1
|
Wang J, Lin J, Wang J, Wang Y, Zhu Y, Xu X, Guo J. Effect of Annexin A2 on prognosis and sensitivity to immune checkpoint plus tyrosine kinase inhibition in metastatic renal cell carcinoma. Discov Oncol 2024; 15:86. [PMID: 38519766 PMCID: PMC10959890 DOI: 10.1007/s12672-024-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) therapy is the first-line recommendation for advanced renal cell carcinoma (RCC), but no biomarker has been approved for it. Annexin A2 (ANXA2) can induce immune escape in tumors. METHODS Two independent cohorts of advanced RCC treated by IO + TKI were utilized for survival analysis (ZS-MRCC, n = 45; Javelin-101, n = 726). ANXA2 expression was determined by RNA-sequencing. The impact of ANXA2 on the tumor microenvironment was assessed by RNA-sequencing, flow cytometry and immunohistochemistry in two localized RCC datasets (ZS-HRRCC, n = 40; TCGA-KIRC, n = 530). RESULTS ANXA2 was upregulated in non-responders of IO + TKI therapy (p = 0.027). High-ANXA2 group showed poor progression-free survival (PFS) in both the ZS-MRCC cohort (HR, 2.348; 95% CI 1.084-5.085; P = 0.025) and the Javelin-101 cohort (HR, 1.472; 95% CI 1.043-2.077; P = 0.027). Multivariate Cox regression determined ANXA2 as an independent prognostic factor (HR, 2.619; 95% CI 1.194-5.746; P = 0.016). High-ANXA2 was correlated with decreased proportion of granzyme B+ CD8+ T cells (Spearman's ρ = - 0.40, P = 0.01), and increased TIM-3+ (Spearman's ρ = 0.43, P < 0.001) and CTLA4+ (Spearman's ρ = 0.49, P < 0.001) tumor-infiltrating lymphocytes. A random forest (RF) score was further build by integrating ANXA2 and immune genes, which stratified patients who would benefit from IO + TKI therapy (low-RF score, IO + TKI vs TKI, HR = 0.453, 95% CI 0.328-0.626; high-RF score, IO + TKI vs TKI, HR = 0.877, 95% CI 0.661-1.165; interaction P = 0.003). CONCLUSIONS Upregulated ANXA2 was associated with poor PFS and therapeutic resistance in RCC treated by IO + TKI therapy, and related with T cell exhaustion. The integrated RF score could stratify patients who would benefit from IO + TKI therapy.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Jinglai Lin
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Heabah NAEG, Darwish SA, Ibrahim FMK. Prognostic significance of annexin A2 and tumor associated macrophages (TAMs) in metastatic renal cell carcinoma and their relation to Sunitinib resistance. J Immunoassay Immunochem 2024; 45:1-19. [PMID: 38018145 DOI: 10.1080/15321819.2023.2285501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Sunitinib, an antiangiogenic tyrosine kinase inhibitor, is the main treatment for metastatic renal cell carcinoma (mRCC). Development of resistance is a major obstacle against therapy success. The aim of this study was to assess annexin A2 and CD163+ tumor associated macrophages (TAMs) immunohistochemical expression in 50 mRCC cases as regard to patients' prognosis and Sunitinib response. Also, to assess the correlation between annexin A2 and TAMs expression. High annexin A2 expression and TAMs density were associated with serum calcium level (P = 0.024 and 0.037, respectively), larger tumor size (P < 0.001), high tumor grade (P = 0.014 and <0.001, respectively), and the presence of tumor necrosis (P < 0.001). High annexin A2 and TAMs expressions were related to shorter patients' overall survival (P = 0.009 and 0.001, respectively) and progression-free survival (P = 0.003 and 0.001, respectively). Annexin A2 was correlated with TAMs density (r = 0.890). Annexin A2 and TAMs are associated with poor prognostic parameters in mRCC patients, including high nuclear grade, increased tumor size, and the presence of tumor necrosis, together with shorter patients' survivals and poor response to Sunitinib. Annexin A2 expression is correlated with TAMs density suggesting immunomodulatory role of annexin A2.
Collapse
Affiliation(s)
| | - Sara A Darwish
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma MKh Ibrahim
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
4
|
Wang LH, Cao B, Li YL, Qiao BP. Potential prognostic and therapeutic value of ANXA8 in renal cell carcinoma: based on the comprehensive analysis of annexins family. BMC Cancer 2023; 23:674. [PMID: 37464398 PMCID: PMC10355003 DOI: 10.1186/s12885-023-11165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Annexins are a family of proteins involved in a wide variety of cellular processes such as inflammation, proliferation, differentiation, apoptosis, migration and membrane repair. However, the role of most Annexins in renal cell carcinoma (RCC) remained unclear. METHODS The differentially expressed Annexins in RCC compared with normal controls were screened applying the TCGA database. The correlation of differentially expressed Annexins with clinical stages, grades and overall survival was analyzed to explore the clinical significance of Annexins in RCC. Then ANXA8 was selected and further stained in the discover and validation RCC cohort. The correlation of ANXA8 expression with clinical parameter was verified at the protein level. To explore the potential function of ANXA8, ANXA8 was knockdown in the RCC cell line and further analyzed using transcriptome and bioinformatic analysis. RESULTS mRNA expression of ANXA1, ANXA2R, ANXA4, ANXA8, ANXA8L1 and ANXA13 were significantly upregulated in RCC compared with normal kidney tissues. In contrast, ANXA3 and ANXA9 mRNA expression was significantly downregulated. Higher expression of ANXA2R, ANXA8 and ANXA8L1 were correlated with worse overall survival, while lower expression of ANXA3, ANXA9 and ANXA13 were associated with worse clinical outcomes in RCC patients. We further demonstrated that ANXA8 expression was significantly increased in RCC compared with normal renal tissues at the protein level. And higher protein expression of ANXA8 was associated with higher clinical grades. Through the bioinformatics analysis and cell cycle analysis, we found knockdown of ANXA8 mainly influenced the cell cycle and DNA replication. The top ten hub genes consist of CDC6, CDK2, CHEK1, CCNB1, ORC1, CHEK2, MCM7, CDK1, PCNA and MCM3. CONCLUSIONS Multiple members of Annexins were abnormally expressed and associated with the prognosis of RCC. The expression of ANXA8 was significantly increased in RCC and associated with poor prognosis. ANXA8 might influence the cell cycle and could be a potential biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Li-Hui Wang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Bo Cao
- Department of Emergency Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, China
| | - Yun-Long Li
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Bao-Ping Qiao
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
5
|
Guo C, Trivedi R, Tripathi AK, Nandy RR, Wagner DC, Narra K, Chaudhary P. Higher Expression of Annexin A2 in Metastatic Bladder Urothelial Carcinoma Promotes Migration and Invasion. Cancers (Basel) 2022; 14:cancers14225664. [PMID: 36428758 PMCID: PMC9688257 DOI: 10.3390/cancers14225664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we aim to evaluate the significance of AnxA2 in BLCA and establish its metastatic role in bladder cancer cells. Analysis of TCGA data showed that AnxA2 mRNA expression was significantly higher in BLCA tumors than in normal bladder tissues. High mRNA expression of AnxA2 in BLCA was significantly associated with high pathological grades and stages, non-papillary tumor histology, and poor overall survival (OS), progression-free survival (PFS), and diseases specific survival (DSS). Similarly, we found that AnxA2 expression was higher in bladder cancer cells derived from high-grade metastatic carcinoma than in cells derived from low-grade urothelial carcinoma. AnxA2 expression significantly mobilized to the surface of highly metastatic bladder cancer cells compared to cells derived from low-grade tumors and associated with high plasmin generation and AnxA2 secretion. In addition, the downregulation of AnxA2 cells significantly inhibited the proliferation, migration, and invasion in bladder cancer along with the reduction in proangiogenic factors and cytokines such as PDGF-BB, ANGPT1, ANGPT2, Tie-2, bFGF, GRO, IL-6, IL-8, and MMP-9. These findings suggest that AnxA2 could be a promising biomarker and therapeutic target for high-grade BLCA.
Collapse
Affiliation(s)
- Christina Guo
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rucha Trivedi
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amit K. Tripathi
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rajesh R. Nandy
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Diana C. Wagner
- Department of Anatomic Pathology, JPS Health Network, Fort Worth, TX 76104, USA
| | - Kalyani Narra
- JPS Oncology and Infusion Center, JPS Health Network, Fort Worth, TX 76104, USA
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-5178
| |
Collapse
|
6
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
7
|
He H, Lin K, Zou C, Pan J, Fu W, Zhou Y, Lin H, Chen C, Su Y. Knockdown of Annexin A2 Enhances Radiosensitivity by Increasing G2/M-Phase Arrest, Apoptosis and Activating the p38 MAPK-HSP27 Pathway in Nasopharyngeal Carcinoma. Front Oncol 2022; 12:769544. [PMID: 35371986 PMCID: PMC8968728 DOI: 10.3389/fonc.2022.769544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin A2 (ANXA2) has been found to be involved in cancer proliferation, metastasis and prognosis; however, its exact role in nasopharyngeal carcinoma (NPC) radioresistance remains unknown. We found that ANXA2 expression was correlated with prognosis in NPC patients, and longer overall survival in NPC patients with low ANXA2 expression than those with high ANXA2 expression. ANXA2 knockdown increased the radiosensitivity in radioresistant NPC cells, and ANXA2 overexpression decreased the radiosensitivity in NPC cells. Knocking-down ANXA2 expression increased the irradiation-induced apoptosis of radioresistant NPC cells, and ANXA2 overexpression decreased the irradiation-induced apoptosis of NPC cells. ANXA2 knockdown induced G2/M phase arrest in NPC cells post-irradiation, and ANXA2 overexpression abrogated G2/M phase arrest in NPC cells post-irradiation. ANXA2 overexpression resulted in inhibition of the p38 MAPK-HSP27 pathway, while ANXA2 knockdown resulted in activation of the p38 MAPK-HSP27 pathway. In addition, ANXA2 knockdown increased the radiosensitivity of the xenografted tumors in nude mice. Our data demonstrate that knockdown of Annexin A2 enhanced radiosensitivity in NPC by increasing G2/M-phase arrest, apoptosis and activating the p38 MAPK-HSP27 pathway. ANXA2 may be a promising target used to overcome radioresistance in NPC.
