1
|
Lee D, V AADLR, Kim Y. Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:3876-3909. [PMID: 38549312 DOI: 10.3934/mbe.2024173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. Despite progress in cancer treatment, identifying administration protocols for therapeutic agents remains a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administrative costs. In this work, optimal control theory was employed to design a cost-effective and efficient co-administration protocols for bortezomib and OVs that could significantly diminish the population of cancer cells via the cell death program with the NF$ \kappa $B-BAX-RIP1 signaling network. Both linear and quadratic control strategies were explored to obtain practical treatment approaches by adapting necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination therapy commencing with the administration of OVs followed by bortezomib infusions yields an effective tumor-killing outcome. These results could provide valuable guidance for the development of clinical administration protocols in cancer treatment.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Aurelio A de Los Reyes V
- Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Singh H, Patel V. Role of Molecular Targeted Therapeutic Drugs in Treatment of Oral Squamous Cell Carcinoma: Development and Current Strategies—A Review Article. Glob Med Genet 2022; 9:242-246. [PMID: 36132998 PMCID: PMC9484872 DOI: 10.1055/s-0042-1756663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Because of active advancement in the field of biomedicine, people have in-depth knowledge of biological nature of malignant tumors and are able to recognized the overexpression of different molecules such as vascular endothelial growth factor receptor, cyclin-dependent kinase, and programmed cell death receptor. Presently, various targeted therapeutic drugs are used in different clinical trials in those patients suffering from oral squamous cell carcinoma. In this review, we converse about the various targeted therapeutic drugs and their advancement in the treatment of oral squamous cell carcinoma. This review scrutinizes the existing documentation in the literature related to the targeted therapies for oral squamous cell carcinoma. English language articles were searched in various databases such as PubMed, Scopus, Science Direct, and Google Scholar. The keywords used for searching are “oral squamous cell carcinoma,” “targeted therapy,” and “therapeutic drugs.”
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Vedant Patel
- Department of Prosthodontics and Crown & Bridge, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
3
|
Benvenuto M, Ciuffa S, Focaccetti C, Sbardella D, Fazi S, Scimeca M, Tundo GR, Barillari G, Segni M, Bonanno E, Manzari V, Modesti A, Masuelli L, Coletta M, Bei R. Proteasome inhibition by bortezomib parallels a reduction in head and neck cancer cells growth, and an increase in tumor-infiltrating immune cells. Sci Rep 2021; 11:19051. [PMID: 34561494 PMCID: PMC8463577 DOI: 10.1038/s41598-021-98450-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
Head and neck cancer (HNC) has frequently an aggressive course for the development of resistance to standard chemotherapy. Thus, the use of innovative therapeutic drugs is being assessed. Bortezomib is a proteasome inhibitor with anticancer effects. In vitro antitumoral activity of Bortezomib was investigated employing human tongue (SCC-15, CAL-27), pharynx (FaDu), salivary gland (A-253) cancer cell lines and a murine cell line (SALTO-5) originated from a salivary gland adenocarcinoma arising in BALB-neuT male mice transgenic for the oncogene neu. Bortezomib inhibited cell proliferation, triggered apoptosis, modulated the expression and activation of pro-survival signaling transduction pathways proteins activated by ErbB receptors and inhibited proteasome activity in vitro. Intraperitoneal administration of Bortezomib delayed tumor growth of SALTO-5 cells transplanted in BALB-neuT mice, protracted mice survival and adjusted tumor microenvironment by increasing tumor-infiltrating immune cells (CD4+ and CD8+ T cells, B lymphocytes, macrophages, and Natural Killer cells) and by decreasing vessels density. In addition, Bortezomib modified the expression of proteasome structural subunits in transplanted SALTO-5 cells. Our findings further support the use of Bortezomib for the treatment of HNC and reveal its ineffectiveness in counteracting the activation of deregulated specific signaling pathways in HNC cell lines when resistance to proteasome inhibition is developed.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy.,Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166, Rome, Italy
| | | | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161, Rome, Italy
| | - Manuel Scimeca
- Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy.,Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Maria Segni
- Department of Maternal Infantile and Urological Sciences, University of Rome "Sapienza", Viale Regina Elena 324, 00161, Rome, Italy.,Pediatric Endocrinology Unit, Policlinico Umberto I, Viale Regina Elena 364, 00161, Rome, Italy
| | - Elena Bonanno
- Saint Camillus International, University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,"Diagnostica Medica" & "Villa Dei Platani", Neuromed Group, 83100, Avellino, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161, Rome, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,IRCCS-Fondazione Bietti, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
4
|
Aspirin AP, de Los Reyes V AA, Kim Y. Polytherapeutic strategies with oncolytic virus-bortezomib and adjuvant NK cells in cancer treatment. J R Soc Interface 2021; 18:20200669. [PMID: 33402021 PMCID: PMC7879760 DOI: 10.1098/rsif.2020.0669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteasome inhibition and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts the degradation of proteins in the cell leading to accumulation of unfolded proteins inducing apoptosis. On the other hand, oncolytic virotherapy uses genetically modified oncolytic viruses (OV) to infect cancer cells, induce cell lysis, and activate an antitumour response. In this work, optimal control theory is used to minimize the cancer cell population by identifying strategic infusion protocols of bortezomib, OV and natural killer (NK) cells. Three different therapeutic protocols are explored: (i) periodic bortezomib and single administrations of both OV and NK cells therapy; (ii) alternating sequential combination therapy; and (iii) NK cell depletion and infusion therapy. In the first treatment scheme, early OV administration followed by well-timed adjuvant NK cell infusion maximizes antitumour efficacy. The second strategy supports timely OV infusion. The last treatment scheme indicates that transient NK cell depletion followed by appropriate NK cell adjuvant therapy yields the maximal benefits. Relative doses and administrative costs of the three anticancer agents for each approach are qualitatively presented. This study provides potential polytherapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Angelica P Aspirin
- Institute of Mathematics, University of the Philippines Diliman, C.P. Garcia St., U.P. Campus, Diliman, 1101 Quezon City, Philippines
| | - Aurelio A de Los Reyes V
- Institute of Mathematics, University of the Philippines Diliman, C.P. Garcia St., U.P. Campus, Diliman, 1101 Quezon City, Philippines
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.,Mathematical Biosciences Institute, Columbus, OH, USA
| |
Collapse
|
5
|
Oduah EI, Grossman SR. Harnessing the vulnerabilities of p53 mutants in lung cancer - Focusing on the proteasome: a new trick for an old foe? Cancer Biol Ther 2020; 21:293-302. [PMID: 32041464 PMCID: PMC7515531 DOI: 10.1080/15384047.2019.1702403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 12/25/2022] Open
Abstract
Gain-of-function (GOF) p53 mutations occur commonly in human cancer and lead to both loss of p53 tumor suppressor function and acquisition of aggressive cancer phenotypes. The oncogenicity of GOF mutant p53 is highly related to its abnormal protein stability relative to wild type p53, and overall stoichiometric excess. We provide an overview of the mechanisms of dysfunction and abnormal stability of GOF p53 specifically in lung cancer, the leading cause of cancer-related mortality, where, depending on histologic subtype, 33-90% of tumors exhibit GOF p53 mutations. As a distinguishing feature and oncogenic mechanism in lung and many other cancers, GOF p53 represents an appealing and cancer-specific therapeutic target. We review preclinical evidence demonstrating paradoxical depletion of GOF p53 by proteasome inhibitors, as well as preclinical and clinical studies of proteasome inhibition in lung cancer. Finally, we provide a rationale for a reexamination of proteasome inhibition in lung cancer, focusing on tumors expressing GOF p53 alleles.
