1
|
Mandleywala K, Herranz D. CApSiZing T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:1634-1636. [PMID: 38235506 PMCID: PMC11141670 DOI: 10.3324/haematol.2023.284714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Komal Mandleywala
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901.
| |
Collapse
|
2
|
Liu T, Li T, Ke S. Role of the CASZ1 transcription factor in tissue development and disease. Eur J Med Res 2023; 28:562. [PMID: 38053207 DOI: 10.1186/s40001-023-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
The zinc finger transcription factor gene, CASZ1/Castor (Castor zinc finger 1), initially identified in Drosophila, plays a critical role in neural, cardiac, and cardiovascular development, exerting a complex, multifaceted influence on cell fate and tissue morphogenesis. During neurogenesis, CASZ1 exhibits dynamic expression from early embryonic development to the perinatal period, constituting a key regulator in this process. Additionally, CASZ1 controls the transition between neurogenesis and gliomagenesis. During human cardiovascular system development, CASZ1 is essential for cardiomyocyte differentiation, cardiac morphogenesis, and vascular morphology homeostasis and formation. The deletion or inactivation of CASZ1 mutations can lead to human developmental diseases or tumors, including congenital heart disease, cardiovascular disease, and neuroblastoma. CASZ1 can be used as a biomarker for disease prevention and diagnosis as well as a prognostic indicator for cancer. This review explores the unique functions of CASZ1 in tissue morphogenesis and associated diseases, offering new insights for elucidating the molecular mechanisms underlying diseases and identifying potential therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Tiantian Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shaorui Ke
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| |
Collapse
|
3
|
Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Mol Metab 2023; 75:101771. [PMID: 37414143 PMCID: PMC10362370 DOI: 10.1016/j.molmet.2023.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric malignancy of incredibly complex aetiology. Oncogenic protein kinase signalling in neuroblastoma has conventionally focussed on transduction through the well-characterised PI3K/Akt and MAPK pathways, in which the latter has been implicated in treatment resistance. The discovery of the receptor tyrosine kinase ALK as a target of genetic alterations in cases of familial and sporadic neuroblastoma, was a breakthrough in the understanding of the complex genetic heterogeneity of neuroblastoma. However, despite progress in the development of small-molecule inhibitors of ALK, treatment resistance frequently arises and appears to be a feature of the disease. Moreover, since the identification of ALK, several additional protein kinases, including the PIM and Aurora kinases, have emerged not only as drivers of the disease phenotype, but also as promising druggable targets. This is particularly the case for Aurora-A, given its intimate engagement with MYCN, a driver oncogene of aggressive neuroblastoma previously considered 'undruggable.' SCOPE OF REVIEW Aided by significant advances in structural biology and a broader understanding of the mechanisms of protein kinase function and regulation, we comprehensively outline the role of protein kinase signalling, emphasising ALK, PIM and Aurora in neuroblastoma, their respective metabolic outputs, and broader implications for targeted therapies. MAJOR CONCLUSIONS Despite massively divergent regulatory mechanisms, ALK, PIM and Aurora kinases all obtain significant roles in cellular glycolytic and mitochondrial metabolism and neuroblastoma progression, and in several instances are implicated in treatment resistance. While metabolism of neuroblastoma tends to display hallmarks of the glycolytic "Warburg effect," aggressive, in particular MYCN-amplified tumours, retain functional mitochondrial metabolism, allowing for survival and proliferation under nutrient stress. Future strategies employing specific kinase inhibitors as part of the treatment regimen should consider combinatorial attempts at interfering with tumour metabolism, either through metabolic pathway inhibitors, or by dietary means, with a view to abolish metabolic flexibility that endows cancerous cells with a survival advantage.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
4
|
Jian H, Poetsch A. CASZ1: Current Implications in Cardiovascular Diseases and Cancers. Biomedicines 2023; 11:2079. [PMID: 37509718 PMCID: PMC10377389 DOI: 10.3390/biomedicines11072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Castor zinc finger 1 (CASZ1) is a C2H2 zinc finger family protein that has two splicing variants, CASZ1a and CASZ1b. It is involved in multiple physiological processes, such as tissue differentiation and aldosterone antagonism. Genetic and epigenetic alternations of CASZ1 have been characterized in multiple cardiovascular disorders, such as congenital heart diseases, chronic venous diseases, and hypertension. However, little is known about how CASZ1 mechanically participates in the pathogenesis of these diseases. Over the past decades, at first glance, paradoxical influences on cell behaviors and progressions of different cancer types have been discovered for CASZ1, which may be explained by a "double-agent" role for CASZ1. In this review, we discuss the physiological function of CASZ1, and focus on the association of CASZ1 aberrations with the pathogenesis of cardiovascular diseases and cancers.
Collapse
Affiliation(s)
- Heng Jian
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ansgar Poetsch
- Queen Mary School, Nanchang University, Nanchang 330006, China
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Ferrari L, Monti P, Favero C, Carugno M, Tarantini L, Maggioni C, Bonzini M, Pesatori AC, Bollati V. Association between night shift work and methylation of a subset of immune-related genes. Front Public Health 2023; 10:1083826. [PMID: 36711387 PMCID: PMC9877629 DOI: 10.3389/fpubh.2022.1083826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Night shift (NS) work has been associated with an increased risk of different conditions characterized by altered inflammatory and immune responses, such as cardio-metabolic and infectious diseases, cancer, and obesity. Epigenetic modifications, such as DNA methylation, might mirror alterations in biological processes that are influenced by NS work. Methods The present study was conducted on 94 healthy female workers with different working schedules and aimed at identifying whether NS was associated with plasmatic concentrations of the inflammatory proteins NLRP3 and TNF-alpha, as well as with DNA methylation levels of ten human endogenous retroviral (HERV) sequences, and nine genes selected for their role in immune and inflammatory processes. We also explored the possible role of the body mass index (BMI) as an additional susceptibility factor that might influence the effects of NS work on the tested epigenetic modifications. Results and discussion We observed a positive association between NS and NLRP3 levels (p-value 0.0379). Moreover, NS workers retained different methylation levels for ERVFRD-1 (p-value = 0.0274), HERV-L (p-value = 0.0377), and HERV-P (p-value = 0.0140) elements, and for BIRC2 (p-value = 0.0460), FLRT3 (p-value = 0.0422), MIG6 (p-value = 0.0085), and SIRT1 (p-value = 0.0497) genes. We also observed that the BMI modified the relationship between NS and the methylation of ERVE, HERV-L, and ERVW-1 elements. Overall, our results suggest that HERV methylation could pose as a promising biomolecular sensor to monitor not only the effect of NS work but also the cumulative effect of multiple stressors.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,*Correspondence: Luca Ferrari ✉
| | - Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Michele Carugno
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Tarantini
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Maggioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Matteo Bonzini
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Bosse KR, Giudice AM, Lane MV, McIntyre B, Schürch PM, Pascual-Pasto G, Buongervino SN, Suresh S, Fitzsimmons A, Hyman A, Gemino-Borromeo M, Saggio J, Berko ER, Daniels AA, Stundon J, Friedrichsen M, Liu X, Margolis ML, Li MM, Tierno MB, Oxnard GR, Maris JM, Mossé YP. Serial Profiling of Circulating Tumor DNA Identifies Dynamic Evolution of Clinically Actionable Genomic Alterations in High-Risk Neuroblastoma. Cancer Discov 2022; 12:2800-2819. [PMID: 36108156 PMCID: PMC9722579 DOI: 10.1158/2159-8290.cd-22-0287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Neuroblastoma evolution, heterogeneity, and resistance remain inadequately defined, suggesting a role for circulating tumor DNA (ctDNA) sequencing. To define the utility of ctDNA profiling in neuroblastoma, 167 blood samples from 48 high-risk patients were evaluated for ctDNA using comprehensive genomic profiling. At least one pathogenic genomic alteration was identified in 56% of samples and 73% of evaluable patients, including clinically actionable ALK and RAS-MAPK pathway variants. Fifteen patients received ALK inhibition (ALKi), and ctDNA data revealed dynamic genomic evolution under ALKi therapeutic pressure. Serial ctDNA profiling detected disease evolution in 15 of 16 patients with a recurrently identified variant-in some cases confirming disease progression prior to standard surveillance methods. Finally, ctDNA-defined ERRFI1 loss-of-function variants were validated in neuroblastoma cellular models, with the mutant proteins exhibiting loss of wild-type ERRFI1's tumor-suppressive functions. Taken together, ctDNA is prevalent in children with high-risk neuroblastoma and should be followed throughout neuroblastoma treatment. SIGNIFICANCE ctDNA is prevalent in children with neuroblastoma. Serial ctDNA profiling in patients with neuroblastoma improves the detection of potentially clinically actionable and functionally relevant variants in cancer driver genes and delineates dynamic tumor evolution and disease progression beyond that of standard tumor sequencing and clinical surveillance practices. See related commentary by Deubzer et al., p. 2727. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104; USA