Collapse
Affiliation(s)
- Huocong He
- Laboratory of Radiation Biology and Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Keyu Lin
- Laboratory of Radiation Biology and Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Changyan Zou
- Laboratory of Radiation Biology and Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jianru Pan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wankai Fu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yan Zhou
- Department of Epidemiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Huamei Lin
- Laboratory of Radiation Biology and Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Chao Chen
- Laboratory of Radiation Biology and Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Ying Su
- Laboratory of Radiation Biology and Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Ying Su,
| |
Collapse
|
8
|
Therapeutic Strategies for Disseminated Intravascular Coagulation Associated with Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms23031296. [PMID: 35163216 PMCID: PMC8836167 DOI: 10.3390/ijms23031296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 01/22/2023] Open
Abstract
Aortic aneurysms are sometimes associated with enhanced-fibrinolytic-type disseminated intravascular coagulation (DIC). In enhanced-fibrinolytic-type DIC, both coagulation and fibrinolysis are markedly activated. Typical cases show decreased platelet counts and fibrinogen levels, increased concentrations of fibrin/fibrinogen degradation products (FDP) and D-dimer, and increased FDP/D-dimer ratios. Thrombin-antithrombin complex or prothrombin fragment 1 + 2, as markers of coagulation activation, and plasmin-α2 plasmin inhibitor complex, a marker of fibrinolytic activation, are all markedly increased. Prolongation of prothrombin time (PT) is not so obvious, and the activated partial thromboplastin time (APTT) is rather shortened in some cases. As a result, DIC can be neither diagnosed nor excluded based on PT and APTT alone. Many of the factors involved in coagulation and fibrinolysis activation are serine proteases. Treatment of enhanced-fibrinolytic-type DIC requires consideration of how to control the function of these serine proteases. The cornerstone of DIC treatment is treatment of the underlying pathology. However, in some cases surgery is either not possible or exacerbates the DIC associated with aortic aneurysm. In such cases, pharmacotherapy becomes even more important. Unfractionated heparin, other heparins, synthetic protease inhibitors, recombinant thrombomodulin, and direct oral anticoagulants (DOACs) are agents that inhibit serine proteases, and all are effective against DIC. Inhibition of activated coagulation factors by anticoagulants is key to the treatment of DIC. Among them, DOACs can be taken orally and is useful for outpatient treatment. Combination therapy of heparin and nafamostat allows fine-adjustment of anticoagulant and antifibrinolytic effects. While warfarin is an anticoagulant, this agent is ineffective in the treatment of DIC because it inhibits the production of coagulation factors as substrates without inhibiting activated coagulation factors. In addition, monotherapy using tranexamic acid in cases of enhanced-fibrinolytic-type DIC may induce fatal thrombosis. If tranexamic acid is needed for DIC, combination with anticoagulant therapy is of critical importance.
Collapse
|
9
|
Yamada S, Asakura H. Management of disseminated intravascular coagulation associated with aortic aneurysm and vascular malformations. Int J Hematol 2020; 113:15-23. [PMID: 33175341 DOI: 10.1007/s12185-020-03028-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/04/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022]
Abstract
Aortic aneurysms and vascular malformations are sometimes associated with disseminated intravascular coagulation (DIC). A typical blood coagulation test shows decrease in platelet count and fibrinogen, and increases in fibrin/fibrinogen degradation products (FDP) and D-dimer. The coagulation activation marker thrombin-antithrombin complex (TAT) and the fibrinolysis activation marker plasmin-α2 plasmin inhibitor (PIC) are significantly increased. α2 plasmin inhibitor (α2PI) is significantly reduced. Since no prolongation of prothrombin time (PT) is noticeable and activated partial thromboplastin time (APTT) is shortened in some cases, DIC cannot be diagnosed or ruled out by PT and APTT alone. The cornerstone of treatment for DIC is to treat the underlying disease. However, surgery is not possible in some cases. Follow-up may be appropriate in patients with abnormal results from coagulation tests and no bleeding. However, pharmacotherapy is often required in cases with bleeding. Unfractionated heparin, low molecular weight heparin, protease inhibitors, recombinant thrombomodulin, direct oral anticoagulants, and factor XIII preparations are effective. If PIC is significantly increased and α2PI is significantly decreased, or if the bleeding is severe, tranexamic acid is used as an antifibrinolytic therapy with anticoagulant therapy. In such cases, attention should be paid not only to TAT but also changes in PIC.
Collapse
Affiliation(s)
- Shinya Yamada
- Department of Hematology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hidesaku Asakura
- Department of Hematology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
10
|
Annexin A2 in Inflammation and Host Defense. Cells 2020; 9:cells9061499. [PMID: 32575495 PMCID: PMC7348701 DOI: 10.3390/cells9061499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Annexin A2 (AnxA2) is a multifunctional calcium2+ (Ca2+) and phospholipid-binding protein that is expressed in a wide spectrum of cells, including those participating in the inflammatory response. In acute inflammation, the interaction of AnxA2 with actin and adherens junction VE-cadherins underlies its role in regulating vascular integrity. In addition, its contribution to endosomal membrane repair impacts several aspects of inflammatory regulation, including lysosome repair, which regulates inflammasome activation, and autophagosome biogenesis, which is essential for macroautophagy. On the other hand, AnxA2 may be co-opted to promote adhesion, entry, and propagation of bacteria or viruses into host cells. In the later stages of acute inflammation, AnxA2 contributes to the initiation of angiogenesis, which promotes tissue repair, but, when dysregulated, may also accompany chronic inflammation. AnxA2 is overexpressed in malignancies, such as breast cancer and glioblastoma, and likely contributes to cancer progression in the context of an inflammatory microenvironment. We conclude that annexin AnxA2 normally fulfills a spectrum of anti-inflammatory functions in the setting of both acute and chronic inflammation but may contribute to disease states in settings of disordered homeostasis.
Collapse
|
11
|
Hagiwara K, Harimoto N, Yokobori T, Muranushi R, Hoshino K, Gantumur D, Yamanaka T, Ishii N, Tsukagoshi M, Igarashi T, Tanaka H, Watanabe A, Kubo N, Araki K, Hosouchi Y, Shirabe K. High Co-expression of Large Tenascin C Splice Variants in Stromal Tissue and Annexin A2 in Cancer Cell Membranes is Associated with Poor Prognosis in Pancreatic Cancer. Ann Surg Oncol 2019; 27:924-930. [PMID: 31463696 DOI: 10.1245/s10434-019-07708-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pancreatic cancer tissue contains abundant stromal components, including extracellular matrix proteins such as tenascin C (TNC), which exists as large (TNC-L) and non-large splice variants. Here, we examined human pancreatic cancer specimens for the expression of total TNC (TNC-ALL) and TNC-L in the stroma and annexin A2 (ANXA2), a cell surface receptor for TNC, and evaluated their significance as prognostic markers for pancreatic cancer. METHODS Expression of ANXA2, TNC-ALL, and TNC-L was examined in 106 pancreatic cancer tissues from patients who underwent curative resection and who had not received prior therapy or surgery. Protein expression was measured by immunohistochemistry and scored on a semi-quantitative scale. The relationships between protein expression, clinicopathological factors, and prognosis were evaluated by Cox proportional hazards analysis. RESULTS TNC-ALL and TNC-L were detected mainly in the stroma, whereas ANXA2 was predominantly expressed in cancer cell membranes. TNC-ALL was also expressed in non-tumor pancreatic tissue. High levels of stromal TNC-L and membranous ANXA2, but not stromal TNC-ALL, were independently associated with cancer progression and poor prognosis. Moreover, high co-expression of stromal TNC-L and membranous ANXA2 was a superior indicator of poor prognosis compared with detection of TNC-ALL, TNC-L, or ANXA2 alone. CONCLUSIONS Our data suggest that co-expression of stromal TNC-L and membranous ANXA2 is a poor prognostic marker compared with detection of TNC-L or ANXA2 alone for pancreatic cancer patients. Additionally, targeting of crosstalk between stromal TNC and cancer cell ANXA2 could be a promising therapeutic strategy to overcome refractory pancreatic cancer.
Collapse
Affiliation(s)
- Kei Hagiwara
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Norifumi Harimoto
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan.
| | - Takehiko Yokobori
- Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Japan.,Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Ryo Muranushi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Kouki Hoshino
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Dorgormaa Gantumur
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Yamanaka
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Norihiro Ishii
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Mariko Tsukagoshi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Japan
| | - Takamichi Igarashi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Tanaka
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Akira Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Norio Kubo
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Kenichiro Araki
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Yasuo Hosouchi
- Department of Surgery and Laparoscopic Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
12
|
Tantyo NA, Karyadi AS, Rasman SZ, Salim MRG, Devina A, Sumarpo A. The prognostic value of S100A10 expression in cancer. Oncol Lett 2018; 17:1417-1424. [PMID: 30675195 PMCID: PMC6341771 DOI: 10.3892/ol.2018.9751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
S100A10, a member of the S100 protein family, commonly forms a heterotetrameric complex with Annexin A2. This is essential for the generation of cellular plasmin from plasminogen, which leads to a cascade of molecular events crucial for tumor progression. S100A10 upregulation has been reported in a number of cancers, suggesting that it may have potential as a prognostic biomarker, as well as predicting sensitivity to anticancer drugs. This review evaluates the direct and indirect relationships between S100A10 and cancer progression by investigating its role in cancer. Research papers published on PubMed and Google Scholar between 2007–2017 were collated and reviewed. We concluded that S100A10 affects the development of the hallmarks of cancer as explained by Hanahan and Weinberg in 2011, most notably by activating the invasion and metastasis of cancer cells. However, further studies are required to explore the underlying biological mechanisms of S100A10.