Collapse
Affiliation(s)
- Eziafa I. Oduah
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven R. Grossman
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
6
|
Lynce F, Wang H, Petricoin EF, Pohlmann PR, Smaglo B, Hwang J, He AR, Subramaniam DS, Deeken J, Marshall J, Pishvaian MJ. A phase I study of HER1, HER2 dual kinase inhibitor lapatinib plus the proteasome inhibitor bortezomib in patients with advanced malignancies. Cancer Chemother Pharmacol 2019; 84:1145-1151. [PMID: 31538230 DOI: 10.1007/s00280-019-03947-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE This phase I trial evaluated the maximum tolerated dose, safety and preliminary efficacy of lapatinib, a HER1, HER2 dual kinase inhibitor plus bortezomib, a proteasome inhibitor, in adult patients with advanced malignancies. METHODS Patients were enrolled in a standard 3 + 3 design with lapatinib (L) 750, 1000, 1250 or 1500 mg daily, and bortezomib (B) 0.7, 1.0, 1.3 or 1.6 mg/m2 for 3 weeks with 1 week off. Dose-limiting toxicities (DLT) were assessed during the first 28 days RESULTS: Fifteen patients received the combination of lapatinib and bortezomib in three different cohorts and ten were evaluable for DLT. There were no DLTs. Anorexia was the most common adverse event. Biomarker analysis showed upregulation of p27 expression with lapatinib and the combination. No tumor response was observed and thus the study was closed early. CONCLUSION The combination of lapatinib and bortezomib was well tolerated but no complete or partial tumor responses were observed at the dose levels tested. CLINICALTRIALS. GOV IDENTIFIER NCT01497626.
Collapse
Affiliation(s)
- Filipa Lynce
- Lombardi Comprehensive Cancer Center, 3800 Reservoir Road NW, Washington, DC, 20007, USA.,Georgetown University Medical Center, Washington, DC, USA
| | - Hongkun Wang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Paula R Pohlmann
- Lombardi Comprehensive Cancer Center, 3800 Reservoir Road NW, Washington, DC, 20007, USA.,Georgetown University Medical Center, Washington, DC, USA
| | - Brandon Smaglo
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jimmy Hwang
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - Aiwu R He
- Lombardi Comprehensive Cancer Center, 3800 Reservoir Road NW, Washington, DC, 20007, USA.,Georgetown University Medical Center, Washington, DC, USA
| | - Deepa S Subramaniam
- Lombardi Comprehensive Cancer Center, 3800 Reservoir Road NW, Washington, DC, 20007, USA.,Georgetown University Medical Center, Washington, DC, USA.,AstraZeneca plc, Gaithersburg, Maryland, USA
| | - John Deeken
- Inova Schar Cancer Institute, Inova Health System, Falls Church, Fairfax, VA, USA
| | - John Marshall
- Lombardi Comprehensive Cancer Center, 3800 Reservoir Road NW, Washington, DC, 20007, USA.,Georgetown University Medical Center, Washington, DC, USA
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, 3800 Reservoir Road NW, Washington, DC, 20007, USA. .,Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
7
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
8
|
Kim Y, Lee J, Lee D, Othmer HG. Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model. Cancers (Basel) 2019; 11:E215. [PMID: 30781871 PMCID: PMC6406513 DOI: 10.3390/cancers11020215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
It is well-known that the tumor microenvironment (TME) plays an important role in the regulation of tumor growth and the efficacy of anti-tumor therapies. Recent studies have demonstrated the potential of combination therapies, using oncolytic viruses (OVs) in conjunction with proteosome inhibitors for the treatment of glioblastoma, but the role of the TME in such therapies has not been studied. In this paper, we develop a mathematical model for combination therapies based on the proteosome inhibitor bortezomib and the oncolytic herpes simplex virus (oHSV), with the goal of understanding their roles in bortezomib-induced endoplasmic reticulum (ER) stress, and how the balance between apoptosis and necroptosis is affected by the treatment protocol. We show that the TME plays a significant role in anti-tumor efficacy in OV combination therapy, and illustrate the effect of different spatial patterns of OV injection. The results illustrate a possible phenotypic switch within tumor populations in a given microenvironment, and suggest new anti-invasion therapies.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Kozakiewicz P, Grzybowska-Szatkowska L. Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol Lett 2018; 15:7497-7505. [PMID: 29725456 DOI: 10.3892/ol.2018.8300] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the development of standard therapies, including surgery, radiotherapy and chemotherapy, survival rates for head and neck squamous cell carcinoma (HNSCC) have not changed significantly over the past three decades. Complete recovery is achieved in <50% of patients. The treatment of advanced HNSCC frequently requires multimodality therapy and involves significant toxicity. The promising, novel treatment option for patients with HNSCC is molecular-targeted therapies. The best known targeted therapies include: Epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab, panitumumab, zalutumumab and nimotuzumab), EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib, afatinib and dacomitinib), vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) or vascular endothelial growth factor receptor (VEGFR) inhibitors (sorafenib, sunitinib and vandetanib) and inhibitors of phosphatidylinositol 3-kinase/serine/threonine-specific protein kinase/mammalian target of rapamycin. There are also various inhibitors of other pathways and targets, which are promising and require evaluation in further studies.
Collapse
|
10
|
Davidson MA, Shanks EJ. 3q26-29 Amplification in head and neck squamous cell carcinoma: a review of established and prospective oncogenes. FEBS J 2017; 284:2705-2731. [PMID: 28317270 DOI: 10.1111/febs.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is significantly underrepresented in worldwide cancer research, yet survival rates for the disease have remained static for over 50 years. Distant metastasis is often present at the time of diagnosis, and is the primary cause of death in cancer patients. In the absence of routine effective targeted therapies, the standard of care treatment remains chemoradiation in combination with (often disfiguring) surgery. A defining characteristic of HNSCC is the amplification of a region of chromosome 3 (3q26-29), which is consistently associated with poorer patient outcome. This review provides an overview of the role the 3q26-29 region plays in HNSCC, in terms of both known and as yet undiscovered processes, which may have potential clinical relevance.