| | - Anna Maria Giudice
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Maria V. Lane
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Patrick M. Schürch
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Samantha N. Buongervino
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Sriyaa Suresh
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Alana Fitzsimmons
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Adam Hyman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Maria Gemino-Borromeo
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Jennifer Saggio
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Esther R. Berko
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Alexander A. Daniels
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | - Jennifer Stundon
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | | | - Xin Liu
- Foundation Medicine, Inc. Cambridge, MA 02141; USA
| | | | - Marilyn M. Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania and the Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
| | | | | | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104; USA
| | - Yael P. Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, 19104; USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, 19104; USA
| |
Collapse
|
7
|
Keane S, de Weerd HA, Ejeskär K. DLG2 impairs dsDNA break repair and maintains genome integrity in neuroblastoma. DNA Repair (Amst) 2022; 112:103302. [DOI: 10.1016/j.dnarep.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
|
8
|
Decaesteker B, Durinck K, Van Roy N, De Wilde B, Van Neste C, Van Haver S, Roberts S, De Preter K, Vermeirssen V, Speleman F. From DNA Copy Number Gains and Tumor Dependencies to Novel Therapeutic Targets for High-Risk Neuroblastoma. J Pers Med 2021; 11:1286. [PMID: 34945759 PMCID: PMC8707517 DOI: 10.3390/jpm11121286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a worldwide leading cause of childhood cancer-related deaths. About half of high-risk patients die from the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas present with a low mutational burden, focal and large segmental DNA copy number aberrations are highly recurrent and associated with poor survival. It can be assumed that the affected chromosomal regions contain critical genes implicated in neuroblastoma biology and behavior. More specifically, evidence has emerged that several of these genes are implicated in tumor dependencies thus potentially providing novel therapeutic entry points. In this review, we briefly review the current status of recurrent DNA copy number aberrations in neuroblastoma and provide an overview of the genes affected by these genomic variants for which a direct role in neuroblastoma has been established. Several of these genes are implicated in networks that positively regulate MYCN expression or stability as well as cell cycle control and apoptosis. Finally, we summarize alternative approaches to identify and prioritize candidate copy-number driven dependency genes for neuroblastoma offering novel therapeutic opportunities.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- G087221N, G.0507.12, G049720N,12U4718N, 11C3921N, 11J8313N, 12B5313N, 1514215N, 1197617N,1238420N, 12Q8322N, 3F018519, 12N6917N Fund for Scientific Research Flanders
- 2018-087, 2018-125, 2020-112 Belgian Foundation against Cancer
Collapse
Affiliation(s)
- Bieke Decaesteker
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Kaat Durinck
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Nadine Van Roy
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Bram De Wilde
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Christophe Van Neste
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stéphane Van Haver
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katleen De Preter
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Vanessa Vermeirssen
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Zwijnaarde, Belgium
| | - Frank Speleman
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| |
Collapse
|
9
|
Cui Y, Kang Y, Zhang P, Wang Y, Yang Z, Lu C, Zhang P. Mig-6 could inhibit cell proliferation and induce apoptosis in esophageal squamous cell carcinoma. Thorac Cancer 2021; 13:54-60. [PMID: 34845855 PMCID: PMC8720621 DOI: 10.1111/1759-7714.14223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To investigate the expression and biological functions of mitogen-induced gene 6 (Mig-6) in esophageal squamous cell carcinoma (ESCC). METHODS The expression of Mig-6 in ESCC tissues and normal esophageal epithelial tissues were measured by immunohistochemistry (IHC) assay. MTT test was applied to detect the proliferative ability of ESCC cells after Mig-6 was upregulated by transfection. A fluid cytology assay was used to detect apoptosis of ESCC cells. Agilent whole human genome oligo microarray was used to screen different expressed genes and the possible signaling pathways which might be involved. RESULTS The expression of Mig-6 protein was lower in ESCC tissues compared to normal esophageal epithelial tissues. Mig-6 could restrain the ESCC cell growth and induce cell apoptosis. PPAR, CAMs and MAPK signaling pathways might be involved. CONCLUSIONS Mig-6 might be a new tumor suppressor gene and a possible target for the specific therapy of ESCC.
Collapse
Affiliation(s)
- Yuantao Cui
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Kang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuanguo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhaoyu Yang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Chao Lu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Qazi S, Raza K. In silico approach to understand epigenetics of POTEE in ovarian cancer. J Integr Bioinform 2021; 18:jib-2021-0028. [PMID: 34788504 PMCID: PMC8709732 DOI: 10.1515/jib-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the third leading cause of cancer-related deaths in India. Epigenetics mechanisms seemingly plays an important role in ovarian cancer. This paper highlights the crucial epigenetic changes that occur in POTEE that get hypomethylated in ovarian cancer. We utilized the POTEE paralog mRNA sequence to identify major motifs and also performed its enrichment analysis. We identified 6 motifs of varying lengths, out of which only three motifs, including CTTCCAGCAGATGTGGATCA, GGAACTGCC, and CGCCACATGCAGGC were most likely to be present in the nucleotide sequence of POTEE. By enrichment and occurrences identification analyses, we rectified the best match motif as CTTCCAGCAGATGT. Since there is no experimentally verified structure of POTEE paralog, thus, we predicted the POTEE structure using an automated workflow for template-based modeling using the power of a deep neural network. Additionally, to validate our predicted model we used AlphaFold predicted POTEE structure and observed that the residual stretch starting from 237-958 had a very high confidence per residue. Furthermore, POTEE predicted model stability was evaluated using replica exchange molecular dynamic simulation for 50 ns. Our network-based epigenetic analysis discerns only 10 highly significant, direct, and physical associators of POTEE. Our finding aims to provide new insights about the POTEE paralog.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
11
|
Large 1p36 Deletions Affecting Arid1a Locus Facilitate Mycn-Driven Oncogenesis in Neuroblastoma. Cell Rep 2021; 30:454-464.e5. [PMID: 31940489 PMCID: PMC9022217 DOI: 10.1016/j.celrep.2019.12.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
Loss of heterozygosity (LOH) at 1p36 occurs in multiple cancers, including neuroblastoma (NBL). MYCN amplification and 1p36 deletions tightly correlate with markers of tumor aggressiveness in NBL. Although distal 1p36 losses associate with single-copy MYCN tumors, larger deletions correlate with MYCN amplification, indicating two tumor suppressor regions in 1p36, only one of which facilitates MYCN oncogenesis. To better define this region, we genome-edited the syntenic 1p36 locus in primary mouse neural crest cells (NCCs), a putative NBL cell of origin. In in vitro cell transformation assays, we show that Chd5 loss confers most of the MYCN-independent tumor suppressor effects of 1p36 LOH. In contrast, MYCN-driven tumorigenesis selects for NCCs with Arid1a deletions from a pool of NCCs with randomly sized 1p36 deletions, establishing Arid1a as the MYCN-associated tumor suppressor. Our findings reveal that Arid1a loss collaborates with oncogenic MYCN and better define the tumor suppressor functions of 1p36 LOH in NBL.