Collapse
Affiliation(s)
- Normastuti Adhini Tantyo
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | - Azrina Saraswati Karyadi
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | - Siti Zulimas Rasman
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | | | - Astrella Devina
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta Timur 13210, Indonesia
| | - Anton Sumarpo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta Utara 14440, Indonesia
| |
Collapse
|
13
|
Yang N, Wang L, Liu J, Liu L, Huang J, Chen X, Luo Z. MicroRNA-206 regulates the epithelial-mesenchymal transition and inhibits the invasion and metastasis of prostate cancer cells by targeting Annexin A2. Oncol Lett 2018; 15:8295-8302. [PMID: 29805562 PMCID: PMC5950137 DOI: 10.3892/ol.2018.8395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
The present study investigated the molecular mechanism by which microRNA-206 (miR-206) targets Annexin A2 (ANXA2) expression and inhibits the invasion and metastasis of prostatic cancer cells through regulation of the epithelial-mesenchymal transition (EMT). Using bioinformatics analysis, miR-206 was identified as the most promising candidate miRNA that targeted ANXA2. Prostate tissue specimens from 60 patients with prostate cancer, 30 patients with metastatic prostate cancer and 20 patients with benign prostatic hyperplasia (BPH) were examined for ANXA2 protein expression by immunohistochemistry and western blotting and for miR-206 expression by reverse transcription-quantitative polymerase chain reaction. Additionally, human prostate cancer PC-3 cells were transfected with miR-206 mimics, miR-206 inhibitors or a negative control sequence, and expression of ANXA2, E-cadherin and N-cadherin was detected by western blotting. Transwell assays were performed to determine the effect of altered miR-206 expression on the invasive behavior of PC-3 cells. Bioinformatics analysis predicted complementary binding between miR-206 and ANXA2 mRNA. ANXA2 protein expression was detected in a significantly higher proportion of BPH tissues (95%, 19/20) when compared with prostate cancer tissues (51.7%, 31/60; P<0.05). Similarly, ANXA2 was expressed in a significantly higher proportion of metastatic prostate cancer samples than that of prostate cancer samples (P<0.05). Expression of miR-206 was higher than that of ANXA2 in prostate cancer samples, but lower in BPH samples. Inhibition of miR-206 expression in PC-3 cells upregulated ANXA2 and E-cadherin protein expression levels, downregulated N-cadherin and vimentin, and promoted cell invasion in vitro. These data suggested that binding between miRNA-206 and ANXA2 mRNA may regulate EMT signaling, thereby suppressing the invasion and metastasis of prostatic cancer cells.
Collapse
Affiliation(s)
- Ning Yang
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ling Wang
- Department of Pharmacology, The Medical School of Hunan University of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Jun Liu
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li Liu
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jiangbo Huang
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xian Chen
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhigang Luo
- Department of Urology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
14
|
Wang YS, Li H, Li Y, Zhu H, Jin YH. Identification of natural compounds targeting Annexin A2 with an anti-cancer effect. Protein Cell 2018; 9:568-579. [PMID: 29508276 PMCID: PMC5966357 DOI: 10.1007/s13238-018-0513-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Annexin A2, a multifunctional tumor associated protein, promotes nuclear factor-kappa B (NF-κB) activation by interacting with NF-κB p50 subunit and facilitating its nuclear translocation. Here we demonstrated that two ginsenosides Rg5 (G-Rg5) and Rk1 (G-Rk1), with similar structure, directly bound to Annexin A2 by molecular docking and cellular thermal shift assay. Both Rg5 and Rk1 inhibited the interaction between Annexin A2 and NF-κB p50 subunit, their translocation to nuclear and NF-κB activation. Inhibition of NF-κB by these two ginsenosides decreased the expression of inhibitor of apoptosis proteins (IAPs), leading to caspase activation and apoptosis. Over expression of K302A Annexin A2, a mutant version of Annexin A2, which fails to interact with G-Rg5 and G-Rk1, effectively reduced the NF-κB inhibitory effect and apoptosis induced by G-Rg5 and G-Rk1. In addition, the knockdown of Annexin A2 largely enhanced NF-κB activation and apoptosis induced by the two molecules, indicating that the effects of G-Rg5 and G-Rk1 on NF-κB were mainly mediated by Annexin A2. Taken together, this study for the first time demonstrated that G-Rg5 and G-Rk1 inhibit tumor cell growth by targeting Annexin A2 and NF-κB pathway, and G-Rg5 and G-Rk1 might be promising natural compounds for targeted cancer therapy.
Collapse
Affiliation(s)
- Yu-Shi Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China
| | - Hongyan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Annexin 2A sustains glioblastoma cell dissemination and proliferation. Oncotarget 2018; 7:54632-54649. [PMID: 27429043 PMCID: PMC5342369 DOI: 10.18632/oncotarget.10565] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM. Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM. In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients.
Collapse
|
16
|
Christensen M, H�gdall C, Jochumsen K, H�gdall E. Annexin A2 and cancer: A systematic review. Int J Oncol 2017; 52:5-18. [DOI: 10.3892/ijo.2017.4197] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Christensen
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus H�gdall
- Department of Gynaecology, Juliane Maria Centre (JMC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Jochumsen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Estrid H�gdall
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease. Oncotarget 2017; 8:100066-100078. [PMID: 29245961 PMCID: PMC5725003 DOI: 10.18632/oncotarget.21929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Patients of the von Hippel-Lindau (VHL) disease frequently develop clear cell renal cell carcinoma (ccRCC). Using archived, formalin-fixed, paraffin-embedded (FFPE) samples, we sought to determine global proteome alterations that distinguish ccRCC tissue from adjacent, non-malignant kidney tissue in VHL-patients. Our quantitative proteomic analysis clearly discriminated tumor and non-malignant tissue. Significantly dysregulated proteins were distinguished using the linear models for microarray data algorithm. In the ccRCC tissue, we noticed a predominant under-representation of proteins involved in the tricarboxylic acid cycle and an increase in proteins involved in glycolysis. This profile possibly represents a proteomic fingerprint of the "Warburg effect", which is a molecular hallmark of ccRCC. Furthermore, we observed an increase in proteins involved in extracellular matrix organization. We also noticed differential expression of many exoproteases in the ccRCC tissue. Of particular note were opposing alterations of Xaa-Pro Aminopeptidases-1 and -2 (XPNPEP-1 and -2): a strong decrease of XPNPEP-2 in ccRCC was accompanied by abundant presence of the related protease XPNPEP-1. In both cases, we corroborated the proteomic results by immunohistochemical analysis of ccRCC and adjacent, non-malignant kidney tissue of VHL patients. To functionally investigate the role of XPNPEP-1 in ccRCC, we performed small-hairpin RNA mediated XPNPEP-1 expression silencing in 786-O ccRCC cells harboring a mutated VHL gene. We found that XPNPEP-1 expression dampens cellular proliferation and migration. These results suggest that XPNPEP-1 is likely an anti-target in ccRCC. Methodologically, our work further validates the robustness of using FFPE material for quantitative proteomics.
Collapse
|
18
|
Li DH, He CR, Liu FP, Li J, Gao JW, Li Y, Xu WD. Annexin A2, up-regulated by IL-6, promotes the ossification of ligament fibroblasts from ankylosing spondylitis patients. Biomed Pharmacother 2016; 84:674-679. [DOI: 10.1016/j.biopha.2016.09.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
|
19
|
Cui L, Song J, Wu L, Cheng L, Chen A, Wang Y, Huang Y, Huang L. Role of Annexin A2 in the EGF-induced epithelial-mesenchymal transition in human CaSki cells. Oncol Lett 2016; 13:377-383. [PMID: 28123570 DOI: 10.3892/ol.2016.5406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
The epidermal growth factor receptor (EGF-R) signaling pathway is thought to have an important role in the development and progression of several carcinomas, as it is associated with cell proliferation, differentiation and migration. Activation of EGF-R signaling regulates epithelial-mesenchymal transition (EMT)-associated invasion and migration in normal and malignant epithelial cells. However, the specific mechanisms have not yet been fully elucidated. The present study utilized wound healing assays, western blotting, flow cytometry and MTT assays to demonstrate that Annexin A2 (ANXA2) is a key regulatory factor in EGF-induced EMT in CaSki cervical cancer cells. Moreover, the increased expression levels of ANXA2 promoted cell viability and migration in human CaSki cells. It was also found that silencing ANXA2 partially reverses EGF-induced EMT and inhibits cell viability and migration in CaSki cells. These findings suggest that ANXA2 is a key regulator of EGF-induced EMT in CaSki cervical cancer cells.
Collapse
Affiliation(s)
- Lei Cui
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jian Song
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liting Wu
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Luhui Cheng
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Aijun Chen
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yanlin Wang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yingdi Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Liming Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
20
|
Lokman NA, Pyragius CE, Ruszkiewicz A, Oehler MK, Ricciardelli C. Annexin A2 and S100A10 are independent predictors of serous ovarian cancer outcome. Transl Res 2016; 171:83-95.e1-2. [PMID: 26925708 DOI: 10.1016/j.trsl.2016.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Abstract
Annexin A2, a calcium phospholipid binding protein, has been shown to play an important role in ovarian cancer metastasis. This study examined whether annexin A2 and S100A10 can be used as prognostic markers in serous ovarian cancer. ANXA2 and S100A10 gene expressions were assessed in publicly available ovarian cancer data sets and annexin A2 and S100A10 protein expressions were assessed by immunohistochemistry in a uniform cohort of stage III serous ovarian cancers (n = 109). Kaplan-Meier and Cox regression analyses were performed to assess the relationship between annexin A2 or S100A10 messenger RNA (mRNA) and protein expressions with clinical outcome. High ANXA2 mRNA levels in stage III serous ovarian cancers were associated with reduced progression-free survival (PFS; P = 0.023) and overall survival (OS; P = 0.0038), whereas high S100A10 mRNA levels predicted reduced OS (P = 0.0019). Using The Cancer Genome Atlas data sets, ANXA2 but not S100A10 expression was associated with higher clinical stage (P = 0.005), whereas both ANXA2 and S100A10 expressions were associated with the mesenchymal molecular subtype (P < 0.0001). Kaplan-Meier and Cox regression analyses showed that high stromal annexin A2 immunostaining was significantly associated with reduced PFS (P = 0.013) and OS (P = 0.044). Moreover, high cytoplasmic S100A10 staining was significantly associated with reduced OS (P = 0.027). Multivariate Cox regression analysis showed stromal annexin A2 (P = 0.009) and cytoplasmic S100A10 (P = 0.016) levels to be independent predictors of OS. Patients with high stromal annexin A2 and high cytoplasmic S100A10 expressions had a 3.4-fold increased risk of progression (P = 0.02) and 7.9-fold risk of ovarian cancer death (P = 0.04). Our findings indicate that together annexin A2 and S100A10 expressions are powerful predictors of serous ovarian cancer outcome.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carmen E Pyragius
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew Ruszkiewicz
- Centre of Cancer Biology, University of South Australia, Adelaide, South Australia, Australia; Department of Anatomical Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
21
|
Vtorushin SV, Tarakanova VO, Zavyalova MV. [Molecular biological predictors for kidney cancer]. Arkh Patol 2016; 78:56-61. [PMID: 27077146 DOI: 10.17116/patol201678156-61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The paper considers the data available in the modern literature on studies of potential molecular predictors for renal cell carcinoma (RCC). Investigations of cell death markers, namely; Bcl-2 as an inhibitor of apoptosis, are of interest. Its high expression correlates with a more favorable prognosis. Inactivation of Berclin 1 that is an authophagy indicator in intact tissues gives rise to t high risk for tumorigenesis. At the same time, high Beclin 1 expression in the tissue of the tumor itself results in the lower efficiency of performed chemotherapy. Excess annexin A2 in the tumor promotes the growth and invasion of cancer cells. Patients with tumor over-expression of SAM68 protein involved in cell proliferation have a lower overall survival rate. The lifespan of patients without distinct metastases survive significantly longer in the overexpression of epithelial cell adhesion molecule (EpCAM). High PD-L1 protein expression on the cell membrane is considered to be a potential marker of effective immunotherapy for RCC.