Collapse
|
11
|
|
12
|
Ban JO, Hwang CJ, Park MH, Hwang IK, Jeong HS, Lee HP, Hyun BK, Kim JY, Youn HS, Ham YW, Yoon DY, Han SB, Song MJ, Hong JT. Enhanced cell growth inhibition by thiacremonone in paclitaxel-treated lung cancer cells. Arch Pharm Res 2015; 38:1351-62. [PMID: 25791937 DOI: 10.1007/s12272-015-0589-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/01/2015] [Indexed: 11/28/2022]
Abstract
Activation of nuclear factor kappa-B (NF-κB) is implicated in drug resistant of lung cancer cells. Our previous data showed that thiacremonone inhibited activation of NF-κB. In the present study, we investigated whether thiacremonone enhanced susceptibility of lung cancer cells to a common anti-cancer drug paclitaxel by further inhibition of NF-κB. Thus, we used the threefold lower doses of IC50 values (50 μg/ml thiacremonone and 2.5 nM paclitaxel). We found that combination treatment with thiacremonone and paclitaxel was more susceptible (combination index; 0.40 in NCI-H460 cells and 0.46 in A549 cells) in cell growth inhibition of two types of lung cancer cell lines compared to a single agent treatment. Consistent with the combination effect on cancer cell growth inhibition, the combination treatment further induced apoptotic cell death and arrested the cancer cells in G2/M phase accompanied with a much lower expression of cdc2 and cyclin B1, and inhibited colony formation. Much more inactivation of NF-κB and greater expression of NF-κB target apoptosis regulated genes such as caspase-8 and PARPs were found by the combination treatment. Molecular model and pull down assay as well as MALDI-TOF analysis demonstrated that thiacremonone directly binds to p50. These data indicated that thiacremonone leads to increased apoptotic cell death in lung cancer cell lines through greater inhibition of NF-κB by the combination treatment with paclitaxel.
Collapse
Affiliation(s)
- Jung Ok Ban
- College of Pharmacy and Medical Research Center, Chungbuk National University, 52, Naesudong-ro, Heungdeok-gu, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The destruction of proteins via the ubiquitin-proteasome system is a multi-step, complex process involving polyubiquitination of substrate proteins, followed by proteolytic degradation by the macromolecular 26S proteasome complex. Inhibitors of the proteasome promote the accumulation of proteins that are deleterious to cell survival, and represent promising anti-cancer agents. In multiple myeloma and mantle cell lymphoma, treatment with the first-generation proteasome inhibitor, bortezomib, or the second-generation inhibitor, carfilzomib, has demonstrated significant therapeutic benefit in humans. This has prompted United States Food and Drug Administration (US FDA) approval of these agents and development of additional second-generation compounds with improved properties. There is considerable interest in extending the benefits of proteasome inhibitors to the treatment of solid tumor malignancies. Herein, we review progress that has been made in the preclinical development and clinical evaluation of different proteasome inhibitors in solid tumors. In addition, we describe several novel approaches that are currently being pursued for the treatment of solid tumors, including drug combinatorial strategies incorporating proteasome inhibitors and the targeting of components of the ubiquitin-proteasome system that are distinct from the 26S proteasome complex.
Collapse
Affiliation(s)
- Daniel E Johnson
- Division of Hematology/OncologyDepartments of Medicine, and Pharmacology and Chemical Biology, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Room 2.18c, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
14
|
Zang Y, Kirk CJ, Johnson DE. Carfilzomib and oprozomib synergize with histone deacetylase inhibitors in head and neck squamous cell carcinoma models of acquired resistance to proteasome inhibitors. Cancer Biol Ther 2014; 15:1142-52. [PMID: 24915039 DOI: 10.4161/cbt.29452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Acquired resistance to proteasome inhibitors represents a considerable impediment to their effective clinical application. Carfilzomib and its orally bioavailable structural analog oprozomib are second-generation, highly-selective, proteasome inhibitors. However, the mechanisms of acquired resistance to carfilzomib and oprozomib are incompletely understood, and effective strategies for overcoming this resistance are needed. Here, we developed models of acquired resistance to carfilzomib in two head and neck squamous cell carcinoma cell lines, UMSCC-1 and Cal33, through gradual exposure to increasing drug concentrations. The resistant lines R-UMSCC-1 and R-Cal33 demonstrated 205- and 64-fold resistance, respectively, relative to the parental lines. Similarly, a high level of cross-resistance to oprozomib, as well as paclitaxel, was observed, whereas only moderate resistance to bortezomib (8- to 29-fold), and low level resistance to cisplatin (1.5- to 5-fold) was seen. Synergistic induction of apoptosis signaling and cell death, and inhibition of colony formation followed co-treatment of acquired resistance models with carfilzomib and the histone deacetylase inhibitor (HDACi) vorinostat. Synergism was also seen with other combinations, including oprozomib plus vorinostat, or carfilzomib plus the HDACi entinostat. Synergism was accompanied by upregulation of proapoptotic Bik, and suppression of Bik attenuated the synergy. The acquired resistance models also exhibited elevated levels of MDR-1/P-gp. Inhibition of MDR-1/P-gp with reversin 121 partially overcame carfilzomib resistance in R-UMSCC-1 and R-Cal33 cells. Collectively, these studies indicate that combining carfilzomib or oprozomib with HDAC or MDR-1/P-gp inhibitors may be a useful strategy for overcoming acquired resistance to these proteasome inhibitors.