Collapse
|
12
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
13
|
Abdulrahim JW, Kwee LC, Grass E, Siegler IC, Williams R, Karra R, Kraus WE, Gregory SG, Shah SH. Epigenome-Wide Association Study for All-Cause Mortality in a Cardiovascular Cohort Identifies Differential Methylation in Castor Zinc Finger 1 ( CASZ1). J Am Heart Assoc 2019; 8:e013228. [PMID: 31642367 PMCID: PMC6898816 DOI: 10.1161/jaha.119.013228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
Background DNA methylation is implicated in many chronic diseases and may contribute to mortality. Therefore, we conducted an epigenome-wide association study (EWAS) for all-cause mortality with whole-transcriptome data in a cardiovascular cohort (CATHGEN [Catheterization Genetics]). Methods and Results Cases were participants with mortality≥7 days postcatheterization whereas controls were alive with≥2 years of follow-up. The Illumina Human Methylation 450K and EPIC arrays (Illumina, San Diego, CA) were used for the discovery and validation sets, respectively. A linear model approach with empirical Bayes estimators adjusted for confounders was used to assess difference in methylation (Δβ). In the discovery set (55 cases, 49 controls), 25 629 (6.5%) probes were differently methylated (P<0.05). In the validation set (108 cases, 108 controls), 3 probes were differentially methylated with a false discovery rate-adjusted P<0.10: cg08215811 (SLC4A9; log2 fold change=-0.14); cg17845532 (MATK; fold change=-0.26); and cg17944110 (castor zinc finger 1 [CASZ1]; FC=0.26; P<0.0001; false discovery rate-adjusted P=0.046-0.080). Meta-analysis identified 6 probes (false discovery rate-adjusted P<0.05): the 3 above, cg20428720 (intergenic), cg17647904 (NCOR2), and cg23198793 (CAPN3). Messenger RNA expression of 2 MATK isoforms was lower in cases (fold change=-0.24 [P=0.007] and fold change=-0.61 [P=0.009]). The CASZ1, NCOR2, and CAPN3 transcripts did not show differential expression (P>0.05); the SLC4A9 transcript did not pass quality control. The cg17944110 probe is located within a potential regulatory element; expression of predicted targets (using GeneHancer) of the regulatory element, UBIAD1 (P=0.01) and CLSTN1 (P=0.03), were lower in cases. Conclusions We identified 6 novel methylation sites associated with all-cause mortality. Methylation in CASZ1 may serve as a regulatory element associated with mortality in cardiovascular patients. Larger studies are necessary to confirm these observations.
Collapse
Affiliation(s)
- Jawan W. Abdulrahim
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Lydia Coulter Kwee
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Elizabeth Grass
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Ilene C. Siegler
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC
| | - Redford Williams
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC
| | - Ravi Karra
- Division of CardiologyDepartment of MedicineDuke University School of MedicineDurhamNC
| | - William E. Kraus
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
- Division of CardiologyDepartment of MedicineDuke University School of MedicineDurhamNC
| | - Simon G. Gregory
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
| | - Svati H. Shah
- Duke Molecular Physiology InstituteDuke University School of MedicineDuke UniversityDurhamNC
- Division of CardiologyDepartment of MedicineDuke University School of MedicineDurhamNC
| |
Collapse
|
14
|
Memarzadeh K, Savage DJ, Bean AJ. Low UBE4B expression increases sensitivity of chemoresistant neuroblastoma cells to EGFR and STAT5 inhibition. Cancer Biol Ther 2019; 20:1416-1429. [PMID: 31475882 PMCID: PMC6804809 DOI: 10.1080/15384047.2019.1647049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common malignancy in infants. Overexpression of the epidermal growth factor receptor (EGFR) in neuroblastoma tumors underlies resistance to chemotherapeutics. UBE4B, an E3/E4 ubiquitin ligase involved in EGFR degradation, is located on chromosome 1p36, a region in which loss of heterozygosity is observed in approximately one-third of neuroblastoma tumors and is correlated with poor prognosis. In chemoresistant neuroblastoma cells, depletion of UBE4B yielded significantly reduced cell proliferation and migration, and enhanced apoptosis in response to EGFR inhibitor, Cetuximab. We have previously shown that UBE4B levels are inversely correlated with EGFR levels in neuroblastoma tumors. We searched for additional targets of UBE4B that mediate cellular alterations associated with tumorogenesis in chemoresistant neuroblastoma cells depleted of UBE4B using reverse phase protein arrays. The expression of STAT5a, an effector protein downstream of EGFR, doubled in the absence of UBE4B, and verified by quantitative immunoblotting. Chemoresistant neuroblastoma cells were treated with SH-4-54, a STAT5 inhibitor, and observed insignificant effects on cell proliferation, migration, and apoptosis. However, SH-4-54 significantly enhanced the anti-proliferative and anti-migratory effects of Cetuximab in naïve SK-N-AS neuroblastoma cells. Interestingly, in UBE4B depleted SK-N-AS cells, SH-4-54 significantly potentiated the effect of Cetuximab rendering cells increasingly sensitive an otherwise minimally effective Cetuximab concentration. Thus, neuroblastoma cells with low UBE4B levels were significantly more sensitive to combined EGFR and STAT5 inhibition than parental cells. These findings may have potential therapeutic implications for patients with 1p36 chromosome LOH and low tumor UBE4B expression.
Collapse
Affiliation(s)
- Kimiya Memarzadeh
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David J. Savage
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew J. Bean
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
- Program in Neuroscience, Cell Biology and Biochemistry, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Jubierre L, Jiménez C, Rovira E, Soriano A, Sábado C, Gros L, Llort A, Hladun R, Roma J, Toledo JSD, Gallego S, Segura MF. Targeting of epigenetic regulators in neuroblastoma. Exp Mol Med 2018; 50:1-12. [PMID: 29700278 PMCID: PMC5938021 DOI: 10.1038/s12276-018-0077-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/13/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Approximately 15,000 new cases of pediatric cancer are diagnosed yearly in Europe, with 8–10% corresponding to neuroblastoma, a rare disease with an incidence of 8–9 cases per million children <15 years of age. Although the survival rate for low-risk and intermediate-risk patients is excellent, half of children with high-risk, refractory, or relapsed tumors will be cured, and two-thirds of the other half will suffer major side effects and life-long disabilities. Epigenetic therapies aimed at reversing the oncogenic alterations in chromatin structure and function are an emerging alternative against aggressive tumors that are or will become resistant to conventional treatments. This approach proposes targeting epigenetic regulators, which are proteins that are involved in the creation, detection, and interpretation of epigenetic signals, such as methylation or histone post-translational modifications. In this review, we focused on the most promising epigenetic regulators for targeting and current drugs that have already reached clinical trials. Treatments that target chromatin, the combination of DNA and proteins, are emerging as alternative ways to treat aggressive neuroblastomas, cancers of neural tissue. Altering the structure and function of chromatin is a form of “epigenetic therapy”, treatment that affects inheritable molecular signals controlling the activity of genes, rather than targeting the genes directly. Researchers in Spain led by Miguel Segura at the Vall d’Hebron Research Institute in Barcelona review progress in developing epigenetic therapies for neuroblastomas. A growing body of fundamental research and evidence from clinical trials suggest this approach could open promising new avenues to treating aggressive and drug-resistant cancers. The authors recommend an increased effort to identify and explore the activities of small molecules that could form the basis of effective epigenetic therapies for various cancers.
Collapse
Affiliation(s)
- Luz Jubierre
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Eric Rovira
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Constantino Sábado
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Luis Gros
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Anna Llort
- Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Raquel Hladun
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.,Vall d'Hebron Hospital, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
16
|
Whole exome sequencing identified sixty-five coding mutations in four neuroblastoma tumors. Sci Rep 2017; 7:17787. [PMID: 29259192 PMCID: PMC5736554 DOI: 10.1038/s41598-017-17162-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is a pediatric tumor characterized by histologic heterogeneity, and accounts for ~15% of childhood deaths from cancer. The five-year survival for patients with high-risk stage 4 disease has not improved in two decades. We used whole exome sequencing (WES) to identify mutations present in three independent high-risk stage 4 neuroblastoma tumors (COA/UAB-3, COA/UAB -6 and COA/UAB -8) and a stage 3 tumor (COA/UAB-14). Among the four tumors WES analysis identified forty-three mutations that had not been reported previously, one of which was present in two of the four tumors. WES analysis also corroborated twenty-two mutations that were reported previously. No single mutation occurred in all four tumors or in all stage 4 tumors. Three of the four tumors harbored genes with CADD scores ≥20, indicative of mutations associated with human pathologies. The average depth of coverage ranged from 39.68 to 90.27, with >99% sequences mapping to the genome. In summary, WES identified sixty-five coding mutations including forty-three mutations not reported previously in primary neuroblastoma tumors. The three stage 4 tumors contained mutations in genes encoding protein products that regulate immune function or cell adhesion and tumor cell metastasis.