Collapse
Affiliation(s)
- S V Vtorushin
- Tomsk Cancer Research Institute; Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia
| | - V O Tarakanova
- Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia
| | - M V Zavyalova
- Tomsk Cancer Research Institute; Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia
| |
Collapse
|
22
|
Biological characteristics of a novel giant cell tumor cell line derived from spine. Tumour Biol 2016; 37:9681-9. [PMID: 26801673 DOI: 10.1007/s13277-016-4867-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
Giant cell tumor of bone(GCTB) is a special bone tumor for it consists of various cell types, and its biological characteristics is different from common benign or malignant neoplasm. In the present study, we report the biological features of a primary Asian GCTB cell line named GCTB28. We analyzed extensive properties of the GCTB28 cells including morphological observations, growth, cell cycle, karyotype, proliferation, proteins expression, surface biomarker verification, and tumorigenicity in nude mice. We found that the stromal cells of GCTB were endowed with self-renewal capacity and played dominant roles in GCTB development. Moreover, we confirmed that GCTB cells can be CD33(-)CD14(-) phenotype which was not in accord with previous study. This study provides an in vitro model system to investigate pathogenic mechanisms and molecular characteristics of GCTB and also provides a useful tool for researching the therapeutic targeting of GCTB.
Collapse
|
23
|
Jiang SL, Pan DY, Gu C, Qin HF, Zhao SH. Annexin A2 silencing enhances apoptosis of human umbilical vein endothelial cells in vitro. ASIAN PAC J TROP MED 2015; 8:952-957. [PMID: 26614996 DOI: 10.1016/j.apjtm.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To study the effects of inhibited Annexin A2 (ANXA2) on human umbilical vein endothelial cells (HUVECs) in vitro. METHODS Short hairpin RNA (shRNA) targeting ANXA2 was designed and cloned into double marked lentivirial vector GV248 for RNAi to generate the recombinant expression plasmids, which were stably transfected into HUVECs. The protein and mRNA expression levels of ANXA2 were analyzed by western blotting and real-time polymerase chain reaction, respectively. Cell proliferation (cell counting kit-8 assay), apoptosis (flow cytometry analysis), the expression (western blotting) and the activity of caspases (enzyme-linked immunosorbent assay) were used to assess the effects of silencing ANXA2 on HUVECs in vitro. RESULTS The plasmids to express ANXA2-specific shRNA were constructed and were infected into HUVEC resulting in the stably transfected experimental (ANXA2-shRNA), control (control-shRNA) and mock (no plasmid) cell lines, which were verified with western blot and real-time PCR. HUVEC/ANXA2-shRNA showed an inhibition rate 91.89% of ANXA2 expression compared to the mock HUVEC. ANXA2 silencing cell strain obviously presented a lower cell proliferation activity compared to the control and mock HUVECs, with an inhibition rate 82.35% on day 7 in vitro. FACS analysis indicated that the HUVEC/ANXA2-shRNA cells undergoing apoptosis increased by 102.61% compared to the mock HUVECs (P < 0.01). Moreover, the activity levels of caspase-3, caspase-8 and caspase-9 in HUVEC/ANXA2-shRNA cells were increased and the activated cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9 were upregulated evidently compared with that of the control and mock HUVECs by 56.29%, 89.59% and 144.58% (P < 0.01). CONCLUSIONS shRNA-mediated silencing of ANXA2 could not only be able to suppress HUVECs proliferation but to upregulate the enzyme activity of caspases, which bring to an increase of cell apoptosis. This work suggested that ANXA2 may represent a useful target of future molecular therapies.
Collapse
Affiliation(s)
- Shu-Le Jiang
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Dong-Yan Pan
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Chao Gu
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Hai-Feng Qin
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Shi-Hong Zhao
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Zhang F, Liu Y, Wang Z, Sun X, Yuan J, Wang T, Tian R, Ji W, Yu M, Zhao Y, Niu R. A novel Anxa2-interacting protein Ebp1 inhibits cancer proliferation and invasion by suppressing Anxa2 protein level. Mol Cell Endocrinol 2015; 411:75-85. [PMID: 25917452 DOI: 10.1016/j.mce.2015.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/31/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
Abstract
Anxa2 is dysregulated in many types of carcinomas and implicated in several pivotal biological functions, such as angiogenesis, cell proliferation, invasion, and metastasis. We previously demonstrated that upregulation of Anxa2 enhances the proliferation and invasion of breast cancer cells. However, the detailed mechanism remains unclear. In this study, co-immunoprecipitation and LC-MS/MS-based interactome approach were employed to screen potential Anxa2 binding proteins. A total of 312 proteins were identified as candidate Anxa2 interacting partners. Using Gene Ontology, pathway annotation, and protein-protein interaction analyses, we constructed a connected network for Anxa2 interacting proteins, and Ebp1 may function as a "hub" in the Anxa2 interaction network. Moreover, Ebp1 knockdown resulted in enhanced cell proliferation and invasion, as well as increased expression of Anxa2. Furthermore, the abundance of cyclin D1 and the phosphorylation of Erk1/2 were increased in Ebp1 inhibited cells. This finding is consistent with a previous study, in which upregulation of Anxa2 results in an increased cyclin D1 expression and Erk1/2 activation. Our results suggest a novel function of Ebp1 as a binding protein and negative regulator of Anxa2. The functional association between Anxa2 and EBP1 may also participate in regulating cancer cell proliferation and invasion, thereby contributing to cancer progression.
Collapse
Affiliation(s)
- Fei Zhang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Yuan Liu
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zhiyong Wang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiumei Sun
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jie Yuan
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tong Wang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ran Tian
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Wei Ji
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Man Yu
- Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Yuanyuan Zhao
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
25
|
RNAi-mediated silencing of Anxa2 inhibits breast cancer cell proliferation by downregulating cyclin D1 in STAT3-dependent pathway. Breast Cancer Res Treat 2015; 153:263-75. [PMID: 26253946 DOI: 10.1007/s10549-015-3529-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
Although the upregulated expression of Anxa2 has been implicated in carcinogenesis, cancer progression, and poor prognosis of cancer patients, the detailed molecular mechanisms involved in these processes remain unclear. In this study, we investigated the effect of Anxa2 downregulation with small interference RNA on breast cancer proliferation. To explore molecular mechanisms underlying Anxa2-mediated cancer cell proliferation. We analyzed cell cycle distribution and signaling pathways using semi-quantitative real-time PCR and Western blotting. Anxa2 depletion in breast cancer cells significantly inhibited cell proliferation by decelerating cell cycle progression. The retarded G1-to-S phase transition in Anxa2-silenced cells was attributed to the decreased levels of cyclin D1, which is a crucial promoting factor for cell proliferation because it regulates G1-to-S phase transition during cell cycle progression. We provided evidence that Anxa2 regulates epidermal growth factor-induced phosphorylation of STAT3. The reduced expression of phosphorylated STAT3 is the main factor responsible for decreased cyclin D1 levels in Anxa2-silenced breast cancer cells. Our results revealed the direct relationship between Anxa2 and activation of STAT3, a key transcription factor that plays a pivotal role in regulating breast cancer proliferation and survival. This study provides novel insights into the functions of Anxa2 as a critical molecule in cellular signal transduction and significantly improves our understanding of the mechanism through which Anxa2 regulates cell cycle and cancer cell proliferation.
Collapse
|
26
|
Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (Review). Oncol Rep 2015; 33:2121-8. [PMID: 25760910 DOI: 10.3892/or.2015.3837] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023] Open
Abstract
Annexin A2 (ANXA2) is a well-known calcium-dependent phospholipid binding protein widely distributed in the nucleus, cytoplasm and extracellular surface of various eukaryotic cells. It has been recognized as a pleiotropic protein affecting a wide range of molecular and cellular processes. Dysregulation and abnormal expression of ANXA2 are linked to a large number of prevalent diseases, including autoimmune and neurodegenerative disease, antiphospholipid syndrome, inflammation, diabetes mellitus and a series of cancers. Accumulating data suggest that ANXA2 is aberrantly expressed in a wide spectrum of cancers, and exerts profound effects on tumor cell adhesion, proliferation, apoptosis, invasion and metastasis as well as tumor neovascularization via different modes of action. However, despite significant research, our knowledge of the mechanism by which ANXA2 participates in cancer development remains fragmented. The present review systematically summarizes the effects of ANXA2 on tumor progression, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Li-Hua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Hui Feng
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan-Qiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
27
|
Overexpression of ANXA2 predicts adverse outcomes of patients with malignant tumors: a systematic review and meta-analysis. Med Oncol 2014; 32:392. [PMID: 25476478 DOI: 10.1007/s12032-014-0392-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/23/2023]
Abstract
Accumulated evidence has indicated a correlation between annexin A2 (ANXA2) and malignancy progression. However, whether ANXA2 expression can be considered as a prognostic factor for cancer patients remains controversial. This meta-analysis aimed to explore the prognostic value of ANXA2 overexpression. A systematically comprehensive search for studies investigating the relationships between ANXA2 expression and outcome of malignant tumor patients was performed using PubMed and EMBASE. Prognostic value of ANXA2 expression in malignancy patients was evaluated regarding overall survival (OS), disease-free survival (DFS) and various clinicopathological features measured by pooled hazard ratios (HRs) or odds ratios and their 95 % confidence intervals (CIs). Fifteen studies including 2,321 patients were enrolled in the meta-analysis. Our results showed that the overexpression of ANXA2 was correlated with poor prognosis in terms of OS (HR 1.56; 95 % CI 1.24-1.97; P < 0.001) and DFS (HR 1.47; 95 % CI 1.18-1.83; P < 0.001) in patients with malignant tumors. In addition, ANXA2 overexpression was significantly associated with tumor invasion (HR 2.06; 95 % CI 1.47-2.89; P < 0.001) and lymph node metastasis (HR 2.25; 95 % CI 1.21-4.15; P = 0.01). However, when age, tumor stage, histological grade and distant metastasis were considered, no obvious association was observed. Publication bias was absent. Sensitivity analysis suggested that the results of this meta-analysis were robust. The present meta-analysis results indicated that ANXA2 overexpression might be associated with poor outcomes in patients with malignant tumors.
