1
|
Rey-Keim S, Schito L. Origins and molecular effects of hypoxia in cancer. Semin Cancer Biol 2024; 106-107:166-178. [PMID: 39427969 DOI: 10.1016/j.semcancer.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hypoxia (insufficient O2) is a pivotal factor in cancer progression, triggering genetic, transcriptional, translational and epigenetic adaptations associated to therapy resistance, metastasis and patient mortality. In this review, we outline the microenvironmental origins and molecular mechanisms responsible for hypoxic cancer cell adaptations in situ and in vitro, whilst outlining current approaches to stratify, quantify and therapeutically target hypoxia in the context of precision oncology.
Collapse
Affiliation(s)
- Sergio Rey-Keim
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Luana Schito
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
2
|
de Amorim ÍSS, Pinheiro D, da Silva Oliveira M, de Sousa Rodrigues MM, José JS, Siqueira PB, Pires BRB, de Souza da Fonseca A, Mencalha AL. APX2009 sensitizes hypoxic breast cancer cells to doxorubicin by increasing its accumulation and caspase-3/7-mediated apoptosis. Breast Cancer Res Treat 2024:10.1007/s10549-024-07512-6. [PMID: 39397207 DOI: 10.1007/s10549-024-07512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE The association of targeted therapy with chemotherapy is encouraged to increase the treatment efficiency, especially in hypoxic triple-negative breast cancer. The APE1 redox activity has stood out as a potential tumor target. However, the effect of the association of the APE1 redox inhibitors with doxorubicin in hypoxia still needs to be evidenced. Therefore, our objective was to investigate the effect of the APX2009 (APE1 inhibitor) on the sensitization of breast cancer cells to doxorubicin in normoxia and hypoxia. METHODS The WST-1 assay was used to evaluate cell viability after APX2009 and doxorubicin application under normoxia and hypoxia conditions in the MCF-7 and MDA-MB-231 cells. Apoptosis was analyzed by annexin assay and detection of caspases-3/7 activity by luminescence-based assay. The clinical association between APE1 inhibition signature and doxorubicin sensitivity was evaluated by bioinformatics analyses. RESULTS MDA-MB-231 and MCF-7 cell lines were more sensitive to APX2009 in normoxia than in hypoxia. Co-treatment with APX2009 and doxorubicin in hypoxia further decreased the viability of triple-negative MDA-MB-231 cells than treatment alone, which was accompanied by doxorubicin intracellular accumulation, and increase of apoptotic cells percentage, and caspases-3/7 activity. Moderate association was found between APE1 inhibition signature and doxorubicin sensitivity in the hypoxic basal subtype. CONCLUSION The findings suggest that APX2009 sensitizes the MDA-MB-231 cells to doxorubicin in hypoxia by doxorubicin intracellular accumulation and caspases-3/7-mediated apoptosis.
Collapse
Affiliation(s)
- Ísis Salviano Soares de Amorim
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daphne Pinheiro
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Matheus da Silva Oliveira
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia Silva José
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Priscyanne Barreto Siqueira
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Ricardo Barreto Pires
- Laboratório de Regulação E Expressão Gênica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adenilson de Souza da Fonseca
- Laboratório de Biofotônica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre Luiz Mencalha
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Li X, Xu J, Li X, Shi J, Wei C, Liang Q. Profiling hypoxia signaling reveals a lncRNA signature contributing to immunosuppression in high-grade glioma. Front Immunol 2024; 15:1471388. [PMID: 39416790 PMCID: PMC11479907 DOI: 10.3389/fimmu.2024.1471388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background Hypoxic conditions in glioma are linked to tumor aggressiveness, poor prognosis, and treatment resistance. Long non-coding RNAs (lncRNAs) play key roles in the hypoxic and immune microenvironment of cancers, but their link to hypoxia-induced immunosuppression in high-grade glioma (HGG) is not well-studied. Methods Gene expression profiles from TCGA and CGGA, along with clinical and genomic data, were analyzed. Bioinformatics methods including Consensus Clustering, Pearson correlation, and Cox regression analyses were used. Cell proliferation was assessed using cell counting kit-8 and colony formation assays. Glioma-macrophage interactions were evaluated using a co-culture model. Results Hypoxia subtype clustering showed hypoxic stress correlates with worse HGG prognosis. Eight hypoxia-related lncRNAs (AP000695.4, OSMR-AS1, AC078883.3, RP11-545E17.3, LINC01057, LINC01503, TP73-AS1, and LINC00672) with prognostic value were identified, forming a risk signature that separated patients into distinct prognostic groups. Multivariate Cox regression confirmed the signature as an independent prognostic factor. High-risk patients had greater hypoxia, leading to an immunosuppressive environment and immunotherapy resistance via tumor-associated macrophages (TAMs). TP73-AS1 significantly influenced hypoxia-induced TAM infiltration and M2 polarization. Conclusions We profiled hypoxic stress in HGG and developed an 8-lncRNA hypoxia-related signature predicting patient survival and immunotherapy response, emphasizing its role in hypoxia-induced immunosuppression.