Collapse
|
17
|
Abstract
Merkel cell carcinoma (MCC) is an uncommon relatively aggressive neuroendocrine dermal neoplasm first described in 1972 as a tumor of the sun exposed skin. Although most MCC affect the skin of the head and neck, rare primarily oral mucosal cases have been documented. Merkel cells are nondendritic neuroendocrine cells that are found not only in the skin but also the oral mucosa and give rise to MCC. Neuroendocrine cells may be found as aggregates in organs or as diffuse or isolated cells within organs and their epithelial lining. They contain peptide hormones and biogenic amines and occur in two forms: dendritic, which are not associated with nerve fibers and non-dendritic, which are associated with nerve fibers. Merkel cells as well as MCC express simple epithelium-type Cytokeratins (8, 18, 19, 20), neurosecretory substances; chromogranin A, synaptophysin, neuron-specific enolase (NSE), adhesion molecules, and villin (intermediate filament). Though weakly, they also express neural markers such as S-100 protein. Cytokeratin 20, and Cluster of differentiation 56, are the two key diagnostic markers for Merkel cells and MCC. Etiology includes UV radiation, the recently described Merkel cell polyomavirus, and long term systemic immunosuppression. The cutaneous and mucosal variants of MCC are considered aggressive tumors with a high risk for local recurrence and metastasis and should be considered in the differential diagnosis of head and neck mucosal lesions. We present two cases of primary Merkel cell carcinoma, one on the buccal mucosa and the other on the lower lip, and discuss the salient histologic, immunohistochemical and clinical features.
Collapse
|
18
|
Cao Y, Jin Y, Yu J, Wang J, Yan J, Zhao Q. Research progress of neuroblastoma related gene variations. Oncotarget 2017; 8:18444-18455. [PMID: 28055978 PMCID: PMC5392342 DOI: 10.18632/oncotarget.14408] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor among children, is an embryonal tumor originating from undifferentiated neural crest cell. Neuroblastomas are highly heterogeneous, represented by the wide range of clinical presentations and likelihood of cure, ranging from spontaneous regression to relentless progression despite rigorous multimodal treatments. Approximately, 50% of cases are high-risk with overall survival rates less than 40%. With the efforts to collect large numbers of clinically annotated specimens and the advancements in technologies, researchers have revealed numerous genetic alterations that may drive tumor growth. However, the most lack mutations in genes that are recurrently mutated, which inspires researchers to identify disrupted pathways instead of single mutated genes to unearth biological systems perturbed in neuroblastoma. Stratification of patients and target therapy based on their molecular signatures have been the center of focus. This review provides a comprehensive summary of the recent advances in identification of candidate genes variations, targeted approaches to high-risk neuroblastoma and evaluates the methods utilized for detection, which will provide new avenues to develop therapies and further genetic researches.
Collapse
Affiliation(s)
- Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Jingfu Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| |
Collapse
|
19
|
Deconvolution of DNA methylation identifies differentially methylated gene regions on 1p36 across breast cancer subtypes. Sci Rep 2017; 7:11594. [PMID: 28912426 PMCID: PMC5599639 DOI: 10.1038/s41598-017-10199-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a complex disease consisting of four distinct molecular subtypes. DNA methylation-based (DNAm) studies in tumors are complicated further by disease heterogeneity. In the present study, we compared DNAm in breast tumors with normal-adjacent breast samples from The Cancer Genome Atlas (TCGA). We constructed models stratified by tumor stage and PAM50 molecular subtype and performed cell-type reference-free deconvolution to control for cellular heterogeneity. We identified nineteen differentially methylated gene regions (DMGRs) in early stage tumors across eleven genes (AGRN, C1orf170, FAM41C, FLJ39609, HES4, ISG15, KLHL17, NOC2L, PLEKHN1, SAMD11, WASH5P). These regions were consistently differentially methylated in every subtype and all implicated genes are localized to the chromosomal cytoband 1p36.3. Seventeen of these DMGRs were independently validated in a similar analysis of an external data set. The identification and validation of shared DNAm alterations across tumor subtypes in early stage tumors advances our understanding of common biology underlying breast carcinogenesis and may contribute to biomarker development. We also discuss evidence of the specific importance and potential function of 1p36 in cancer.
Collapse
|
20
|
Sun Y, Ji P, Chen T, Zhou X, Yang D, Guo Y, Liu Y, Hu L, Xia D, Liu Y, Multani AS, Shmulevich I, Kucherlapati R, Kopetz S, Sood AK, Hamilton SR, Sun B, Zhang W. MIIP haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. J Pathol 2016; 241:67-79. [PMID: 27741356 DOI: 10.1002/path.4823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tao Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dianren Xia
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanxue Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Raju Kucherlapati
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stanley R Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 20174, USA
| |
Collapse
|
21
|
Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. MOLECULAR AND CELLULAR THERAPIES 2016; 4:2. [PMID: 26877878 PMCID: PMC4751644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/25/2016] [Indexed: 11/21/2023]
Abstract
This review is focused in PI3K's involvement in two widespread mental disorders: Autism and Schizophrenia. A large body of evidence points to synaptic dysfunction as a cause of these diseases, either during the initial phases of brain synaptic circuit's development or later modulating synaptic function and plasticity. Autism related disorders and Schizophrenia are complex genetic conditions in which the identification of gene markers has proved difficult, although the existence of single-gene mutations with a high prevalence in both diseases offers insight into the role of the PI3K signaling pathway. In the brain, components of the PI3K pathway regulate synaptic formation and plasticity; thus, disruption of this pathway leads to synapse dysfunction and pathological behaviors. Here, we recapitulate recent evidences that demonstrate the imbalance of several PI3K elements as leading causes of Autism and Schizophrenia, together with the plausible new pharmacological paths targeting this signaling pathway.
Collapse
Affiliation(s)
- Lilian Enriquez-Barreto
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Morales
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. MOLECULAR AND CELLULAR THERAPIES 2016; 4:2. [PMID: 26877878 PMCID: PMC4751644 DOI: 10.1186/s40591-016-0047-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/25/2016] [Indexed: 01/01/2023]
Abstract
This review is focused in PI3K’s involvement in two widespread mental disorders: Autism and Schizophrenia. A large body of evidence points to synaptic dysfunction as a cause of these diseases, either during the initial phases of brain synaptic circuit’s development or later modulating synaptic function and plasticity. Autism related disorders and Schizophrenia are complex genetic conditions in which the identification of gene markers has proved difficult, although the existence of single-gene mutations with a high prevalence in both diseases offers insight into the role of the PI3K signaling pathway. In the brain, components of the PI3K pathway regulate synaptic formation and plasticity; thus, disruption of this pathway leads to synapse dysfunction and pathological behaviors. Here, we recapitulate recent evidences that demonstrate the imbalance of several PI3K elements as leading causes of Autism and Schizophrenia, together with the plausible new pharmacological paths targeting this signaling pathway.
Collapse
Affiliation(s)
- Lilian Enriquez-Barreto
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Morales
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Olsson M, Beck S, Kogner P, Martinsson T, Carén H. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics 2016; 11:74-84. [PMID: 26786290 PMCID: PMC4846113 DOI: 10.1080/15592294.2016.1138195] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development.