Collapse
|
28
|
From plasminogen to plasmin: role of plasminogen receptors in human cancer. Int J Mol Sci 2014; 15:21229-52. [PMID: 25407528 PMCID: PMC4264222 DOI: 10.3390/ijms151121229] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/04/2014] [Accepted: 11/12/2014] [Indexed: 12/02/2022] Open
Abstract
Cell surface-associated proteolysis mediated by plasmin (PLA) is an essential feature of wound healing, angiogenesis and cell invasion, processes that are dysregulated in cancer development, progression and systemic spread. The generation of PLA, initiated by the binding of its precursor plasminogen (PLG) to the cell surface, is regulated by an array of activators, inhibitors and receptors. In this review, we will highlight the importance of the best-characterized components of the PLG/PLA cascade in the pathogenesis of cancer focusing on the role of the cell surface-PLG receptors (PLG-R). PLG-R overexpression has been associated with poor prognosis of cancer patients and resistance to chemotherapy. We will also discuss recent findings on the molecular mechanisms regulating cell surface expression and distribution of PLG-R.
Collapse
|
29
|
Annexin A2 knockdown inhibits hepatoma cell growth and sensitizes hepatoma cells to 5-fluorouracil by regulating β-catenin and cyclin D1 expression. Mol Med Rep 2014; 11:2147-52. [PMID: 25385370 DOI: 10.3892/mmr.2014.2906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 07/22/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer types, and chemotherapy plays an important role in treatment of HCC. However, long‑term treatment with chemotherapeutic drugs such as 5‑fluorouracil (5‑FU) often results in chemoresistance, and the underlying mechanisms remain unclear. In this study, we showed that the annexin A2 (ANXA2) protein is highly expressed in hepatoma cells compared to healthy cells. Knockdown of the ANXA2 gene inhibited hepatoma cell growth, and the underlying mechanism may involve cell cycle inhibition through downregulation of β‑catenin and cyclin D1. We also investigated the role of ANXA2 in chemotherapeutic treatment with 5‑FU. 5‑FU inhibited hepatoma cell growth, while ANXA2 overexpression reduced, and knockdown enhanced, the effects of 5‑FU on hepatoma cell growth. Furthermore, β‑catenin and cyclin D1 were asscociated with the ANXA2‑induced resistance. Taken together, our data suggest that the ANXA2 protein is a critical factor in HCC and that its downregulation can enhance chemotherapeutic treatment with 5‑FU. ANXA2 may thus constitute a new therapeutic target for HCC.
Collapse
|
30
|
Yang SF, Hsu HL, Chao TK, Hsiao CJ, Lin YF, Cheng CW. Annexin A2 in renal cell carcinoma: expression, function, and prognostic significance. Urol Oncol 2014; 33:22.e11-22.e21. [PMID: 25284003 DOI: 10.1016/j.urolonc.2014.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Renal cell carcinoma (RCC) is the most lethal genitourinary cancer and intrinsically resistant to chemotherapy, radiotherapy, and hormone therapy. Annexin A2 (Anxa2) is a calcium-dependent phospholipid-binding protein found on various cell types that plays multiple roles in regulating cellular functions. In RCC, Anxa2 expression was correlated with tumor differentiation, clinical outcomes, and the metastatic potential; however, the underlying mechanisms remain obscure. This study investigated the role of Anxa2 in regulating tumorigenesis of RCC. MATERIALS AND METHODS Commercial RCC tissue microarray arrays and a kidney cancer quantitative polymerase chain reaction array were used to examine Anxa2 by immunohistochemistry and real-time polymerase chain reaction analysis. Short hairpin (sh)RNA-based lentiviral system technology was used to evaluate the effects of manipulating Anxa2 expression on multiple malignant features of 2 RCC cell lines, A498 and 786-O, and its mechanisms. RESULTS (1) The Anxa2 expression level was generally elevated to varying degrees in RCC tissues. In adjacent noncancerous tissues, Anxa2 was mainly expressed in glomeruli and slightly expressed in the cytoplasm of proximal tubules. (2) An increased Anxa2 expression level was found in tissues of clear cell RCC, papillary RCC, and chromophobe RCC, and it was prominently expressed in cancer cell membranes. In addition, the Anxa2 expression level was correlated with poor prognosis. (3) Silencing Anxa2 expression suppressed the abilities of cell migration and invasion, but cell proliferation was less affected. (4) Diminished Anxa2 expression caused alterations in the cell polarity, disrupted the formation of actin filaments, and reduced CXCR4 expression. (5) Inhibition of the Rho/Rock axis restored silencing of Anxa2-mediated suppression of cell motility. CONCLUSIONS Overall, our study points out the regulatory function of Anxa2 in RCC cell motility and provides a molecular-based mechanism of Anxa2 positivity in the progression of RCC.
Collapse
Affiliation(s)
- Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Han-Lin Hsu
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Chia-Jung Hsiao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Sciences and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
31
|
Combined expression of S100A4 and Annexin A2 predicts disease progression and overall survival in patients with urothelial carcinoma. Urol Oncol 2014; 32:798-805. [PMID: 24968947 DOI: 10.1016/j.urolonc.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To determine the expression patterns and prognostic value of S100A4 and Annexin A2 for urothelial carcinoma of the urinary bladder. METHODS AND MATERIALS Immunohistochemical staining for S100A4 and Annexin A2 was performed in 315 archived radical cystectomies and 63 normal specimens. The immunoreactivity of these proteins was correlated to evaluate their clinical significance as prognostic factors. RESULTS Protein levels of S100A4 and Annexin A2 were up-regulated in urothelial carcinoma compared with adjacent nontumor tissues. The increased expressions of S100A4 and Annexin A2 were associated with invasion depth, lymph node metastasis, and distant metastasis (P<0.05). High expression of S100A4 correlated with expression of Annexin A2. These alterations in expression were also associated with greater risk of disease progression and decreased chance of carcinoma-specific survival. Further multivariate analysis suggested that expressions of S100A4 and Annexin A2 were independent prognostic indicators for overall survival in urothelial carcinoma. The patients with S100A4-positive/Annexin A2-positive carcinomas presented the lowest 5-year survival rate compared with the other 3 groups. CONCLUSIONS S100A4 and Annexin A2 proteins could be useful prognostic markers to predict tumor progression and prognosis in urothelial carcinoma. The expression patterns of S100A4/Annexin A2 interaction correlated well with the pathologic stage, disease progression, and carcinoma-specific survival. This finding could aid in identifying more biologically aggressive carcinomas and thus patients who might benefit from more intensive adjuvant therapy.
Collapse
|
32
|
Annexin A2: its molecular regulation and cellular expression in cancer development. DISEASE MARKERS 2014; 2014:308976. [PMID: 24591759 PMCID: PMC3925611 DOI: 10.1155/2014/308976] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/05/2023]
Abstract
Annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical associations, especially in cancer progression. The structure of ANXA2 affects its cellular localization and function. However, posttranslational modification and protease-mediated N-terminal cleavage also play critical roles in regulating ANXA2. ANXA2 expression levels vary among different types of cancers. With some cancers, ANXA2 can be used for the detection and diagnosis of cancer and for monitoring cancer progression. ANXA2 is also required for drug-resistance. This review discusses the feasibility of ANXA2 which is active in cancer development and can be a therapeutic target in cancer management.
Collapse
|
33
|
Dong Z, Yao M, Zhang H, Wang L, Huang H, Yan M, Wu W, Yao D. Inhibition of Annexin A2 gene transcription is a promising molecular target for hepatoma cell proliferation and metastasis. Oncol Lett 2013; 7:28-34. [PMID: 24348815 PMCID: PMC3861549 DOI: 10.3892/ol.2013.1663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/29/2013] [Indexed: 01/07/2023] Open
Abstract
Hepatocyte Annexin A2 (ANXA2) expression is associated with the progression and metastasis of hepatocellular carcinoma (HCC). Circulating ANXA2 levels in HCC patients are significantly higher compared with that of patients with benign liver disease. ANXA2 levels have been found to correlate with hepatitis B virus infection, extrahepatic metastasis and portal vein thrombus. By contrast, ANXA2 levels do not correlate with tumour size and AFP levels. However, the underlying mechanisms of ANXA2 remain obscure. The results of the current study identified that abnormalities in hepatic ANXA2 expression were localised to the cell membrane and cytoplasm of HCC tissues and mainly in the cytoplasm of para-cancerous tissues. ANXA2 was overexpressed in MHCC97-H cells which have high metastatic potential. Following specific ANXA2-small hairpin RNA (shRNA) transfection in vitro, ANXA-2 was effectively inhibited and the S phase ratio of cells was 27.76%, compared with 36.14% in mock-treated cells. In addition, the invading cell ratio was reduced in the shRNA-treated group (52.16%) compared with the mock-treated group (86.14%). The growth and volume of xenograft tumours in vivo was significantly suppressed (P<0.05) in the shRNA group compared with that of the mock group, indicating that ANXA2 may be a novel and useful target for elucidating molecular mechanisms involving the proliferation and metastasis of HCC.