Collapse
Affiliation(s)
- Yan Zang
- Department of Medicine; University of Pittsburgh and the University of Pittsburgh Cancer Institute; Pittsburgh, PA USA
| | | | - Daniel E Johnson
- Department of Medicine; University of Pittsburgh and the University of Pittsburgh Cancer Institute; Pittsburgh, PA USA; Department of Pharmacology and Chemical Biology; University of Pittsburgh; Pittsburgh, PA USA
| |
Collapse
|
15
|
Psyrri A, Lee JW, Pectasides E, Vassilakopoulou M, Kosmidis EK, Burtness BA, Rimm DL, Wanebo HJ, Forastiere AA. Prognostic biomarkers in phase II trial of cetuximab-containing induction and chemoradiation in resectable HNSCC: Eastern cooperative oncology group E2303. Clin Cancer Res 2014; 20:3023-32. [PMID: 24700741 PMCID: PMC4049169 DOI: 10.1158/1078-0432.ccr-14-0113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE We sought to evaluate the correlation between tissue biomarker expression (using standardized, quantitative immunofluorescence) and clinical outcome in the E2303 trial. EXPERIMENTAL DESIGN Sixty-three eligible patients with operable stage III/IV head and neck squamous cell cancer (HNSCC) participated in the Eastern Cooperative Oncology Group (ECOG) 2303 phase II trial of induction chemotherapy with weekly cetuximab, paclitaxel, and carboplatin followed by chemoradiation with the same regimen. A tissue microarray (TMA) was constructed and EGF receptor (EGFR), ERK1/2, Met, Akt, STAT3, β-catenin, E-cadherin, EGFR Variant III, insulin-like growth factor-1 receptor, NF-κB, p53, PI3Kp85, PI3Kp110a, PTEN, NRAS, and pRb protein expression levels were assessed using automated quantitative protein analysis (AQUA). For each dichotomized biomarker, overall survival (OS), progression-free survival (PFS), and event-free survival (EFS) were estimated by the Kaplan-Meier method and compared using log-rank tests. Multivariable Cox proportional hazards models were used to estimate HRs and test for significance. RESULTS Forty-two of 63 patients with TMA data on at least one biomarker were included in the biomarker analysis. Tumor extracellular signal-regulated kinase (ERK)1/2 levels were significantly associated with PFS [HR (low/high), 3.29; P = 0.026] and OS [HR (low/high), 4.34; P = 0.008]. On multivariable Cox regression analysis, ERK1/2 remained significantly associated with OS (P = 0.024) and PFS (P = 0.022) after controlling for primary site (oropharynx vs. non-oropharynx) and disease stage (III vs. IV), respectively. Clustering analysis revealed that clusters indicative of activated RAS/MAPK/ERK and/or PI3K/Akt pathways were associated with inferior OS and/or PFS and maintained significance in multivariable analysis. CONCLUSIONS These results implicate PI3K/Akt and RAS/MAPK/ERK pathways in resistance to cetuximab-containing chemoradiation in HNSCC. Large prospective studies are required to validate these results.
Collapse
Affiliation(s)
- Amanda Psyrri
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ju-Whei Lee
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Pectasides
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Vassilakopoulou
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstratios K Kosmidis
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Barbara A Burtness
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David L Rimm
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Harold J Wanebo
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Arlene A Forastiere
- Authors' Affiliations: Yale University School of Medicine, New Haven, Connecticut; Dana-Farber Cancer Institute, Boston, Massachusetts; Fox Chase Cancer Center, Philadelphia, Pennsylvania; Landmark Medical Center, Woonsocket, Rhode Island; Johns Hopkins University, Baltimore, Maryland; and Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Yoo JY, Hurwitz BS, Bolyard C, Yu JG, Zhang J, Selvendiran K, Rath KS, He S, Bailey Z, Eaves D, Cripe TP, Parris DS, Caligiuri MA, Yu J, Old M, Kaur B. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res 2014; 20:3787-98. [PMID: 24815720 DOI: 10.1158/1078-0432.ccr-14-0553] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bortezomib is an FDA-approved proteasome inhibitor, and oncolytic herpes simplex virus-1 (oHSV) is a promising therapeutic approach for cancer. We tested the impact of combining bortezomib with oHSV for antitumor efficacy. EXPERIMENTAL DESIGN The synergistic interaction between oHSV and bortezomib was calculated using Chou-Talalay analysis. Viral replication was evaluated using plaque assay and immune fluorescence. Western blot assays were used to evaluate induction of estrogen receptor (ER) stress and unfolded protein response (UPR). Inhibitors targeting Hsp90 were utilized to investigate the mechanism of cell killing. Antitumor efficacy in vivo was evaluated using subcutaneous and intracranial tumor xenografts of glioma and head and neck cancer. Survival was analyzed by Kaplan-Meier curves and two-sided log-rank test. RESULTS Combination treatment with bortezomib and oHSV (34.5ENVE), displayed strong synergistic interaction in ovarian cancer, head and neck cancer, glioma, and malignant peripheral nerve sheath tumor (MPNST) cells. Bortezomib treatment induced ER stress, evident by strong induction of Grp78, CHOP, PERK, and IRE1α (Western blot analysis) and the UPR (induction of hsp40, 70, and 90). Bortezomib treatment of cells at both sublethal and lethal doses increased viral replication (P < 0.001), but inhibition of Hsp90 ablated this response, reducing viral replication and synergistic cell killing. The combination of bortezomib and 34.5ENVE significantly enhanced antitumor efficacy in multiple different tumor models in vivo. CONCLUSIONS The dramatic synergy of bortezomib and 34.5ENVE is mediated by bortezomib-induced UPR and warrants future clinical testing in patients.
Collapse
Affiliation(s)
- Ji Young Yoo
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences
| | - Brian S Hurwitz
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences; Biomedical Science Major
| | | | - Jun-Ge Yu
- Department of Otolaryngology, Head & Neck Surgery
| | | | | | - Kellie S Rath
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Shun He
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Zachary Bailey
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - David Eaves
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Timothy P Cripe
- Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and the Division of Hematology/Oncology/BMT, Nationwide Children's Hospital
| | - Deborah S Parris
- Department of Molecular Virology Immunology Medical Genetics, The Ohio State University, Columbus; and
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Matthew Old
- Department of Otolaryngology, Head & Neck Surgery;
| | - Balveen Kaur
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences;
| |
Collapse
|
17
|
Harvey RD, Owonikoko TK, Lewis CM, Akintayo A, Chen Z, Tighiouart M, Ramalingam SS, Fanucchi MP, Nadella P, Rogatko A, Shin DM, El-Rayes B, Khuri FR, Kauh JS. A phase 1 Bayesian dose selection study of bortezomib and sunitinib in patients with refractory solid tumor malignancies. Br J Cancer 2013; 108:762-5. [PMID: 23322195 PMCID: PMC3590658 DOI: 10.1038/bjc.2012.604] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This phase 1 trial utilising a Bayesian continual reassessment method evaluated bortezomib and sunitinib to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and recommended doses of the combination. METHODS Patients with advanced solid organ malignancies were enrolled and received bortezomib weekly with sunitinib daily for 4 weeks, every 6 weeks. Initial doses were sunitinib 25 mg and bortezomib 1 mg m(-2). Cohort size and dose level estimation was performed utilising the Escalation with Overdose Control (EWOC) adaptive method. Seven dose levels were evaluated; initially, sunitinib was increased to a goal dose of 50 mg with fixed bortezomib, then bortezomib was increased. Efficacy assessment occurred after each cycle using RECIST criteria. RESULTS Thirty patients were evaluable. During sunitinib escalation, DLTs of grade 4 thrombocytopenia (14%) and neutropenia (6%) at sunitinib 50 mg and bortezomib 1.3 mg m(-2) were seen. Subsequent experience showed tolerability and activity for sunitinib 37.5 mg and bortezomib 1.9 mg m(-2). Common grade 3/4 toxicities were neutropenia, thrombocytopenia, hypertension, and diarrhoea. The recommended doses for further study are bortezomib 1.9 mg m(-2) and sunitinib 37.5 mg. Four partial responses were seen. Stable disease >6 months was noted in an additional six patients. CONCLUSION Bortezomib and sunitinib are well tolerated and have anticancer activity, particularly in thyroid cancer. A phase 2 study of this combination in thyroid cancer patients is planned.