Collapse
Affiliation(s)
- Maja Olsson
- a Sahlgrenska Cancer Center , Department of Pathology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Sweden
| | - Stephan Beck
- b Department of Cancer Biology , UCL Cancer Institute, University College London , UK
| | - Per Kogner
- c Childhood Cancer Research Unit , Department of Woman and Child Health , Karolinska Institute, Karolinska Hospital , Sweden
| | - Tommy Martinsson
- d Department of Clinical Genetics , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Sweden
| | - Helena Carén
- a Sahlgrenska Cancer Center , Department of Pathology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Sweden
| |
Collapse
|
24
|
Anastasi S, Lamberti D, Alemà S, Segatto O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin Cell Dev Biol 2015; 50:115-24. [PMID: 26456277 DOI: 10.1016/j.semcdb.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
The ErbB signaling network instructs the execution of key cellular programs, such as cell survival, proliferation and motility, through the generation of robust signals of defined strength and duration. In contrast, unabated ErbB signaling disrupts tissue homeostasis and leads to cell transformation. Cells oppose the threat inherent in excessive ErbB activity through several mechanisms of negative feedback regulation. Inducible feedback inhibitors (IFIs) are expressed in the context of transcriptional responses triggered by ErbB signaling, thus being uniquely suited to regulate ErbB activity during the execution of complex cellular programs. This review focuses on MIG6, an IFI that restrains ErbB signaling by mediating ErbB kinase suppression and receptor down-regulation. We will review key issues in MIG6 function, regulation and tumor suppressor activity. Subsequently, the role for MIG6 loss in the pathogenesis of tumors driven by ErbB oncogenes as well as in the generation of cellular addiction to ErbB signaling will be discussed. We will conclude by analyzing feedback inhibition by MIG6 in the context of therapies directed against ErbB and non-ErbB oncogenes.
Collapse
Affiliation(s)
- Sergio Anastasi
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Dante Lamberti
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Stefano Alemà
- Institute of Cell Biology and Neurobiology, CNR, 00016 Monterotondo, Italy.
| | - Oreste Segatto
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| |
Collapse
|
25
|
Hedberg Oldfors C, Dios DG, Linder A, Visuttijai K, Samuelson E, Karlsson S, Nilsson S, Behboudi A. Analysis of an independent tumor suppressor locus telomeric to Tp53 suggested Inpp5k and Myo1c as novel tumor suppressor gene candidates in this region. BMC Genet 2015; 16:80. [PMID: 26170120 PMCID: PMC4501283 DOI: 10.1186/s12863-015-0238-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 01/26/2023] Open
Abstract
Background Several reports indicate a commonly deleted chromosomal region independent from, and distal to the TP53 locus in a variety of human tumors. In a previous study, we reported a similar finding in a rat tumor model for endometrial carcinoma (EC) and through developing a deletion map, narrowed the candidate region to 700 kb, harboring 19 genes. In the present work real-time qPCR analysis, Western blot, semi-quantitative qPCR, sequencing, promoter methylation analysis, and epigenetic gene expression restoration analyses (5-aza-2´-deoxycytidine and/or trichostatin A treatments) were used to analyze the 19 genes located within the candidate region in a panel of experimental tumors compared to control samples. Results Real-time qPCR analysis suggested Hic1 (hypermethylated in cancer 1), Inpp5k (inositol polyphosphate-5-phosphatase K; a.k.a. Skip, skeletal muscle and kidney enriched inositol phosphatase) and Myo1c (myosin 1c) as the best targets for the observed deletions. No mutation in coding sequences of these genes was detected, hence the observed low expression levels suggest a haploinsufficient mode of function for these potential tumor suppressor genes. Both Inpp5k and Myo1c were down regulated at mRNA and/or protein levels, which could be rescued in gene expression restoration assays. This could not be shown for Hic1. Conclusion Innp5k and Myo1c were identified as the best targets for the deletions in the region. INPP5K and MYO1C are located adjacent to each other within the reported independent region of tumor suppressor activity located at chromosome arm 17p distal to TP53 in human tumors. There is no earlier report on the potential tumor suppressor activity of INPP5K and MYO1C, however, overlapping roles in phosphoinositide (PI) 3-kinase/Akt signaling, known to be vital for the cell growth and survival, are reported for both. Moreover, there are reports on tumor suppressor activity of other members of the gene families that INPP5K and MYO1C belong to. Functional significance of these two candidate tumor suppressor genes in cancerogenesis pathways remains to be investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0238-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carola Hedberg Oldfors
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Diego Garcia Dios
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Anna Linder
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Kittichate Visuttijai
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden. .,Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| | - Emma Samuelson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Sandra Karlsson
- Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| | - Staffan Nilsson
- Institute of Mathematical Statistics, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
| | - Afrouz Behboudi
- Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| |
Collapse
|
26
|
Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 2015; 4:20-32. [PMID: 26835356 PMCID: PMC4729069 DOI: 10.3978/j.issn.2224-4336.2015.01.04] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies.
Collapse
|
27
|
Chan AWH, Tong JHM, Sung MYM, Lai PBS, To KF. Epstein-Barr virus-associated lymphoepithelioma-like cholangiocarcinoma: a rare variant of intrahepatic cholangiocarcinoma with favourable outcome. Histopathology 2014; 65:674-83. [PMID: 24804938 DOI: 10.1111/his.12455] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023]
Abstract
AIMS Lymphoepithelioma-like cholangiocarcinoma (LELCC) is a rare variant of intrahepatic cholangiocarcinoma (IHCC). Only 16 cases have reported previously in the literature, and about 62.5% of these cases were associated with Epstein-Barr virus (EBV). METHODS AND RESULTS We present the largest series (seven cases) of LELCC with descriptions of clinical and pathological characteristics, investigations of aberrant DNA methylation and mutation analyses of EGFR and KRAS. The evaluation also included 11 cases of stage-matched conventional IHCC for comparison. RESULTS All seven patients of LELCC were female and had stage I disease. LELCC had significantly better 2- and 5-year overall survival than IHCC (100% versus 52.8%, and 100% versus 13.2%, respectively, P = 0.003). All seven LELCCs were EBV-associated and composed exclusively of adenocarcinoma with varied glandular differentiation, dense lymphoplasmacytic infiltrate, and variable expression of biliary-type cytokeratins (CK7 and CK19) and stemness markers (CD133 and EpCAM). Gene hypermethylation was more frequent in LELCC than IHCC. CRBPI (85.7% versus 9.1%, P < 0.003) and CRBPIV (85.7% versus 0%, P < 0.001) showed statistically higher methylation frequencies in LELCC than IHCC. No LELCC harboured any EGFR or KRAS mutation. CONCLUSION Epstein-Barr virus-associated LELCC is a variant of IHCC, characterized by marked female predominance, favourable overall survival and distinctively frequent DNA hypermethylation.
Collapse
Affiliation(s)
- Anthony W H Chan
- State Key Laboratory in Oncology in South China, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | |
Collapse
|
28
|
ZENG LIANG, FEE BRIANE, RIVAS MIRIAMV, LIN JAMES, ADAMSON DAVIDCORY. Adherens junctional associated protein-1: A novel 1p36 tumor suppressor candidate in gliomas. Int J Oncol 2014; 45:13-7. [DOI: 10.3892/ijo.2014.2425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
|
29
|
Fyffe C, Falasca M. 3-Phosphoinositide-dependent protein kinase-1 as an emerging target in the management of breast cancer. Cancer Manag Res 2013; 5:271-80. [PMID: 24039447 PMCID: PMC3771848 DOI: 10.2147/cmar.s35026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It should be noted that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is a protein encoded by the PDPK1 gene, which plays a key role in the signaling pathways activated by several growth factors and hormones. PDK1 is a crucial kinase that functions downstream of phosphoinositide 3-kinase activation and activates members of the AGC family of protein kinases, such as protein kinase B (Akt), protein kinase C (PKC), p70 ribosomal protein S6 kinases, and serum glucocorticoid-dependent kinase, by phosphorylating serine/threonine residues in the activation loop. AGC kinases are known to play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation, and survival. Changes in the expression and activity of PDK1 and several AGC kinases have been linked to human diseases including cancer. Recent data have revealed that the alteration of PDK1 is a critical component of oncogenic phosphoinositide 3-kinase signaling in breast cancer, suggesting that inhibition of PDK1 can inhibit breast cancer progression. Indeed, PDK1 is highly expressed in a majority of human breast cancer cell lines and both PDK1 protein and messenger ribonucleic acid are overexpressed in a majority of human breast cancers. Furthermore, overexpression of PDK1 is sufficient to transform mammary epithelial cells. PDK1 plays an essential role in regulating cell migration, especially in the context of phosphatase and tensin homologue deficiency. More importantly, downregulation of PDK1 levels inhibits migration and experimental metastasis of human breast cancer cells. Thus, targeting PDK1 may be a valuable anticancer strategy that may improve the efficacy of chemotherapeutic strategies in breast cancer patients. In this review, we summarize the evidence that has been reported to support the idea that PDK1 may be a key target in breast cancer management.