Collapse
Affiliation(s)
- Zhizhen Dong
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Min Yao
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China ; Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haijian Zhang
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Wang
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Meijuan Yan
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wu
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dengfu Yao
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
34
|
Lu SH, Yuan RH, Chen YL, Hsu HC, Jeng YM. Annexin A10 is an immunohistochemical marker for adenocarcinoma of the upper gastrointestinal tract and pancreatobiliary system. Histopathology 2013; 63:640-8. [PMID: 24024557 DOI: 10.1111/his.12229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022]
Abstract
AIMS Annexin A10 (ANXA10) is a calcium- and phospholipid-binding protein expressed normally in the gastric mucosa. In this study, we evaluated the potential use of ANXA10 as a diagnostic marker. METHODS AND RESULTS We observed ANXA10 expression in the gastric mucosa, the Brunner gland of the duodenum and the urothelium, but absence of expression in other normal organs. Following the screening of 1327 primary carcinomas of major organs, we identified ANXA10 expression in 46% of gastric, 72% of ampullary, 78% of pancreatic and 33% of biliary adenocarcinomas. ANXA10 was expressed in 83% of non-invasive urothelial carcinomas, but was expressed in only 9% of invasive urothelial carcinomas. ANAX10 was rarely expressed in carcinomas of other organs. Of 227 metastatic adenocarcinomas, ANXA10 was expressed in 83% of metastatic pancreatic and 47% of metastatic gastric adenocarcinomas, but was expressed in only 2% of metastatic adenocarcinomas from other organs. In the liver, the sensitivity and specificity for identifying the pancreas as the primary site of metastatic adenocarcinoma were 83 and 95%, respectively. CONCLUSION Our study results indicate that the inclusion of ANXA10 in an immunohistochemical panel will be helpful in the differential diagnosis of adenocarcinoma of an unknown primary site.
Collapse
Affiliation(s)
- Su-Hsi Lu
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Pan Z, Grizzle W, Hameed O. Significant variation of immunohistochemical marker expression in paired primary and metastatic clear cell renal cell carcinomas. Am J Clin Pathol 2013; 140:410-8. [PMID: 23955461 DOI: 10.1309/ajcp8dmpeimvh6yp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES To compare the immunohistochemical expression of diagnostic markers in primary clear cell renal cell carcinomas (RCCs) and their matched metastases. METHODS Tissue microarrays were constructed from 15 pairs of primary and metastatic clear cell RCCs and then evaluated for the immunohistochemical expression of renal cell carcinoma antigen (RCCA), kidney-specific cadherin, carbonic anhydrase IX (CAIX), and paired box genes 2 (PAX2) and 8 (PAX8). RESULTS There was significantly higher overall marker expression in metastatic tumors compared to their matched primaries (P < .001). Individually, there was greater CAIX, PAX2, and PAX8 expression and lower RCCA expression in metastatic tumors. Most importantly, a significant proportion of originally RCCA-positive tumors lost such expression in metastases. CONCLUSIONS Metastatic RCCs have significantly higher expression of PAX2 and PAX8 compared to primary RCCs. RCCA is not very reliable in this diagnostic setting, both because of its lower overall sensitivity and loss of expression in metastatic RCCs.
Collapse
Affiliation(s)
- Zenggang Pan
- Department of Pathology, University of Colorado Medical Center, Aurora
- Department of Pathology, University of Alabama at Birmingham, Vanderbilt University Medical Center, Nashville, TN
| | - William Grizzle
- Department of Pathology, University of Alabama at Birmingham, Vanderbilt University Medical Center, Nashville, TN
| | - Omar Hameed
- Department of Pathology, University of Alabama at Birmingham, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
36
|
Zhang HJ, Yao DF, Yao M, Huang H, Wang L, Yan MJ, Yan XD, Gu X, Wu W, Lu SL. Annexin A2 silencing inhibits invasion, migration, and tumorigenic potential of hepatoma cells. World J Gastroenterol 2013; 19:3792-3801. [PMID: 23840117 PMCID: PMC3699036 DOI: 10.3748/wjg.v19.i24.3792] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/30/2013] [Accepted: 05/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of Annexin A2 (ANXA2) silencing on invasion, migration, and tumorigenic potential of hepatoma cells.
METHODS: Human hepatoma cell lines [HepG2, SMMC-7721, SMMC-7402, and MHCC97-H, a novel human hepatocellular carcinoma (HCC) cell line with high metastasis potential] and a normal hepatocyte cell line (LO2) were used in this study. The protein and mRNA expression levels of ANXA2 were analysed by western blotting and real-time polymerase chain reaction, respectively. The intracellular distribution profile of ANXA2 expression was determined by immunofluorescence and immunohistochemistry. Short hairpin RNA targeting ANXA2 was designed and stably transfected into MHCC97-H cells. Cells were cultured for in vitro analyses or subcutaneously injected as xenografts in mice for in vivo analyses. Effects of ANXA2 silencing on cell growth were assessed by cell counting kit-8 (CCK-8) assay (in vitro) and tumour-growth assay (in vivo), on cell cycling was assessed by flow cytometry and propidium iodide staining (in vitro), and on invasion and migration potential were assessed by transwell assay and wound-healing assay, respectively (both in vitro).
RESULTS: The MHCC97-H cells, which are known to have high metastasis potential, showed the highest level of ANXA2 expression among the four HCC cell types examined; compared to the LO2 cells, the MHCC97-H expression level was 8-times higher. The ANXA2 expression was effectively inhibited (about 80%) by ANXA2-specific small hairpin RNA (shRNA). ANXA2 expression in the MHCC97-H cells was mainly localized to the cellular membrane and cytoplasm, and some localization was detected in the nucleus. Moreover, the proliferation of MHCC97-H cells was obviously suppressed by shRNA-mediated ANXA2 silencing in vitro, and the tumour growth inhibition rate was 38.24% in vivo. The percentage of MHCC97-H cells in S phase dramatically decreased (to 27.76%) under ANXA2-silenced conditions. Furthermore, ANXA2-silenced MHCC97-H cells showed lower invasiveness (percentage of invading cells decreased to 52.16%) and suppressed migratory capacity (migration distance decreased to 63.49%). It is also worth noting that shRNA-mediated silencing of ANXA2 in the MHCC97-H cells led to abnormal apoptosis.
CONCLUSION: shRNA-mediated silencing of ANXA2 suppresses the invasion, migration, and tumorigenic potential of hepatoma cells, and may represent a useful target of future molecular therapies.
Collapse
|
37
|
Ceruti P, Principe M, Capello M, Cappello P, Novelli F. Three are better than one: plasminogen receptors as cancer theranostic targets. Exp Hematol Oncol 2013; 2:12. [PMID: 23594883 PMCID: PMC3640925 DOI: 10.1186/2162-3619-2-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of plasminogen on the cell surface initiates a cascade of protease activity with important implications for several physiological and pathological events. In particular, components of the plasminogen system participate in tumor growth, invasion and metastasis. Plasminogen receptors are in fact expressed on the cell surface of most tumors, and their expression frequently correlates with cancer diagnosis, survival and prognosis. Notably, they can trigger multiple specific immune responses in cancer patients, highlighting their role as tumor-associated antigens. In this review, three of the most characterized plasminogen receptors involved in tumorigenesis, namely Annexin 2 (ANX2), Cytokeratin 8 (CK8) and alpha-Enolase (ENOA), are analyzed to ascertain an overall view of their role in the most common cancers. This analysis emphasizes the possibility of delineating new personalized therapeutic strategies to counteract tumor growth and metastasis by targeting plasminogen receptors, as well as their potential application as cancer predictors.
Collapse
Affiliation(s)
- Patrizia Ceruti
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Moitza Principe
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Michela Capello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| |
Collapse
|
38
|
Luo CH, Liu QQ, Zhang PF, Li MY, Chen ZC, Liu YF. Prognostic significance of annexin II expression in non-small cell lung cancer. Clin Transl Oncol 2013; 15:938-46. [PMID: 23529818 DOI: 10.1007/s12094-013-1028-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/08/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE To discover common metastasis-related and prognostic markers in lung squamous carcinoma (LSC) and lung adenocarcinoma (AdC), two forms of non-small cell lung cancer (NSCLC). METHODS Quantitative proteomic analysis was performed between primary cancer tissues and matched lymph node metastatic tissues in LSC and AdC, respectively. Immunohistochemistry and statistic analysis were performed to investigate prognostic significance of metastasis-related protein annexin II expression in LSC and AdC. RESULTS Both in LSC and AdC, elevated expression of annexin II was identified in lymph node metastatic lung cancers compared to corresponding primary lung cancers. Furthermore, immunohistochemical analysis of a bulk of clinical specimens indicated that annexin II over-expression was more frequently observed in matched lymph node metastatic tissues than corresponding primary cancer tissues. Statistical analysis showed that annexin II over-expression was significantly associated with advanced clinical stage (P < 0.05) and lymph node metastasis (P < 0.05) and increased relapse rate (P < 0.05) and decreased overall survival (P < 0.05) in both two subtypes of NSCLC. Cox regression analysis indicated that annexin II over-expression was an important prognostic factor in both LSC and AdC. CONCLUSION Annexin II was identified as a common prognostic factor in both LSC and AdC.
Collapse
Affiliation(s)
- C-H Luo
- The Department of Pathology, The Traditional Chinese Medical Hospital of Xiamen, Xiamen, Fujian, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
40
|
Zhang HJ, Yao DF, Yao M, Huang H, Wu W, Yan MJ, Yan XD, Chen J. Expression characteristics and diagnostic value of annexin A2 in hepatocellular carcinoma. World J Gastroenterol 2012; 18:5897-904. [PMID: 23139605 PMCID: PMC3491596 DOI: 10.3748/wjg.v18.i41.5897] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the characteristics and diagnostic value of annexin A2 (ANXA2) expression in cancerous tissues and sera of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC).