Collapse
Affiliation(s)
- R D Harvey
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hoffmann TK. Systemic therapy strategies for head-neck carcinomas: Current status. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2012; 11:Doc03. [PMID: 23320055 PMCID: PMC3544206 DOI: 10.3205/cto000085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck cancers, most of which are squamous cell tumours, have an unsatisfactory prognosis despite intensive local treatment. This can be attributed, among other factors, to tumour recurrences inside or outside the treated area, and metastases at more distal locations. These tumours therefore require not only the standard surgical and radiation treatments, but also effective systemic modalities. The main option here is antineoplastic chemotherapy, which is firmly established in the palliative treatment of recurrent or metastatic stages of disease, and is used with curative intent in the form of combined simultaneous or adjuvant chemoradiotherapy in patients with inoperable or advanced tumour stages. Neoadjuvant treatment strategies for tumour reduction before surgery have yet to gain acceptance. Induction chemotherapy protocols before radiotherapy have to date been used in patients at high risk of distant metastases or as an aid for decision-making ("chemoselection") in those with extensive laryngeal cancers, prior to definitive chemoradiotherapy or laryngectomy. Triple-combination induction therapy (taxanes, cisplatin, 5-fluorouracil) shows high remission rates with significant toxicity and, in combination with (chemo-)radiotherapy, is currently being compared with simultaneous chemoradiotherapy; the current gold standard with regards to efficacy and long-term toxicity.A further systemic treatment strategy, called "targeted therapy", has been developed to help increase specificity and reduce toxicity. An example of targeted therapy, EGFR-specific antibodies, can be used in palliative settings and, in combination with radiotherapy, to treat advanced head and neck cancers. A series of other novel biologicals such as signal cascade inhibitors, genetic agents, or immunotherapies, are currently being evaluated in large-scale clinical studies, and could prove useful in patients with advanced, recurring or metastatic head and neck cancers. When developing a lasting, individualised systemic tumour therapy, the critical evaluation criteria are not only efficacy and acute toxicity but also (long-term) quality-of-life and the identification of dedicated predictive biomarkers.
Collapse
|
19
|
Zang Y, Thomas SM, Chan ET, Kirk CJ, Freilino ML, DeLancey HM, Grandis JR, Li C, Johnson DE. Carfilzomib and ONX 0912 inhibit cell survival and tumor growth of head and neck cancer and their activities are enhanced by suppression of Mcl-1 or autophagy. Clin Cancer Res 2012; 18:5639-49. [PMID: 22929803 DOI: 10.1158/1078-0432.ccr-12-1213] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Carfilzomib is a selective, irreversible inhibitor of the chymotrypsin-like activity of the proteasome and is undergoing clinical evaluation in myeloma. ONX 0912 (oprozomib) is an orally bioavailable derivative. The activities of carfilzomib and ONX 0912 against solid tumor malignancies are less well understood. We investigated the impact and mechanisms of action of carfilzomib and ONX 0912 in preclinical models of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN The effects of carfilzomib and ONX 0912 on HNSCC cell survival and xenograft tumor growth were evaluated. The impact and mechanisms of both agents on apoptosis and autophagy induction were also investigated. The contribution of the unfolded protein response (UPR) to autophagy induction and the role of autophagy in attenuating HNSCC cell death were determined. RESULTS Carfilzomib and ONX 0912 potently induced apoptosis in HNSCC cell lines via upregulation of pro-apoptotic Bik. Upregulation of Mcl-1 by these agents served to dampen their efficacies. Carfilzomib and ONX 0912 also induced autophagy, mediated, in part, by activation of the UPR pathway involving upregulation of ATF4 transcription factor. Autophagy induction served a prosurvival role. Oral administration of ONX 0912 inhibited the growth of HNSCC xenograft tumors in a dose-dependent manner. CONCLUSIONS These results show that carfilzomib and ONX 0912 are potently active against HNSCC cells, and the activities of these agents can be enhanced via suppression of Mcl-1 or inhibition of autophagy. Oral ONX 0912 exhibits in vivo activity against HNSCC tumors and may represent a useful therapeutic agent for this malignancy.
Collapse
Affiliation(s)
- Yan Zang
- Department of Medicine, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Molecularly targeted therapies in head and neck cancers. Otolaryngol Pol 2012; 66:307-12. [PMID: 23036118 DOI: 10.1016/j.otpol.2012.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/24/2022]
Abstract
Head and neck cancers (HNC) are 6th most common malignancies according to the incidence rate. Over 85% of tumors of this region are epithelial tumors, especially squamous cell carcinomas (head and neck squamous cell carcinomas - HNSCC). Surgery, chemotherapy and radiotherapy are still the standard for the treatment of HNC. Despite the great development of the various methods of treatment, survival of patients have not improved significantly over the last 30 years, with the overall, 5-year survival not exceeding 50%. Progress in understanding the biology of cancer leads to personalization of therapy and introduction of drugs with molecular mechanism of action to everyday practice. At present, the effectiveness of monoclonal antibodies against EGFR in the treatment of HNSCC has already been proven. Cetuximab in combination with radiotherapy was found to be effective in patients with advanced and locally advanced HNSCC. There are also some promising results of phase III trials with zalutumumab and panitumumab. Initial efficacy of sorafenib (an inhibitor of the intracellular domain of VEGFR, PDGFR and c-Kit) and afatinib (an irreversible inhibitor of pan-HER tyrosine kinase) have been demonstrated. Great hopes for the future are linked with the potential use of STAT3, EGFRvIII, abnormal proteins K-ras, H-ras and PTEN as well as proteasome as a target for therapy.
Collapse
|
21
|
Lin YC, Chen KC, Chen CC, Cheng AL, Chen KF. CIP2A-mediated Akt activation plays a role in bortezomib-induced apoptosis in head and neck squamous cell carcinoma cells. Oral Oncol 2012; 48:585-93. [DOI: 10.1016/j.oraloncology.2012.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/22/2012] [Accepted: 01/25/2012] [Indexed: 12/27/2022]
|
22
|
Sung ES, Park KJ, Choi HJ, Kim CH, Kim YS. The proteasome inhibitor MG132 potentiates TRAIL receptor agonist-induced apoptosis by stabilizing tBid and Bik in human head and neck squamous cell carcinoma cells. Exp Cell Res 2012; 318:1564-76. [PMID: 22513214 DOI: 10.1016/j.yexcr.2012.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.