Collapse
Affiliation(s)
- Chanse Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signallling Group, London, UK
| | | |
Collapse
|
30
|
Fransson S, Kogner P, Martinsson T, Ejeskär K. Aggressive neuroblastomas have high p110alpha but low p110delta and p55alpha/p50alpha protein levels compared to low stage neuroblastomas. J Mol Signal 2013; 8:4. [PMID: 23597230 PMCID: PMC3639884 DOI: 10.1186/1750-2187-8-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phosphoinositide 3-kinase (PI3K)/Akt pathway is involved in neuroblastoma development where Akt/PKB activation is associated with poor prognosis. PI3K activity subsequently activates Akt/PKB, and as mutations of PI3K are rare in neuroblastoma and high levels of PI3K subunit p110delta is associated with favorable disease with low p-Akt/PKB, the levels of other PI3K subunits could be important for Akt activation. METHODS Protein levels of Type IA PI3K catalytic and regulatory subunits were investigated together with levels of phosphorylated Akt/PKB and the PI3K negative regulator PTEN in primary neuroblastoma tumors. Relation between clinical markers and protein levels were evaluated through t-tests. RESULTS We found high levels of p-Akt/PKB correlating to aggressive disease and p-Akt/PKB (T308) showed inverse correlation to PTEN levels. The regulatory isomers p55alpha/p50alpha showed higher levels in favorable neuroblastoma as compared with aggressive neuroblastoma. The PI3K-subunit p110alpha was found mainly in advanced tumors while p110delta showed higher levels in favorable neuroblastoma. CONCLUSIONS Activation of the PI3K/Akt pathway is seen in neuroblastoma tumors, however the contribution of the different PI3K isoforms is unknown. Here we show that p110alpha is preferentially expressed in aggressive neuroblastomas, with high p-Akt/PKB and p110delta is mainly detected in favorable neuroblastomas, with low p-Akt/PKB. This is an important finding as PI3K-specific inhibitors are suggested for enrollment in treatment of neuroblastoma patients.
Collapse
Affiliation(s)
- Susanne Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
31
|
Giudice FS, Squarize CH. The determinants of head and neck cancer: Unmasking the PI3K pathway mutations. ACTA ACUST UNITED AC 2013; Suppl 5. [PMID: 25126449 DOI: 10.4172/2157-2518.s5-003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies attempting to identify and understand the function of mutated genes and deregulated molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA mutations are found 11%-33% of head and neck cancer (HNC). The hotspot mutation sites for PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9-23% of HNC, and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of heterozygosity (LOH) ranges from 41%-71% and loss of PTEN protein expression occurs in 31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR signaling pathway. In this review, we provided a comprehensive overview of mutations in the PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2, PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations may affect protein structure and function. We also highlight the latest discoveries in protein kinase and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K signaling. A better understanding of the mechanisms underlying cancer formation, progression and resistance to therapy will inform selection of novel genomic-based personalized therapies for head and neck cancer patients.
Collapse
Affiliation(s)
- Fernanda S Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA ; International Research Center, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA
| |
Collapse
|
32
|
Fransson S, Abel F, Kogner P, Martinsson T, Ejeskär K. Stage-dependent expression of PI3K/Akt‑pathway genes in neuroblastoma. Int J Oncol 2012; 42:609-16. [PMID: 23232578 DOI: 10.3892/ijo.2012.1732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/05/2012] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide-3 kinase (PI3K) pathway plays a critical role in cancer cell growth and survival and has also been implicated in the development of the childhood cancer neuroblastoma. In neuroblastoma high mRNA expression of the PI3K catalytic isoform PIK3CD is associated to favorable disease. Yet, activation of Akt is associated with poor prognosis. Since the contribution of the numerous members of this pathway to neuroblastoma pathogenesis is mainly unknown, genes of the PI3K/Akt pathway were analyzed at the mRNA level through microarrays and quantitative real-time RT-PCR (TaqMan) and at the protein level using western blot analysis. Five genes showed lower mRNA expression in aggressive compared to more favorable neuroblastomas (PRKCZ, PRKCB1, EIF4EBP1, PIK3RI and PIK3CD) while the opposite was seen for PDGFRA. Clustering analysis shows that the expression levels of these six genes can predict aggressive disease. At the protein level, p110δ (encoded by PIK3CD) and p85α isomers (encoded by PIK3R1) were more highly expressed in favorable compared to aggressive neuroblastoma. Evaluation of the expression of these PI3K genes can predict aggressive disease, and indicates stage-dependent involvement of PI3K-pathway members in neuroblastoma.
Collapse
Affiliation(s)
- Susanne Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G, Shahryari V, Saini S, Hirata H, Ueno K, Chang I, Tanaka Y, Tabatabai ZL, Enokida H, Nakagawa M, Dahiya R. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS One 2012; 7:e43812. [PMID: 22928040 PMCID: PMC3426544 DOI: 10.1371/journal.pone.0043812] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
Abstract
Genistein has been shown to suppress the growth of several cancers through modulation of various pathways. However, the effects of genistein on the regulation of oncogenic microRNA-151 (miR-151) have not been reported. In this study, we investigated whether genistein could alter the expression of oncogenic miR-151 and its target genes that are involved in the progression and metastasis of prostate cancer (PCa). Real-time RT-PCR showed that the expression of miR-151 was higher in PC3 and DU145 cells compared with RWPE-1 cells. Treatment of PC3 and DU145 cells with 25 µM genistein down-regulated the expression of miR-151 compared with vehicle control. Inhibition of miR-151 in PCa cells by genistein significantly inhibited cell migration and invasion. In-silico analysis showed that several genes (CASZ1, IL1RAPL1, SOX17, N4BP1 and ARHGDIA) suggested to have tumor suppressive functions were target genes of miR-151. Luciferase reporter assays indicated that miR-151 directly binds to specific sites on the 3′UTR of target genes. Quantitative real-time PCR analysis showed that the mRNA expression levels of the five target genes in PC3 and DU145 were markedly changed with miR-151 mimics and inhibitor. Kaplan-Meier curves and log-rank tests revealed that high expression levels of miR-151 had an adverse effect on survival rate. This study suggests that genistein mediated suppression of oncogenic miRNAs can be an important dietary therapeutic strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Takeshi Chiyomaru
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Mohd Saif Zaman
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Shahana Majid
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Guoren Deng
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Varahram Shahryari
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Sharanjot Saini
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Hiroshi Hirata
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Koji Ueno
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Inik Chang
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Yuichiro Tanaka
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Z. Laura Tabatabai
- Department of Pathology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Djos A, Martinsson T, Kogner P, Carén H. The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol Cancer 2012; 11:40. [PMID: 22695170 PMCID: PMC3493266 DOI: 10.1186/1476-4598-11-40] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/30/2012] [Indexed: 12/11/2022] Open
Abstract
Background Hypermethylation of promotor CpG islands is a common mechanism that inactivates tumor suppressor genes in cancer. Genes belonging to the RASSF gene family have frequently been reported as epigenetically silenced by promotor methylation in human cancers. Two members of this gene family, RASSF1A and RASSF5A have been reported as methylated in neuroblastoma. Data from our previously performed genome-wide DNA methylation array analysis indicated that other members of the RASSF gene family are targeted by DNA methylation in neuroblastoma. Results In the current study, we found that several of the RASSF family genes (RASSF2, RASSF4, RASSF5, RASSF6, RASSF7, and RASSF10) to various degrees were methylated in neuroblastoma cell lines and primary tumors. In addition, several of the RASSF family genes showed low or absent mRNA expression in neuroblastoma cell lines. RASSF5 and RASSF6 were to various degrees methylated in a large portion of neuroblastoma tumors and RASSF7 was heavily methylated in most tumors. Further, CpG methylation sites in the CpG islands of some RASSF family members could be used to significantly discriminate between biological subgroups of neuroblastoma tumors. For example, RASSF5 methylation highly correlated to MYCN amplification and INRG stage M. Furthermore, high methylation of RASSF6 was correlated to unfavorable outcome, 1p deletion and MYCN amplification in our tumor material. In conclusion This study shows that several genes belonging to the RASSF gene family are methylated in neuroblastoma. The genes RASSF5, RASSF6 and RASSF7 stand out as the most promising candidate genes for further investigations in neuroblastoma.