METHODS: Levels of liver ANXA2 gene transcription or protein expression were analyzed in HCC-, their self-controlled precancerous-, and distant cancerous- tissues from 30 HCC. Serum levels of ANXA2 expression in 115 patients with HCC, 25 with metastatic liver cancer, 35 with chronic hepatitis, 28 with acute hepatitis, 38 with cirrhosis, and 30 healthy controls were determined. Clinicopathological characteristics of circulating ANXA2 expression were analyzed, and its diagnostic efficiency and clinical values in HCC were evaluated.
RESULTS: ANXA2 expression was localized in both cell membrane and cytoplasm in HCC tissue, mainly in the cytoplasm of matched adjacent cancerous tissue, and there was almost no positive staining in matched distant cancerous tissue. Abnormal expression of liver ANXA2 was present in HCC tissues compared with self-controlled adjacent- and distant-cancerous tissues at protein or mRNA level. Circulating ANXA2 in HCC patients was significantly higher than that of other liver diseases (P < 0.01) except metastatic liver cancer. If the diagnostic cutoff value of ANXA2 level was more than 18 ng/mL, the incidence of serum ANXA2 was 86.96% in the HCC group, 80% in the metastatic liver cancer group, 31.58% in the liver cirrhosis group, none in the chronic hepatitis or acute hepatitis or normal control group, respectively. Serum ANXA2 expression in HCC patients was correlated with HBV infection (27.38 ± 5.67 ng/mL vs 18.58 ± 7.83 ng/mL, P < 0.01), extrahepatic metastasis (26.11 ± 5.43 ng/mL vs 22.79 ± 5.64 ng/mL, P < 0.01), and portal vein thrombus (26.03 ± 5.99 ng/mL vs 23.06 ± 5.03 ng/mL, P < 0.01), and was significantly higher (P < 0.01) in the moderately- (26.19 ± 5.34 ng/mL) or the poorly- differentiated group (27.05 ± 5.13 ng/mL) than in the well differentiated group (20.43 ± 4.97 ng/mL), and in the tumor node metastasis stages III-IV (P < 0.01) than in stages I-II. ANXA2 was not correlated with patient sex, age, size or α-fetoprotein (AFP) level. Area under the receiver operating characteristic curve for the whole range of sensitivities and specificities was 0.796 for ANXA2 and 0.782 for AFP. Combining detection of serum ANXA2 and AFP substantially improved the diagnostic efficiency (96.52%) and the negative predictive value (96.61%) for HCC.
CONCLUSION: The characteristics and distribution of ANXA2 expression has good diagnostic potential for HCC diagnosis.
Collapse
|
41
|
Gao H, Yu B, Yan Y, Shen J, Zhao S, Zhu J, Qin W, Gao Y. Correlation of expression levels of ANXA2, PGAM1, and CALR with glioma grade and prognosis. J Neurosurg 2012; 118:846-53. [PMID: 23082878 DOI: 10.3171/2012.9.jns112134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Biomarkers for the diagnosis and prognosis of gliomas are lacking. To elucidate new diagnostic and prognostic targets, a routine method is used to evaluate differences between the protein profile of normal and tumor cells. The object of the current study was to investigate novel differentially expressed proteins and their roles in gliomas. METHODS Differences in the protein profile were compared using 2D polyacrylamide gel electrophoresis using C6 glioma cells and rat astrocytes. The mRNA and protein expression of ANXA2, PGAM1, and CALR were analyzed in glioma tissues and normal brain tissues. The expression of ANXA2 in the U87 glioma cell line was interrupted using short interfering RNA duplexes, and the role of ANXA2 in the migration and invasiveness of glioma cells was assessed. The expression of ANXA2, PGAM1, and CALR was examined further by immunohistochemical analysis using 130 glioma samples obtained in patients, and their prognostic roles in gliomas were evaluated using Kaplan-Meier and Cox regression analyses. RESULTS Significantly higher expression levels of ANXA2 and PGAM1 and a lower level of CALR were found in glioma samples than in the normal brain samples. ANXA2, PGAM1, and CALR expression correlated with the grade and survival of patients with gliomas. Multivariate analysis further revealed that ANXA2 was an independent prognostic marker for glioma. After ANXA2 expression was suppressed using short interfering RNA, U87 cells had decreased migratory and invasive capabilities in vitro. CONCLUSIONS Protein expression alterations in ANXA2, PGAM1, and CALR were found in gliomas, and ANXA2 provided a novel prognostic value.
Collapse
Affiliation(s)
- Huasong Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The annexin A2/S100A10 system in health and disease: emerging paradigms. J Biomed Biotechnol 2012; 2012:406273. [PMID: 23193360 PMCID: PMC3496855 DOI: 10.1155/2012/406273] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Since its discovery as a src kinase substrate more than three decades ago, appreciation for the physiologic functions of annexin A2 and its associated proteins has increased dramatically. With its binding partner S100A10 (p11), A2 forms a cell surface complex that regulates generation of the primary fibrinolytic protease, plasmin, and is dynamically regulated in settings of hemostasis and thrombosis. In addition, the complex is transcriptionally upregulated in hypoxia and promotes pathologic neoangiogenesis in the tissues such as the retina. Dysregulation of both A2 and p11 has been reported in examples of rodent and human cancer. Intracellularly, A2 plays a critical role in endosomal repair in postarthroplastic osteolysis, and intracellular p11 regulates serotonin receptor activity in psychiatric mood disorders. In human studies, the A2 system contributes to the coagulopathy of acute promyelocytic leukemia, and is a target of high-titer autoantibodies in patients with antiphospholipid syndrome, cerebral thrombosis, and possibly preeclampsia. Polymorphisms in the human ANXA2 gene have been associated with stroke and avascular osteonecrosis of bone, two severe complications of sickle cell disease. Together, these new findings suggest that manipulation of the annexin A2/S100A10 system may offer promising new avenues for treatment of a spectrum of human disorders.
Collapse
|
43
|
Shetty PK, Thamake SI, Biswas S, Johansson SL, Vishwanatha JK. Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer. PLoS One 2012; 7:e44299. [PMID: 22957061 PMCID: PMC3434131 DOI: 10.1371/journal.pone.0044299] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/01/2012] [Indexed: 12/31/2022] Open
Abstract
Alternative survival pathways are commonly seen to be upregulated upon inhibition of receptor tyrosine kinases (RTK), including Her-2. It is established that treatment with Herceptin leads to selective overexpression and activation of epidermal growth factor receptor (EGFR) and Src which further contributes to oncogenesis in Herceptin resistant and triple negative breast cancer (TNBC) patients. Here, we show a co-regulated upregulation in the expression of Annexin A2 (AnxA2), a known substrate of Src and one of the regulators of EGFR receptor endocytosis, in Herceptin resistant and Her-2 negative breast cancer. Immunohistochemical expression analysis revealed a reciprocal regulation between Her-2 and AnxA2 in breast cancer clinical samples as well as in cell lines as confirmed by protein and RNA analysis. The siRNA and Herceptin mediated downregulation/inhibition of Her-2 in Her-2 amplified cells induced AnxA2 expression and membrane translocation. In this study we report a possible involvement of AnxA2 in maintaining constitutively activated EGFR downstream signaling intermediates and hence in cell proliferation, migration and viability. This effect was consistent in Herceptin resistant JIMT-1 cells as well as in Her-2 negative breast cancer. The siRNA mediated AnxA2 downregulation leads to increased apoptosis, decreased cell viability and migration. Our studies further indicate the role of AnxA2 in EGFR-Src membrane bound signaling complex and ligand induced activation of downstream signaling pathways. Targeting this AnxA2 dependent positive regulation of EGFR signaling cascade may be of therapeutic value in Her-2 negative breast cancer.
Collapse
Affiliation(s)
| | - Sanjay I. Thamake
- Department of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Swati Biswas
- Department of Mathematical Sciences, The University of Texas at Dallas, Dallas, Texas, United States of America
| | - Sonny L. Johansson
- Department of Pathology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jamboor K. Vishwanatha
- Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
- Department of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Liu J, Zhong X, Li J, Liu B, Guo S, Chen J, Tan Q, Wang Q, Ma W, Wu Z, Wang H, Hou M, Zhang HT, Zhou Q. Screening and identification of lung cancer metastasis-related genes by suppression subtractive hybridization. Thorac Cancer 2012; 3:207-216. [PMID: 28920308 DOI: 10.1111/j.1759-7714.2011.00092.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Lung cancer metastasis is a complicated process in which multiple stages and multiple genes are involved. There is an urgent need to use new molecular biology techniques to get more systematic information and have a general idea of the molecular events that take place in lung cancer metastasis. The object of this study was to construct the subtracted cDNA libraries of different metastatic potential lung cancer cell lines, NL9980 and L9981, which were established and screened from human lung large cell carcinoma cell line, WCQH-9801. METHOD The forward and reverse subtracted cDNA libraries were constructed in the large cell lung cancer cell lines NL9980 and L9981 with the same heredity background but different metastatic potential, by suppression subtractive hybridization (SSH). The positive clones were preliminarily screened by blue-white colony and precisely identified by PCR. The forward and reverse subtracted libraries were screened and identified by dot blot so as to obtain the clones corresponding to gene segments with differential expression. DNA sequencing was performed to analyze the sequences of differential expression segments, which were then searched and compared using the Basic Local Alignment Search Tool from The National Center for Biotechnology Information NCBI BLAST tools. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and western blotting were performed to confirm the differential expressed genes both on RNA and protein levels. RESULTS The forward and reverse subtracted cDNA libraries of the different large cell lung cancer cell lines with metastatic potential were successfully constructed. With blue-white colony and dot blot, 307 positive clones in the forward subtracted library and 78 positive clones in the reverse subtracted library were obtained. Fifty-five clones were successfully sequenced in the forward subtracted library while 31 clones were successfully sequenced in the reverse subtracted library. One new expressed sequence tag (EST) segment was identified from the reverse subtracted cDNA library and was successfully submitted to GenBank and embodied by GenBank. For the differentially expressed genes between L9981 and NL9980 screened by SSH, four genes, ANXA2, KRT18, ACTG1 was upregulated in L9981 cells compared to NL9980 cells. Annexin A2 (which was encoded by ANXA2), γ-actin (which was encoded by ACTG1), and aldose reductase (which was encoded by AKR1B1) proteins were upregulated in L9981 cells compared to NL9980 cells by western blotting. CONCLUSION The forward and reverse subtracted cDNA libraries of different metastatic potential large cell lung cancer cell lines were successfully constructed by SSH. A series of genes have been screened out to have significantly different expression levels between lung cancer cell lines NL9980 and L9981. A new EST segment that may represent a new metastasis-related gene has been identified. Consistent with the result of SSH, both quantitative real-time RT-PCR and western Blotting confirmed the upregulation of ANXA2, ACTG1 and AKR1B1 in lung cancer cell line L9981 compared with NL9980. These three genes may play important roles in lung cancer metastasis.