Collapse
Affiliation(s)
- Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingcheng Xu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Li
- International Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianghua Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunmi Wei
- Department of Radiotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Dawson A, Karimi AH, Shaikh MH, Gazala W, Zeng PYF, Ryan SEB, Pan H, Khan H, Cecchini M, Mendez A, Palma DA, Mymryk JS, Barrett JW, Nichols AC. Loss of MACROD2 drives radioresistance but not cisplatin resistance in HPV-positive head and neck cancer. Oral Oncol 2024; 159:107061. [PMID: 39357386 DOI: 10.1016/j.oraloncology.2024.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type worldwide. In recent years, there has been an increase in the rate of HNSCC cases attributed to the infection of the oropharynx by the human papillomavirus (HPV). Given the significant treatment-related toxicities of the current standard of care for HPV-positive HNSCC, there is an urgent need for the development of precision patient stratification and treatment strategies to improve patients' quality of life while maintaining excellent survival rates. We have previously carried out whole genome sequencing of HPV+ HNSCC tumors that failed concurrent cisplatin and radiation treatment and discovered that MACROD2 deletion is enriched among these tumors. In the current study, we sought to investigate the mechanistic role of MACROD2 in HPV+ HNSCC treatment resistance. Our results indicate that MACROD2 depletion in HNSCC cell lines leads to increased cell viability and colony formation capacity. Interestingly, MACROD2 depletion did not alter cisplatin sensitivity but led to an increase in radiation resistance of HPV+ HNSCC cell lines. RNA sequencing and immunofluorescence microscopy demonstrated that MACROD2-depleted HPV+ HNSCC cells displayed elevated levels of hypoxia and an altered DNA damage response. Taken together, this study establishes and characterizes the role of MACROD2 in HPV+ HNSCC radioresistance. Further work is needed to validate MACROD2 as a biomarker of treatment failure and to understand how to overcome the identified molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Alice Dawson
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Amir Hossein Karimi
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Mushfiq H Shaikh
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Walid Gazala
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Peter Y F Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Sarah E B Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Harrison Pan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Halema Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Matthew Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Adrian Mendez
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - David A Palma
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
5
|
O'Connor JPB, Tessyman V, Little RA, Babur M, Forster D, Latif A, Cheung S, Lipowska-Bhalla G, Higgins GS, Asselin MC, Parker GJM, Williams KJ. Combined Oxygen-Enhanced MRI and Perfusion Imaging Detect Hypoxia Modification from Banoxantrone and Atovaquone and Track Their Differential Mechanisms of Action. CANCER RESEARCH COMMUNICATIONS 2024; 4:2565-2574. [PMID: 39240065 PMCID: PMC11443776 DOI: 10.1158/2767-9764.crc-24-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Oxygen-enhanced MRI (OE-MRI) has shown promise for quantifying and spatially mapping tumor hypoxia, either alone or in combination with perfusion imaging. Previous studies have validated the technique in mouse models and in patients with cancer. Here, we report the first evidence that OE-MRI can track change in tumor oxygenation induced by two drugs designed to modify hypoxia. Mechanism of action of banoxantrone and atovaquone were confirmed using in vitro experiments. Next, in vivo OE-MRI studies were performed in Calu6 and U87 xenograft tumor models, alongside fluorine-18-fluoroazomycin arabinoside PET and immunohistochemistry assays of hypoxia. Neither drug altered tumor size. Banoxantrone reduced OE-MRI hypoxic fraction in Calu6 tumors by 52.5% ± 12.0% (P = 0.008) and in U87 tumors by 29.0% ± 15.8% (P = 0.004) after 3 days treatment. Atovaquone reduced OE-MRI hypoxic fraction in Calu6 tumors by 53.4% ± 15.3% (P = 0.002) after 7 days therapy. PET and immunohistochemistry provided independent validation of the MRI findings. Finally, combined OE-MRI and perfusion imaging showed that hypoxic tissue was converted into necrotic tissue when treated by the hypoxia-activated cytotoxic prodrug banoxantrone, whereas hypoxic tissue became normoxic when treated by atovaquone, an inhibitor of mitochondrial complex III of the electron transport chain. OE-MRI detected and quantified hypoxia reduction induced by two hypoxia-modifying therapies and could distinguish between their differential mechanisms of action. These data support clinical translation of OE-MRI biomarkers in clinical trials of hypoxia-modifying agents to identify patients demonstrating biological response and to optimize treatment timing and scheduling. Significance: For the first time, we show that hypoxic fraction measured by oxygen-enhanced MRI (OE-MRI) detected changes in tumor oxygenation induced by two drugs designed specifically to modify hypoxia. Furthermore, when combined with perfusion imaging, OE-MRI hypoxic volume distinguished the two drug mechanisms of action. This imaging technology has potential to facilitate drug development, enrich clinical trial design, and accelerate clinical translation of novel therapeutics into clinical use.