Collapse
Affiliation(s)
- Anna Djos
- Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | | | | | | |
Collapse
|
36
|
Cancer-type regulation of MIG-6 expression by inhibitors of methylation and histone deacetylation. PLoS One 2012; 7:e38955. [PMID: 22701735 PMCID: PMC3373526 DOI: 10.1371/journal.pone.0038955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma.
Collapse
|
37
|
Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A 2012; 109:12165-70. [PMID: 22689948 DOI: 10.1073/pnas.1206118109] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.
Collapse
|
38
|
Jeison M, Yaniv I, Ash S. Genetic stratification of neuroblastoma for treatment tailoring. Future Oncol 2012; 7:1087-99. [PMID: 21919696 DOI: 10.2217/fon.11.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is the most common extracranial tumor of childhood. The clinical behavior is variable, ranging from spontaneous regression to fatal progression despite aggressive therapy. The most highly statistically significant and clinically relevant factors that are currently used for classification include stage, age, histopathologic category, MYCN oncogene status, chromosome 11q status and DNA ploidy. These genetic markers were analyzed separately by classical methods until recently: mainly fluorescence in situ hybridization or loss of heterozygosity. The development of genome-wide techniques such as comparative genomic hybridization, array comparative genomic hybridization and single nucleotide polymorphism allows the analysis of copy number variations through the whole genome in one step. This enabled the investigators to refine different genetic subtypes for the better comprehension of neuroblastoma tumor behavior and reach the conclusion that these data together with a genomic profile based on gene expression should be included in future treatment stratification.
Collapse
Affiliation(s)
- Marta Jeison
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | |
Collapse
|
39
|
Wang C, Liu Z, Woo CW, Li Z, Wang L, Wei JS, Marquez VE, Bates SE, Jin Q, Khan J, Ge K, Thiele CJ. EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res 2011; 72:315-24. [PMID: 22068036 DOI: 10.1158/0008-5472.can-11-0961] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor with an undifferentiated status and generally poor prognosis, but the basis for these characteristics remains unknown. In this study, we show that upregulation of the Polycomb protein histone methyltransferase EZH2, which limits differentiation in many tissues, is critical to maintain the undifferentiated state and poor prognostic status of NB by epigenetic repression of multiple tumor suppressor genes. We identified this role for EZH2 by examining the regulation of CASZ1, a recently identified NB tumor suppressor gene whose ectopic restoration inhibits NB cell growth and induces differentiation. Reducing EZH2 expression by RNA interference-mediated knockdown or pharmacologic inhibiton with 3-deazaneplanocin A increased CASZ1 expression, inhibited NB cell growth, and induced neurite extension. Similarly, EZH2(-/-) mouse embryonic fibroblasts (MEF) displayed 3-fold higher levels of CASZ1 mRNA compared with EZH2(+/+) MEFs. In cells with increased expression of CASZ1, treatment with histone deacetylase (HDAC) inhibitor decreased expression of EZH2 and the Polycomb Repressor complex component SUZ12. Under steady-state conditions, H3K27me3 and PRC2 components bound to the CASZ1 gene were enriched, but this enrichment was decreased after HDAC inhibitor treatment. We determined that the tumor suppressors CLU, NGFR, and RUNX3 were also directly repressed by EZH2 like CASZ1 in NB cells. Together, our findings establish that aberrant upregulation of EZH2 in NB cells silences several tumor suppressors, which contribute to the genesis and maintenance of the undifferentiated phenotype of NB tumors.
Collapse
Affiliation(s)
- Chunxi Wang
- Cell & Molecular Biology Section, National Cancer Institute, NIH, Bethesda, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, Bergo M, Ejeskär K. p37δ is a new isoform of PI3K p110δ that increases cell proliferation and is overexpressed in tumors. Oncogene 2011; 31:3277-86. [PMID: 22020336 DOI: 10.1038/onc.2011.492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phosphatidylinositol 3-kinases (PI3Ks) regulate cell growth, proliferation and survival, and are frequently affected in human cancer. PI3K is composed of a catalytic subunit, p110, and a regulatory subunit, p85. The PI3K catalytic subunit p110δ is encoded by PIK3CD and contains p85- and RAS-binding domains, and a kinase domain. Here we present an alternatively spliced PIK3CD transcript encoding a previously unknown protein, p37δ, and demonstrate that this protein is expressed in human ovarian and colorectal tumors. p37δ retains the p85-binding domain and a fraction of the RAS-binding domain, lacks the catalytic domain, and has a unique carboxyl-terminal region. In contrast to p110δ, which stabilizes p85, p37δ promoted p85 sequestering. Despite the truncated RAS-binding domain, p37δ bound to RAS and we found a strong positive correlation between the protein levels of p37δ and RAS. Overexpressing p37δ, but not p110δ, increased the proliferation and invasive properties of HEK-293 cells and mouse embryonic fibroblasts. Cells overexpressing p37δ showed a quicker phosphorylation response of AKT and ERK1/2 following serum stimulation. Ubiquitous expression of human p37δ in the fruit fly increased body size, DNA content and phosphorylated ERK1/2 levels. Thus, p37δ appears to be a new tumor-specific isoform of p110δ with growth-promoting properties.
Collapse
Affiliation(s)
- S Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Duhoux FP, Ameye G, Lambot V, Herens C, Lambert F, Raynaud S, Wlodarska I, Michaux L, Roche-Lestienne C, Labis E, Taviaux S, Chapiro E, Nguyen-Khac F, Khac FN, Struski S, Dobbelstein S, Dastugue N, Lippert E, Speleman F, Van Roy N, De Weer A, Rack K, Talmant P, Richebourg S, Mugneret F, Tigaud I, Mozziconacci MJ, Laibe S, Nadal N, Terré C, Libouton JM, Decottignies A, Vikkula M, Poirel HA. Refinement of 1p36 alterations not involving PRDM16 in myeloid and lymphoid malignancies. PLoS One 2011; 6:e26311. [PMID: 22039459 PMCID: PMC3198844 DOI: 10.1371/journal.pone.0026311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023] Open
Abstract
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis.
Collapse
Affiliation(s)
- Francois P Duhoux
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li Z, Dong Q, Wang Y, Qu L, Qiu X, Wang E. Downregulation of Mig-6 in nonsmall-cell lung cancer is associated with EGFR signaling. Mol Carcinog 2011; 51:522-34. [PMID: 21739478 DOI: 10.1002/mc.20815] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 11/06/2022]
Abstract
Downregulation of Mig-6 expression has been implicated in several human cancers and its loss can lead to prolonged activation of EGFR and carcinogenesis. The present study aimed to investigate the clinical significance of loss of Mig-6 expression in nonsmall-cell lung cancer (NSCLC) and the biological functions of Mig-6 in NSCLC cell lines. Mig-6 expression was downregulated in 47/91 (51.6%) cases of NSCLC that were examined. Mig-6 downregulation significantly correlated with poor differentiation (P = 0.0131), histological type (P = 0.0021), and EGFR expression (P = 0.003). In addition, knockdown of Mig-6 expression in H1299 and BE1 cells promoted EGF-induced tumor cell proliferation and migration. Furthermore, Mig-6 knockdown led to a significant increase in phospho-AKT, phospho-ERK, phospho-EGFR as well as MMP-2 and MMP-9 levels. These results indicate that downregulated Mig-6 in NSCLC tissues may serve as a new marker that can predict the activation of EGFR signaling pathway.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Carén H, Djos A, Nethander M, Sjöberg RM, Kogner P, Enström C, Nilsson S, Martinsson T. Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma. BMC Cancer 2011; 11:66. [PMID: 21314941 PMCID: PMC3045360 DOI: 10.1186/1471-2407-11-66] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 02/11/2011] [Indexed: 11/27/2022] Open
Abstract
Background Epigenetic mechanisms such as DNA methylation and histone modifications are important regulators of gene expression and are frequently involved in silencing tumor suppressor genes. Methods In order to identify genes that are epigenetically regulated in neuroblastoma tumors, we treated four neuroblastoma cell lines with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) either separately or in conjunction with the histone deacetylase inhibitor trichostatin A (TSA). Expression was analyzed using whole-genome expression arrays to identify genes activated by the treatment. These data were then combined with data from genome-wide DNA methylation arrays to identify candidate genes silenced in neuroblastoma due to DNA methylation. Results We present eight genes (KRT19, PRKCDBP, SCNN1A, POU2F2, TGFBI, COL1A2, DHRS3 and DUSP23) that are methylated in neuroblastoma, most of them not previously reported as such, some of which also distinguish between biological subsets of neuroblastoma tumors. Differential methylation was observed for the genes SCNN1A (p < 0.001), PRKCDBP (p < 0.001) and KRT19 (p < 0.01). Among these, the mRNA expression of KRT19 and PRKCDBP was significantly lower in patients that have died from the disease compared with patients with no evidence of disease (fold change -8.3, p = 0.01 for KRT19 and fold change -2.4, p = 0.04 for PRKCDBP). Conclusions In our study, a low methylation frequency of SCNN1A, PRKCDBP and KRT19 is significantly associated with favorable outcome in neuroblastoma. It is likely that analysis of specific DNA methylation will be one of several methods in future patient therapy stratification protocols for treatment of childhood neuroblastomas.