Collapse
Affiliation(s)
- Eun-Sil Sung
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Targeted therapy in head and neck cancer. Tumour Biol 2012; 33:707-21. [PMID: 22373581 DOI: 10.1007/s13277-012-0350-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/03/2012] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) of multi-factorial etiopathogenesis is rising worldwide. Treatment-associated toxicity problems and treatment failure in advanced disease stages with conventional therapies have necessitated a focus on alternative strategies. Molecular targeted therapy, with the potential for increased selectivity and fewer adverse effects, hold promise in the treatment of HNSCC. In an attempt to improve outcomes in HNSCC, targeted therapeutic strategies have been developed. These strategies are focusing on the molecular biology of HNSCC in an attempt to target selected pathways involved in carcinogenesis. Inhibiting tumor growth and metastasis by focusing on specific protein or signal transduction pathways or by targeting the tumor microenvironment or vasculature are some of the new approaches. Targeted agents for HNSCC expected to improve the effectiveness of current therapy include EGFR inhibitors (Cetuximab, Panitumumab, Zalutumumab), EGFR tyrosine kinase inhibitors (Gefitinib, Erloitinib), VEGFR inhibitors (Bevacizumab, Vandetanib), and various inhibitors of, e.g., Src-family kinase, PARP, proteasome, mTOR, COX, and heat shock protein. Moreover, targeted molecular therapy can also act as a complement to other existing cancer therapies. Several studies have demonstrated that the combination of targeting techniques with conventional current treatment protocols may improve the treatment outcome and disease control, without exacerbating the treatment related toxicities. Some of the targeted approaches have been proved as promising therapeutic potentials and are already in use, whereas remainder exhibits mixed result and necessitates further studies. Identification of predictive biomarkers of resistance or sensitivity to these therapies remains a fundamental challenge in the optimal selection of patients most likely to benefit from targeted treatment.
Collapse
|
24
|
Besse B, Planchard D, Veillard AS, Taillade L, Khayat D, Ducourtieux M, Pignon JP, Lumbroso J, Lafontaine C, Mathiot C, Soria JC. Phase 2 study of frontline bortezomib in patients with advanced non-small cell lung cancer. Lung Cancer 2011; 76:78-83. [PMID: 22186627 DOI: 10.1016/j.lungcan.2011.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preliminary results indicated that bortezomib (B) (Velcade*) as a single agent may have activity in pretreated NSCLC patients with similar or lesser toxicity compared to chemotherapy. This phase II study was initiated to determine the efficacy of single-agent B in chemonaïve patients with advanced NSCLC. An early tumor assessment (after 6 weeks of therapy) was performed to allow for rapid and appropriate management of non-responding patients. METHODS Patients received B (1.5 mg/m2) twice a week for 2 consecutive weeks (days 1, 4, 8, and 11) followed by a 10-day rest period. The primary endpoint was non-progression rate (NPR) after 6 weeks of treatment. Secondary endpoints included response rate, progression-free survival (PFS), overall survival (OS), and safety. Exploratory analyses included FDG-PET response at 6 weeks and circulating tumors cell (CTC) assessment at day 1 of each cycle in a subset of patients. RESULTS 18 patients were enrolled from 06/06 to 02/07 from 3 French institutions. DEMOGRAPHICS male/female 15/3; median age 66 (54-79); PS 0/1/2, 3/12/3; pathology: adenocarcinoma 11, squamous cell carcinoma 5, large-cell carcinoma 2; smoking status never/former/current 1/10/7; stage IIIB/IV 2/16. Seventeen patients received B and 16 were assessable (1 early withdrawal and 1 progression at D26). The most frequent toxicity was fatigue (17 patients). Twelve patients (71%) had at least one grade 3 toxicity: 4 haematological, 1 infection, 5 gastro-intestinal toxicity, 9 fatigue, 1 neuropathy. The non-progression rate was 59% [33-82%] at 6 weeks (10/17 patients). No objective response was seen. With a median follow-up of 12.3 months, the median PFS and OS were 2.4 and 9.8 months respectively. Eleven deaths occurred. No PET response was observed, and CTC were detected only in 1 out of 8 patients evaluated. CONCLUSIONS Although according to the protocol rules the trial should not be stopped, the lack of any objective response either by CT-scan or PET-CT, along with substantial toxicity, did not argue in favor of the current strategy of B as a single agent in the front-line setting of NSCLC.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Aged
- Antineoplastic Agents/therapeutic use
- Boronic Acids/therapeutic use
- Bortezomib
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/mortality
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Female
- Follow-Up Studies
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Maximum Tolerated Dose
- Middle Aged
- Neoplasm Grading
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Neoplastic Cells, Circulating/pathology
- Prognosis
- Pyrazines/therapeutic use
- Survival Rate
Collapse
Affiliation(s)
- Benjamin Besse
- Département de Médecine, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Argiris A, Duffy AG, Kummar S, Simone NL, Arai Y, Kim SW, Rudy SF, Kannabiran VR, Yang X, Jang M, Chen Z, Suksta N, Cooley-Zgela T, Ramanand SG, Ahsan A, Nyati MK, Wright JJ, Van Waes C. Early tumor progression associated with enhanced EGFR signaling with bortezomib, cetuximab, and radiotherapy for head and neck cancer. Clin Cancer Res 2011; 17:5755-64. [PMID: 21750205 DOI: 10.1158/1078-0432.ccr-11-0861] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A phase I clinical trial and molecular correlative studies were conducted to evaluate preclinical evidence for combinatorial activity of the proteasome inhibitor bortezomib, the epidermal growth factor receptor (EGFR) inhibitor cetuximab, and radiation therapy. EXPERIMENTAL DESIGN Patients with radiotherapy-naive stage IV or recurrent squamous cell carcinoma of the head and neck (SCCHN) were studied. Escalating doses of bortezomib (0.7, 1.0, and 1.3 mg/m²) were given intravenously twice weekly on days 1, 4, 8, and 11, every 21 days, with weekly cetuximab beginning 1 week prior and concurrently with intensity-modulated radiotherapy, delivered in 2 Gy fractions to 70 to 74 Gy. Molecular effects were examined in serial serum and SCCHN tumor specimens and the cell line UMSCC-1. RESULTS Seven patients were accrued before the study was terminated when five of six previously untreated patients with favorable prognosis oropharyngeal SCCHN progressed within 1 year (progression-free survival = 4.8 months; 95% CI, 2.6-6.9). Three patients each received bortezomib 0.7 or 1.0 mg/m², without dose-limiting toxicities; one patient treated at 1.3 mg/m² was taken off study due to recurring cetuximab infusion reaction and progressive disease (PD). Expected grade 3 toxicities included radiation mucositis (n = 4), dermatitis (n = 4), and rash (n = 1). SCCHN-related cytokines increased in serial serum specimens of patients developing PD (P = 0.029). Bortezomib antagonized cetuximab- and radiation-induced cytotoxicity, degradation of EGFR, and enhanced prosurvival signal pathway activation in SCCHN tumor biopsies and UMSCC-1. CONCLUSIONS Combining bortezomib with cetuximab and radiation therapy showed unexpected early progression, evidence for EGFR stabilization, increased prosurvival signaling, and SCCHN cytokine expression, warranting avoidance of this combination.