Collapse
Affiliation(s)
- James P B O'Connor
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Victoria Tessyman
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Ross A Little
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Muhammad Babur
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Duncan Forster
- Cancer Research UK Manchester Centre, University of Manchester, Manchester, United Kingdom
| | - Ayşe Latif
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoff J M Parker
- Bioxydyn Ltd., Manchester, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Iriondo O, Mecenas D, Li Y, Chin CR, Thomas A, Moriarty A, Marker R, Wang YJ, Hendrick H, Amzaleg Y, Ortiz V, MacKay M, Dickerson A, Lee G, Harotoonian S, Benayoun BA, Smith A, Mason CE, Roussos Torres ET, Klotz R, Yu M. Hypoxic Memory Mediates Prolonged Tumor-Intrinsic Type I Interferon Suppression to Promote Breast Cancer Progression. Cancer Res 2024; 84:3141-3157. [PMID: 38990731 PMCID: PMC11444891 DOI: 10.1158/0008-5472.can-23-2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Hypoxia is a common feature of many solid tumors due to aberrant proliferation and angiogenesis that is associated with tumor progression and metastasis. Most of the well-known hypoxia effects are mediated through hypoxia-inducible factors (HIF). Identification of the long-lasting effects of hypoxia beyond the immediate HIF-induced alterations could provide a better understanding of hypoxia-driven metastasis and potential strategies to circumvent it. Here, we uncovered a hypoxia-induced mechanism that exerts a prolonged effect to promote metastasis. In breast cancer patient-derived circulating tumor cell lines and common breast cancer cell lines, hypoxia downregulated tumor-intrinsic type I IFN signaling and its downstream antigen presentation (AP) machinery in luminal breast cancer cells, via both HIF-dependent and HIF-independent mechanisms. Hypoxia induced durable IFN/AP suppression in certain cell types that was sustained after returning to normoxic conditions, presenting a "hypoxic memory" phenotype. Hypoxic memory of IFN/AP downregulation was established by specific hypoxic priming, and cells with hypoxic memory had an enhanced ability for tumorigenesis and metastasis. Overexpression of IRF3 enhanced IFN signaling and reduced tumor growth in normoxic, but not hypoxic, conditions. The histone deacetylase inhibitor entinostat upregulated IFN targets and erased the hypoxic memory. These results point to a mechanism by which hypoxia facilitates tumor progression through a long-lasting memory that provides advantages for circulating tumor cells during the metastatic cascade. Significance: Long-term cellular memory of hypoxia leads to sustained suppression of tumor-intrinsic type I IFN signaling and the antigen presentation pathway that facilitates tumorigenesis and metastasis. See related commentary by Purdy and Ford, p. 3125.
