-apoptotic effect of PG was also time dependent, causing 18 ± 5% or 62 + 2% decrease in caspase-3 activity within 1 h or 72 h of pretreatment. While PG causes nuclear translocation of its receptor within 20 min, the cytoprotective effect of PG was canceled by mifepristone (MF), a PG receptor antagonist. Analyses using Affymetrix high-density oligonucleotide array and RT-PCR found that PG induced Bcl-xL, metallothionine, NADPH quinone oxidoreductase 1, glutathione peroxidase-3, and four isoforms of glutathione S-transferase. Western blot analyses revealed that PG indeed induced an elevation of Bcl-xL protein in a dose- and time-dependent manner. Nuclear run-on assay indicated that PG induced Bcl-xL gene transcription. Inhibiting the expression of Bcl-xL using siRNA reduced the cytoprotective effect of PG. Our data suggests that PG induces a cytoprotective effect in cardiomyocytes in association with induction of Bcl-xL gene.
Collapse
Affiliation(s)
- Stephen Morrissy
- Department of Pharmacology, University of Arizona, Tucson, 85724, USA
| | | | | | | | | |
Collapse
|
16
|
Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC. New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem Toxicol 2010; 48:1425-38. [PMID: 20385199 DOI: 10.1016/j.fct.2010.04.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 12/29/2022]
Abstract
Anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin) are currently the most effective group of anti-neoplastic drugs used in clinical practice. Of these, doxorubicin (also called adriamycin) is a key chemotherapeutic agent in cancer treatment, although its use is limited as a consequence of the chronic and acute toxicity associated with this drug. The molecular mechanisms of doxorubicin account for both the anti-cancer and the toxic side effects. Many antioxidants have been assayed, with positive or negative results, to prevent the toxicity of doxorubicin. The present review has two main goals: (1) to report the latest findings regarding the molecular mechanisms of doxorubicin toxicity; (2) to update our understanding of the role of natural antioxidants in preventive therapy against doxorubicin-induced toxicity. This review provides new evidence for the chemoprevention of doxorubicin toxicity, making use of natural antioxidants - in particular vitamin E, vitamin C, coenzyme Q, carotenoids, vitamin A, flavonoids, polyphenol, resveratrol, antioxidant from virgin olive oil and selenium - and offers new insights into the molecular mechanisms of doxorubicin toxicity with respect to DNA damage, free radicals and other parameters.
Collapse
Affiliation(s)
- Sergio Granados-Principal
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology José Mataix Verdú, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
17
|
Freeburg EM, Goyeneche AA, Seidel EE, Telleria CM. Resistance to cisplatin does not affect sensitivity of human ovarian cancer cell lines to mifepristone cytotoxicity. Cancer Cell Int 2009; 9:4. [PMID: 19222856 PMCID: PMC2661041 DOI: 10.1186/1475-2867-9-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/17/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The prototypical antiprogestin mifepristone exhibits potent growth inhibition activity towards ovarian cancer cells in vitro and in vivo. The aim of this research was to establish whether mifepristone is capable of inhibiting cell proliferation and inducing apoptotic cell death regardless of the degree of sensitivity ovarian cancer cells exhibit to cisplatin. METHODS OV2008, OV2008/C13, A2780, A2780/CP70, Caov-3, and SK-OV-3 cell lines exhibiting a range of sensitivities to cisplatin were used. Growth inhibition, cell viability, and sub-diploid DNA content in response to treatment with escalating doses of either mifepristone or cisplatin were assessed by microcapillary cytometry. Apoptotic cell death was evaluated by measuring genomic DNA fragmentation and cleavage of caspase-3 and poly (ADP ribose) polymerase (PARP). RESULTS The sensitivities to cisplatin manifested by the cell lines were OV2008 > A2780 > Caov-3 > SK-OV-3 > OV2008/C13 > A2780/CP70. Mifepristone inhibited the growth of all six cell lines in a dose-related manner with IC50s ranging from ~6-12 muM and without significant correlation with the relative sensitivities the cells displayed for cisplatin. Moreover, at the highest concentration studied, mifepristone triggered apoptotic death in all six cell lines as evidenced by the increase in sub-diploid fragmented DNA content and cleavage of caspase-3 and of its downstream substrate PARP. CONCLUSION Mifepristone is cytotoxic towards ovarian cancer cells independent of the sensitivity exhibited by the cells to cisplatin, displaying cytostatic effects at lower concentrations and lethal effects at higher concentrations. Mifepristone monotherapy emerges as a valuable therapeutic alternative for platinum-resistant ovarian cancers.
Collapse
Affiliation(s)
- Elizabeth M Freeburg
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD 57069, USA
| | - Alicia A Goyeneche
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD 57069, USA
| | - Erin E Seidel
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD 57069, USA
| | - Carlos M Telleria
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
18
|
Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp (Warsz) 2009; 57:435-45. [PMID: 19866340 PMCID: PMC2809808 DOI: 10.1007/s00005-009-0051-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/20/2009] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is one of the most widely used and successful antitumor drugs, but its cumulative and dose-dependent cardiac toxicity has been a major concern of oncologists in cancer therapeutic practice for decades. With the increasing population of cancer survivors, there is a growing need to develop preventive strategies and effective therapies against DOX-induced cardiotoxicity, in particular late-onset cardiomyopathy. Although intensive investigations on DOX-induced cardiotoxicity have continued for decades, the underlying mechanisms responsible for DOX-induced cardiotoxicity have not been completely elucidated. A rapidly expanding body of evidence supports the notion that cardiomyocyte death by apoptosis and necrosis is a primary mechanism of DOX-induced cardiomyopathy and that other types of cell death, such as autophagy and senescence/aging, may participate in this process. This review focuses on the current understanding of the molecular mechanisms underlying DOX-induced cardiomyocyte death, including the major primary mechanism of excess production of reactive oxygen species (ROS) and other recently discovered ROS-independent mechanisms. The different sensitivities to DOX-induced cell death signals between adult and young cardiomyocytes will also be discussed.
Collapse
|
19
|
Yamakawa N, Takahashi A, Mori E, Imai Y, Furusawa Y, Ohnishi K, Kirita T, Ohnishi T. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation. Cancer Sci 2008; 99:1455-60. [PMID: 18422753 PMCID: PMC11158808 DOI: 10.1111/j.1349-7006.2008.00818.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/21/2008] [Accepted: 02/23/2008] [Indexed: 01/13/2023] Open
Abstract
Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/microm), or Fe-ion beams (200 KeV/microm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/microm, and then decreased at values over 100 KeV/microm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53.
Collapse
Affiliation(s)
- Nobuhiro Yamakawa
- Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|