Collapse
Affiliation(s)
- Athanassios Argiris
- Hematology-Oncology and Head and Neck Cancer Program, and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Burgos-Tiburcio A, Santos ES, Arango BA, Raez LE. Development of targeted therapy for squamous cell carcinomas of the head and neck. Expert Rev Anticancer Ther 2011; 11:373-86. [PMID: 21417852 DOI: 10.1586/era.10.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted therapy is a very exciting era in the treatment of squamous cell carcinomas of the head and neck. After adding cetuximab to conventional chemotherapy and radiation therapy, we are strongly considering the role of induction chemotherapy with the addition of docetaxel. At the same time, other new treatments, especially targeted agents and novel combined regimens, are being evaluated in ongoing clinical trials. For example, several trials are attempting to combine docetaxel and cetuximab in chemoradiation or induction settings. However, in the near future we are likely to see a strong presence of targeted agents that have been found to be not only effective, but also less toxic than conventional chemotherapeutic agents. Their toxicity profiles make them eligible for addition to radiation treatment strategies, as well as other chemotherapy agents, or even for replacing these chemotherapy agents. In this article, we are going to review the indications and current role of cetuximab, tyrosine kinase inhibitors (gefitinib and erlotinib), dual inhibitors, IGF receptor inhibitors, as well as other agents that are in development for treatment of head and neck squamous cell carcinomas.
Collapse
Affiliation(s)
- Alberto Burgos-Tiburcio
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
27
|
Potts BC, Albitar MX, Anderson KC, Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC, Fenical W, Ghobrial IM, Groll M, Jensen PR, Lam KS, Lloyd GK, McBride W, McConkey DJ, Miller CP, Neuteboom STC, Oki Y, Ovaa H, Pajonk F, Richardson PG, Roccaro AM, Sloss CM, Spear MA, Valashi E, Younes A, Palladino MA. Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 2011; 11:254-84. [PMID: 21247382 DOI: 10.2174/156800911794519716] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, chemotherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom's macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside.
Collapse
Affiliation(s)
- B C Potts
- Nereus Pharmaceuticals, Inc., 10480 Wateridge Circle, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Papaspyrou G, Werner JA, Dietz A. Pharmacotherapy for squamous-cell carcinoma of the head and neck. Expert Opin Pharmacother 2011; 12:397-409. [PMID: 21254947 DOI: 10.1517/14656566.2011.523698] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION squamous-cell carcinoma of the head and neck (HNSCC) is one of the most common malignancies, the treatment of which constitutes a therapeutic challenge. AREAS COVERED the purpose of this review is to provide an update on the pharmacotherapy for the treatment of HNSCC focusing mainly on molecular-targeted therapies. An overview of the different novel therapeutic agents that can selectively inhibit signaling pathways and receptors that are involved in the development and progression of cancer especially in HNSCC is presented. EXPERT OPINION the treatment of HNSCC is traditionally based on surgery and radiotherapy for early-stage HNSCC; however, chemotherapy is no longer used only for palliation, and individualized patient treatment assisted by molecular-targeted therapies represents a future therapeutic challenge.
Collapse
Affiliation(s)
- Giorgos Papaspyrou
- Philipp University Marburg, Department of Otolaryngology, Head and Neck Surgery, Deutschhausstrasse 3, 35037 Marburg, Germany
| | | | | |
Collapse
|
29
|
Rahman MA, Amin ARMR, Shin DM. Chemopreventive potential of natural compounds in head and neck cancer. Nutr Cancer 2011; 62:973-87. [PMID: 20924973 DOI: 10.1080/01635581.2010.509538] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most fatal cancers worldwide. Despite advances in the management of HNSCC, the overall survival for patients has not improved significantly due to advanced stages at diagnosis, high recurrence rate after surgical removal, and second primary tumor development, which underscore the importance of novel strategies for cancer prevention. Cancer chemoprevention, the use of natural or synthetic compounds to prevent, arrest, or reverse the process of carcinogenesis at its earliest stages, aims to reverse premalignancies and prevent second primary tumors. Genomics and proteomics information including initial mutation, cancer promotion, progression, and susceptibility has brought molecularly targeted therapies for drug development. The development of preventive approaches using specific natural or synthetic compounds, or both, requires a depth of understanding of the cross-talk between cancer signaling pathways and networks to retain or enhance chemopreventive activity while reducing known toxic effects. Many natural dietary compounds have been identified with multiple molecular targets, effective in the prevention and treatment of cancer. This review describes recent advances in the understanding of the complex signaling networks driving cancer progression and of molecularly targeted natural compounds under preclinical and clinical investigation.
Collapse
Affiliation(s)
- Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
30
|
Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci (Landmark Ed) 2011; 16:1172-85. [PMID: 21196225 DOI: 10.2741/3782] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer ranks as the first malignant tumor killer worldwide. Despite the knowledge that carcinogens from tobacco smoke and the environment constitute the main causes of lung cancer, the mechanisms for lung carcinogenesis are still elusive. Cancer development and progression depend on the balance between cell survival and death signals. Common cell survival signaling pathways are activated by carcinogens as well as by inflammatory cytokines, which contribute substantially to cancer development. As a major cell survival signal, nuclear factor-kappaB (NF-kappaB) is involved in multiple steps in carcinogenesis and in cancer cell's resistance to chemo- and radio-therapy. Recent studies with animal models and cell culture systems have established the links between NF-kappaB and lung carcinogenesis, highlighting the significance of targeting NF-kappa signaling pathway for lung cancer treatment and chemoprevention. In this review, we summarize progresses in understanding the NF-kappaB pathway in lung cancer development as well as in modulating NF-kappaB for lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR SE, Albuquerque, NM 87108, USA
| | | | | | | |
Collapse
|
31
|
Visentin M, Biason P, Toffoli G. Drug interactions among the epidermal growth factor receptor inhibitors, other biologics and cytotoxic agents. Pharmacol Ther 2010; 128:82-90. [PMID: 20542058 DOI: 10.1016/j.pharmthera.2010.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
The epidermal growth factor receptor (EGFR) signalling pathway is a key element in the growth of several epithelial malignancies. Small molecules tyrosine kinase inhibitors (TKIs) and anti-EGFR monoclonal antibodies (mAbs) prevent the phosphorylation of the receptor, leading to cell cycle arrest at G(1) phase, apoptosis, inhibition of angiogenesis and metastasis. To increase the antitumoral effects of EGFR inhibitors (EGFRIs), a number of combinatory regimens have been evaluated and planned with standard cytotoxic drugs and/or inhibitors of EGFR complementary pathways such as mTOR, VEGF and Ras/Raf/ERK. Compared to EGFRI monotherapy, the combination approach is a promising strategy to improve tumor response and survival. However, pharmacokinetic (absorption, distribution, metabolism and excretion) and pharmacodynamic drug interactions can occur, affecting the outcome. Pharmacokinetics of TKIs can be affected by drugs used in combination: conversely, pharmacokinetic interactions have not been reported for EGFR mAbs. Potential pharmacokinetic interactions occur between EGFRIs and other factors such as food and hydrocarbons in tobacco smoke were also considered. EGFRIs are characterized by a number of pharmacodynamic interactions that must be taken into consideration to avoid adverse events, to increase antitumoral activity, and define potential new strategies for developing efficient combination regimens. In this context, treatment schedule and drug sequence appear to be particularly relevant for combination regimens with EGFRIs. Improved molecular characterisation of the EGFR pathway and its complementary pathways in tumor cells is required to better define predictive pharmacokinetic and pharmacodynamic biomarkers for optimum treatment outcome.