Collapse
Affiliation(s)
- Jiewei Liu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Xiaorong Zhong
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Juan Li
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Baoxing Liu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Shanxian Guo
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Jun Chen
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Qingwei Tan
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Qin Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Wei Ma
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Zhihao Wu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Haisu Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Mei Hou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Hong-Tao Zhang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| | - Qinghua Zhou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaDepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital Affiliated to Dalian Medical University, Dalian, ChinaSoochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Sino-Singapore Industrial Park, Suzhou, China
| |
Collapse
|
45
|
Zhang X, Liu S, Guo C, Zong J, Sun MZ. The association of annexin A2 and cancers. Clin Transl Oncol 2012; 14:634-40. [PMID: 22855149 DOI: 10.1007/s12094-012-0855-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/24/2012] [Indexed: 12/16/2022]
Abstract
Annexins are a group of calcium- and phospholipid-dependent proteins. As a member of the annexin, annexin A2 (Anxa2) is widely distributed in nucleus, cytoplasm and extracellular surface and mainly expressed in human endothelial cells, mononuclear cells, macrophages, marrow cells and some tumor cells. Accumulated evidences indicated that Anxa2 deregulation was associated with the occurrence, invasion and metastasis of cancers. Anxa2 up-regulation was related to the development, invasion, metastasis and drug resistance of hepatocellular carcinoma, colorectal cancer, breast cancer, pancreatic cancer, acute promyelocytic leukemia and renal cell carcinoma; while Anxa2 down-regulation was associated with prostate cancer, esophageal squamous carcinoma and nasopharyngeal carcinoma and sinonasal adenocarcinoma. The association between Anxa2 and malignant tumors as well as the potential action mechanisms were summarized in current work. Anxa2 might be used as a potential biomarker for the diagnosis, treatment and prognosis of certain tumors.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Clinical Medicine, Dalian Medical University, Dalian, 116044, China
| | | | | | | | | |
Collapse
|
46
|
Betancourt AM, Wang J, Jenkins S, Mobley J, Russo J, Lamartiniere CA. Altered carcinogenesis and proteome in mammary glands of rats after prepubertal exposures to the hormonally active chemicals bisphenol a and genistein. J Nutr 2012; 142:1382S-8S. [PMID: 22649256 DOI: 10.3945/jn.111.152058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Through our diet, we are exposed to numerous natural and man-made chemicals, including polyphenols with hormone-like properties. The most abundant hormonally active polyphenols are characterized as weak estrogens. These chemicals are hypothesized to interfere with signaling pathways involved in important diseases such as breast cancer, which in most cases is initially estrogen dependent. Two such chemicals are bisphenol A (BPA), a plasticizer, and genistein, a component of soy. In spite of both possessing estrogenic properties, BPA and genistein yield different health outcomes. The exposure of rats during the prepubertal period to BPA increases the susceptibility of adult animals for mammary cancer development, whereas genistein decreases this susceptibility in a chemically induced model. Because both BPA and genistein possess estrogenic properties, it is certainly plausible that additional mechanisms are affected by these chemicals. Hence, it was our goal to investigate at the protein level how exposure to these 2 chemicals can contribute to mammary cancer causation as opposed to cancer chemoprevention. Using 2-dimensional gel electrophoresis followed by MS analysis, we identified differentially regulated proteins from the mammary glands of rats prepubertally exposed to BPA and genistein. Following protein identification, we used immunoblotting techniques to validate the identity and regulation of these proteins and to identify downstream signaling proteins. Our studies highlight the importance of proteomics technology in elucidating signaling pathways altered by exposure to hormonally active chemicals and its potential value in identifying biomarkers for mammary cancer.
Collapse
Affiliation(s)
- Angela M Betancourt
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
47
|
Wu B, Zhang F, Yu M, Zhao P, Ji W, Zhang H, Han J, Niu R. Up-regulation of Anxa2 gene promotes proliferation and invasion of breast cancer MCF-7 cells. Cell Prolif 2012; 45:189-98. [PMID: 22452352 DOI: 10.1111/j.1365-2184.2012.00820.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/22/2012] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The metastatic ability of breast cancer cells with chemoresistant properties is higher when compared to that of their parental wild-type cells. Expression of AnnexinA2 (Anxa2), a 36-kDa calcium-dependent phospholipid binding protein, is increased in metastatic tumours and has been found to be associated with the phenotype of drug resistance and metastasis. MATERIALS AND METHODS AND RESULTS In the present study, we found that up-regulation of Anxa2 correlates with enhanced migration and invasion ability of MCF-7 breast cancer cells both in vitro and in vivo. Western blot analysis revealed that exposure to chemotherapeutic drugs may induce elevated expression of Anxa2. In addition, our data have shown that Anxa2 might influence proliferation, migration and invasion of MCF-7 cells by increasing expression of c-myc and cyclin D1 via activation of Erk1/2 signalling pathways. CONCLUSION Our findings suggest that up-regulation of Anxa2 may play an important role in modulating proliferation and invasion of breast cancer MCF-7 cells through regulation of many relevant downstream target genes.
Collapse
Affiliation(s)
- B Wu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Raimondo F, Salemi C, Chinello C, Fumagalli D, Morosi L, Rocco F, Ferrero S, Perego R, Bianchi C, Sarto C, Pitto M, Brambilla P, Magni F. Proteomic analysis in clear cell renal cell carcinoma: identification of differentially expressed protein by 2-D DIGE. MOLECULAR BIOSYSTEMS 2012; 8:1040-51. [PMID: 22315040 DOI: 10.1039/c2mb05390j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Renal cell carcinoma (RCC), the most common neoplasm affecting the adult kidney, is characterised by heterogeneity of histological subtypes, drug resistance, and absence of molecular markers. Two-dimensional difference gel electrophoresis (2-D DIGE) technology in combination with mass spectrometry (MS) was applied to detect differentially expressed proteins in 20 pairs of RCC tissues and matched adjacent normal kidney cortex (ANK), in order to search for RCC markers. After gel analysis by DeCyder 6.5 and EDA software, differentially expressed protein spots were excised from Deep Purple stained preparative 2DE gel. A total of 100 proteins were identified by MS out of 2500 spots, 23 and 77 of these were, respectively, over- and down-expressed in RCC. The Principal Component Analysis applied to gels and protein spots exactly separated the two sample classes in two groups: RCC and ANK. Moreover, some spots, including ANXA2, PPIA, FABP7 and LEG1, resulted highly differential. The DIGE data were also confirmed by immunoblotting analysis for these proteins. In conclusion, we suggest that applying 2-D DIGE to RCC may provide the basis for a better molecular characterization and for the discovery of candidate biomarkers.
Collapse
Affiliation(s)
- Francesca Raimondo
- Department of Experimental Medicine, Univ. of Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Gliomas are highly invasive, lethal brain tumors. Tumor-associated proteases play an important role in glioma progression. Annexin A2 is overexpressed in many cancers and correlates with increased plasmin activity on the tumor cell surface, which mediates degradation of extracellular matrix and promotes neoangiogenesis to facilitate tumor growth. In this study, we used two glioma cell lines, mouse GL261-EGFP and rat C6/LacZ, as well as stable clones transfected with an annexin A2 knockdown construct. We find that the annexin A2 knockdown decreased glioma cell migration in vitro and decreased membrane-bound plasmin activity. In vivo, we injected the glioma cells into the rodent brain and followed glioma progression. Knockdown of annexin A2 in glioma cells decreased tumor size and slowed tumor progression, as evidenced by decreased invasion, angiogenesis, and proliferation, as well as increased apoptosis in the tumor tissue of the annexin A2 knockdown group. Moreover, we report that the levels of expression of annexin A2 in human glioma samples correlate with their degree of malignancy. Together, our findings demonstrate that inhibition of annexin A2 expression in glioma cells could become a new target for glioma therapy.
Collapse
|
50
|
Sharma M, Blackman MR, Sharma MC. Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model. Exp Mol Pathol 2011; 92:175-84. [PMID: 22044461 DOI: 10.1016/j.yexmp.2011.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/08/2011] [Indexed: 12/11/2022]
Abstract
Activation of the fibrinolytic pathway has long been associated with human breast cancer. Plasmin is the major end product of the fibrinolytic pathway and is critical for normal physiological functions. The mechanism by which plasmin is generated in breast cancer is not yet fully described. We previously identified annexin II (ANX II), a fibrinolytic receptor, in human breast tumor tissue samples and observed a strong positive correlation with advanced stage cancer (Sharma et al., 2006a). We further demonstrated that tissue plasminogen activator (tPA) binds to ANX II in invasive breast cancer MDA-MB231cells, which leads to plasmin generation (Sharma et al., 2010). We hypothesize that ANX II-dependent plasmin generation in breast tumor is necessary to trigger the switch to neoangiogenesis, thereby stimulating a more aggressive cancer phenotype. Our immunohistochemical studies of human breast tumor tissues provide compelling evidence of a strong positive correlation between ANX II expression and neoangiogenesis, and suggest that ANX II is a potential target to slow or inhibit breast tumor growth by inhibiting neoangiogenesis. We now report that administration of anti-ANX II antibody potently inhibits the growth of human breast tumor in a xenograft model. Inhibition of tumor growth is at least partly due to attenuation of neoangiogenic activity within the tumor. In vitro studies demonstrate that anti-ANX II antibody inhibits angiogenesis on three dimensional matrigel cultures by eliciting endothelial cell (EC) death likely due to apoptosis. Taken together, these data suggest that selective disruption of the fibrinolytic activity of ANX II may provide a novel strategy for specific inhibition of neoangiogenesis in human breast cancer.
Collapse
Affiliation(s)
- Meena Sharma
- University of Pennsylvania, School of Medicine, PA, USA
| | | | | |
Collapse
|