Collapse
Affiliation(s)
- Helena Carén
- Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
CASZ1, a candidate tumor-suppressor gene, suppresses neuroblastoma tumor growth through reprogramming gene expression. Cell Death Differ 2011; 18:1174-83. [PMID: 21252912 DOI: 10.1038/cdd.2010.187] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuroblastoma (NB) is a common childhood malignant tumor of the neural crest-derived sympathetic nervous system. In NB the frequent loss of heterozygosity (LOH) on chromosome 1p raises the possibility that this region contains tumor-suppressor genes whose inactivation contributes to tumorigenesis. The human homolog of the Drosophila neural fate determination gene CASZ1, a zinc-finger transcription factor, maps to chromosome 1p36.22, a region implicated in NB tumorigenesis. Quantitative real-time PCR analysis showed that low-CASZ1 expression is significantly correlated with increased age (≥18 months), Children's Oncology Group high-risk classification, 1p LOH and MYCN amplification (all P<0.0002) and decreased survival probability (P=0.0009). CASZ1 was more highly expressed in NB with a differentiated histopathology (P<0.0001). Retinoids and epigenetic modification agents associated with regulation of differentiation induced CASZ1 expression. Expression profiling analysis revealed that CASZ1 regulates the expression of genes involved in regulation of cell growth and developmental processes. Specific restoration of CASZ1 in NB cells induced cell differentiation, enhanced cell adhesion, inhibited migration and suppressed tumorigenicity. These data are consistent with CASZ1 being a critical modulator of neural cell development, and that somatically acquired disruption of normal CASZ1 expression contributes to the malignant phenotype of human NB.
Collapse
|
45
|
High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci U S A 2010; 107:4323-8. [PMID: 20145112 DOI: 10.1073/pnas.0910684107] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of chromosomal aberrations is used to determine the prognosis of neuroblastomas (NBs) and to aid treatment decisions. MYCN amplification (MNA) alone is an incomplete poor prognostic factor, and chromosome 11q status has recently been included in risk classification. We analyzed 165 NB tumors using high-density SNP microarrays and specifically compared the high-risk groups defined by MNA (n = 37) and 11q-deletion (n = 21). Median patient age at diagnosis was 21 months for MNA tumors and 42 months for 11q-deletion tumors, and median survival time after diagnosis was 16 months for MNA and 40 months for 11q deletion. Overall survival (at 8 years) was approximately 35% in both groups. MNA and 11q deletion were almost mutually exclusive; only one case harbored both aberrations. The numbers of segmental aberrations differed significantly; the MNA group had a median of four aberrations, whereas the 11q-deletion group had 12. The high frequency of chromosomal breaks in the 11q-deletion group is suggestive of a chromosomal instability phenotype gene located in 11q; one such gene, H2AFX, is located in 11q23.3 (within the 11q-deletion region). Furthermore, in the groups with segmental aberrations without MNA or 11q deletion, the tumors with 17q gain have worse prognosis than those with segmental aberrations without 17q gain, which have a favorable outcome. This study has implications for therapy in different risk groups and stresses that genome-wide microarray analyses should be included in clinical management to fully evaluate risk, aid diagnosis, and guide treatment.
Collapse
|
46
|
Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, Jin DY, Costello JF, Liang R. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 2010; 31:745-50. [PMID: 20118199 DOI: 10.1093/carcin/bgq033] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
miR-34a is a transcriptional target of p53 and implicated in carcinogenesis. We studied the role of miR-34a methylation in a panel of hematological malignancies including acute leukemia [acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)], chronic leukemia [chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML)], multiple myeloma (MM) and non-Hodgkin's lymphoma (NHL). The methylation status of miR-34a promoter was studied in 12 cell lines and 188 diagnostic samples by methylation-specific polymerase chain reaction. miR-34a promoter was unmethylated in normal controls but methylated in 75% lymphoma and 37% myeloma cell lines. Hypomethylating treatment led to re-expression of pri-miR-34a transcript in lymphoma cells with homozygous miR-34a methylation. In primary samples at diagnosis, miR-34a methylation was detected in 4% CLL, 5.5% MM samples and 18.8% of NHL at diagnosis but none of ALL, AML and CML (P = 0.011). In MM patients with paired samples, miR-34a methylation status remained unchanged at progression. Amongst lymphoid malignancies, miR-34a was preferentially methylated in NHL (P = 0.018), in particular natural killer (NK)/T-cell lymphoma. In conclusion, amongst hematological malignancies, miR-34a methylation is preferentially hypermethylated in NHL, in particular NK/T-cell lymphoma, in a tumor-specific manner, therefore the role of miR-34a in lymphomagenesis warrants further study.
Collapse
Affiliation(s)
- C S Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Thomas R, Duke SE, Wang HJ, Breen TE, Higgins RJ, Linder KE, Ellis P, Langford CF, Dickinson PJ, Olby NJ, Breen M. 'Putting our heads together': insights into genomic conservation between human and canine intracranial tumors. J Neurooncol 2009; 94:333-49. [PMID: 19333554 PMCID: PMC3225023 DOI: 10.1007/s11060-009-9877-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 03/19/2009] [Indexed: 11/30/2022]
Abstract
Numerous attributes render the domestic dog a highly pertinent model for cancer-associated gene discovery. We performed microarray-based comparative genomic hybridization analysis of 60 spontaneous canine intracranial tumors to examine the degree to which dog and human patients exhibit aberrations of ancestrally related chromosome regions, consistent with a shared pathogenesis. Canine gliomas and meningiomas both demonstrated chromosome copy number aberrations (CNAs) that share evolutionarily conserved synteny with those previously reported in their human counterpart. Interestingly, however, genomic imbalances orthologous to some of the hallmark aberrations of human intracranial tumors, including chromosome 22/NF2 deletions in meningiomas and chromosome 1p/19q deletions in oligodendrogliomas, were not major events in the dog. Furthermore, and perhaps most significantly, we identified highly recurrent CNAs in canine intracranial tumors for which the human orthologue has been reported previously at low frequency but which have not, thus far, been associated intimately with the pathogenesis of the tumor. The presence of orthologous CNAs in canine and human intracranial cancers is strongly suggestive of their biological significance in tumor development and/or progression. Moreover, the limited genetic heterogenity within purebred dog populations, coupled with the contrasting organization of the dog and human karyotypes, offers tremendous opportunities for refining evolutionarily conserved regions of tumor-associated genomic imbalance that may harbor novel candidate genes involved in their pathogenesis. A comparative approach to the study of canine and human intracranial tumors may therefore provide new insights into their genetic etiology, towards development of more sophisticated molecular subclassification and tailored therapies in both species.
Collapse
Affiliation(s)
- Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|