Collapse
Affiliation(s)
- Michele Visentin
- Experimental and Clinical Pharmacology Unit CRO Centro di Riferimento Oncologico, IRCCS National Cancer Institute, via Franco Gallini 2, 33081 Aviano (PN), Italy
| | | | | |
Collapse
|
32
|
Goerner M, Seiwert TY, Sudhoff H. Molecular targeted therapies in head and neck cancer--an update of recent developments-. HEAD & NECK ONCOLOGY 2010; 2:8. [PMID: 20398256 PMCID: PMC2868849 DOI: 10.1186/1758-3284-2-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/14/2010] [Indexed: 01/20/2023]
Abstract
Targeted therapies have made their way into clinical practice during the past decade. They have caused a major impact on the survival of cancer patients in many areas of clinical oncology and hematology. Indeed, in some hematologic malignancies, such as chronic myelogenous leukemia or non-Hodgkin's lymphomas, biologicals and antibodies specifically designed to target tumour-specific proteins have revolutionized treatment standards. In solid tumours, new drugs targeting EGF- or VEGF- receptors are now approved and are entering clinical practise for treatment of colon, lung, kidney and other cancers, either alone or in combination with conventional treatment approaches. Recent data have now shown that molecular targeted therapy might display efficacy in patients with head and neck squamous cell carcinoma (HNSCC) as well. The evaluated biologicals are generally well tolerated from HNSCC patients, who usually have the burden of multiple co-morbidities that interfere with conventional systemic treatment options. Therefore, molecular targeted therapies offer new treatment options even for heavily pretreated and seriously ill patients usually unable to tolerate chemotherapy or radiation therapy. The two most promising and advanced strategies are the blockage of growth-factor based cellular signalling and interference with angiogenesis-related pathways. But inhibitors of alternative targets, such as Scr and proteasomes, have already been evaluated in early clinical trials with HNSCC patients.
Collapse
Affiliation(s)
- Martin Goerner
- Community Hospital Bielefeld, Department of Hematology, Oncology and Palliative Care, Teutoburger Str, 60, 33604 Bielefeld, Germany.
| | | | | |
Collapse
|
33
|
Vlashi E, Mattes M, Lagadec C, Donna LD, Phillips TM, Nikolay P, McBride WH, Pajonk F. Differential Effects of the Proteasome Inhibitor NPI-0052 against Glioma Cells. Transl Oncol 2010; 3:50-5. [PMID: 20165695 PMCID: PMC2822455 DOI: 10.1593/tlo.09244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/18/2022] Open
Abstract
Proteasome inhibitors are emerging as a new class of cancer therapeutics, and bortezomib has shown promise in the treatment of multiple myeloma and mantle cell lymphoma. However, bortezomib has failed to have an effect in preclinical models of glioma. NPI-0052 is a new generation of proteasome inhibitors with increased potency and strong inhibition of all three catalytic activities of the 26S proteasome. In this article, we test the antitumor efficacy of NPI-0052 against glioma, as a single agent and in combination with temozolomide and radiation using five different glioma lines. The intrinsic radiation sensitivities differed for all the lines and correlated with their PTEN expression status. In vitro, NPI-0052 showed a dose-dependent toxicity, and its combination with temozolomide resulted in radiosensitization of only the cell lines with a mutated p53. The effect of NPI-0052 as a single agent on glioma xenografts in vivo was only modest in controlling tumor growth, and it failed to radiosensitize the glioma xenografts to fractionated radiation. We conclude that NPI-0052 is not a suitable drug for the treatment of malignant gliomas despite its efficacy in other cancer types.
Collapse
Affiliation(s)
- Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Malcom Mattes
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Chann Lagadec
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lorenza Della Donna
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tiffany M Phillips
- UCLA Department of Psychiatry and Biobehavioral Sciences, UCLA Intellectual and Developmental Disability Research Center, Los Angeles, CA, USA
| | - Polin Nikolay
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|
34
|
Ruggeri B, Miknyoczki S, Dorsey B, Hui AM. The development and pharmacology of proteasome inhibitors for the management and treatment of cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:91-135. [PMID: 20230760 DOI: 10.1016/s1054-3589(08)57003-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome complex is an important molecular target for the design of novel chemotherapeutics. This complex plays a critical role in signal transduction pathways important for tumor cell growth and survival, cell-cycle control, transcriptional regulation, and the modulation of cellular stress responses to endogenous and exogenous stimuli. The sensitivity of transformed cells to proteasome inhibitors and the successful design of treatment protocols with tolerable, albeit narrow, therapeutic indices have made proteasome inhibition a viable strategy for cancer treatment. Clinical validation of the proteasome as a molecular target was achieved with the approval of bortezomib, a boronic acid proteasome inhibitor, for the treatment of multiple myeloma and mantle cell lymphoma. Several "next-generation" proteasome inhibitors (carfilzomib and PR-047, NPI-0052, and CEP-18770) representing distinct structural classes (peptidyl epoxyketones, beta-lactones, and peptidyl boronic acids, respectively), mechanisms of action, pharmacological and pharmacodynamic activity profiles, and therapeutic indices have now entered clinical development. These agents may expand the clinical utility of proteasome inhibitors for the treatment of solid tumors and for specific non-oncological, i.e., inflammatory disease, indications as well. This chapter addresses the biology of the proteasome, the medicinal chemistry and mechanisms of action of proteasome inhibitors currently in clinical development, the preclinical and clinical pharmacological and safety profiles of bortezomib and the newer compounds against hematological and solid tumors. Future directions for research and other applications for this novel class of therapeutics agents are considered in this chapter.
Collapse
Affiliation(s)
- Bruce Ruggeri
- Discovery Research, Cephalon, Inc., West Chester, Pennsylvania 19380, USA
| | | | | | | |
Collapse
|
35
|
Combined therapies for cancer: a review of EGFR-targeted monotherapy and combination treatment with other drugs. J Cancer Res Clin Oncol 2009; 135:1137-48. [DOI: 10.1007/s00432-009-0622-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 06/02/2009] [Indexed: 12/21/2022]
|