Collapse
Affiliation(s)
- Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Center for Cooperative Research (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Desirea Mecenas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yilin Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Amal Thomas
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Aidan Moriarty
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca Marker
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yiru J Wang
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Haley Hendrick
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of the University of Southern California, Los Angeles, California
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Matthew MacKay
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Grace Lee
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sevana Harotoonian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Bérénice A Benayoun
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Andrew Smith
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Evanthia T Roussos Torres
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Besso MJ, Bitto V, Koi L, Wijaya Hadiwikarta W, Conde-Lopez C, Euler-Lange R, Bonrouhi M, Schneider K, Linge A, Krause M, Baumann M, Kurth I. Transcriptomic and epigenetic landscape of nimorazole-enhanced radiochemotherapy in head and neck cancer. Radiother Oncol 2024; 199:110348. [PMID: 38823583 DOI: 10.1016/j.radonc.2024.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Hypoxia remains a challenge for the therapeutic management of head and neck squamous cell carcinoma (HNSCC). The combination of radiotherapy with nimorazole has shown treatment benefit in HNSCC, but the precise underlying molecular mechanisms remain unclear. PURPOSE To assess and to characterize the transcriptomic/epigenetic landscape of HNSCC tumor models showing differential therapeutic response to fractionated radiochemotherapy (RCTx) combined with nimorazole. MATERIALS/METHODS Bulk RNA-sequencing and DNA methylation experiments were conducted using untreated and treated HNSCC xenografts after 10 fractions of RCTx with and without nimorazole. These tumor models (FaDu, SAS, Cal33, SAT and UT-SCC-45) previously showed a heterogeneous response to RCTx with nimorazole. The prognostic impact of candidate genes was assessed using clinical and gene expression data from HNSCC patients treated with primary RCTx within the DKTK-ROG. RESULTS Nimorazole responder and non-responder tumor models showed no differences in hypoxia gene signatures However, non-responder models showed upregulation of metabolic pathways. From that, a subset of 15 differentially expressed genes stratified HNSCC patients into low and high-risk groups with distinct outcome. CONCLUSION In the present study, we found that nimorazole non-responder models were characterized by upregulation of genes involved in Retinol metabolism and xenobiotic metabolic process pathways, which might contribute to identify mechanisms of resistance to nitroimidazole compounds and potentially expand the repertoire of therapeutic options to treat HNSCC.
Collapse
Affiliation(s)
- María José Besso
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany.
| | - Verena Bitto
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany; German Cancer Research Center (DKFZ) Heidelberg, Division of Applied Bioinformatics, Germany; Faculty for Mathematics and Computer Science, Heidelberg University, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | - Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Wahyu Wijaya Hadiwikarta
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Cristina Conde-Lopez
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany
| | - Rosemarie Euler-Lange
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany
| | - Mahnaz Bonrouhi
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany
| | - Karolin Schneider
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz Association / Helmholtz-Zentrum Dresden Rossendorf (HZDR), Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz Association / Helmholtz-Zentrum Dresden Rossendorf (HZDR), Dresden, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology Radiobiology, Germany; German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
8
|
Pyne E, Reardon M, Christensen M, Rodriguez Mateos P, Taylor S, Iles A, Choudhury A, Pamme N, Pires IM. Investigating the impact of the interstitial fluid flow and hypoxia interface on cancer transcriptomes using a spheroid-on-chip perfusion system. LAB ON A CHIP 2024; 24:4609-4622. [PMID: 39258507 PMCID: PMC11388701 DOI: 10.1039/d4lc00512k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Solid tumours are complex and heterogeneous systems, which exist in a dynamic biophysical microenvironment. Conventional cancer research methods have long relied on two-dimensional (2D) static cultures which neglect the dynamic, three-dimensional (3D) nature of the biophysical tumour microenvironment (TME), especially the role and impact of interstitial fluid flow (IFF). To address this, we undertook a transcriptome-wide analysis of the impact of IFF-like perfusion flow using a spheroid-on-chip microfluidic platform, which allows 3D cancer spheroids to be integrated into extracellular matrices (ECM)-like hydrogels and exposed to continuous perfusion, to mimic IFF in the TME. Importantly, we have performed these studies both in experimental (normoxia) and pathophysiological (hypoxia) oxygen conditions. Our data indicated that gene expression was altered by flow when compared to static conditions, and for the first time showed that these gene expression patterns differed in different oxygen tensions, reflecting a differential role of spheroid perfusion in IFF-like flow in tumour-relevant hypoxic conditions in the biophysical TME. We were also able to identify factors primarily linked with IFF-like conditions which are linked with prognostic value in cancer patients and therefore could correspond to a potential novel biomarker of IFF in cancer. This study therefore highlights the need to consider relevant oxygen conditions when studying the impact of flow in cancer biology, as well as demonstrating the potential of microfluidic models of flow to identify IFF-relevant tumour biomarkers.
Collapse
Affiliation(s)
- Emily Pyne
- Centre for Biomedicine, HYMS, University of Hull, Hull, UK
| | - Mark Reardon
- Translational Radiobiology, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - Pablo Rodriguez Mateos
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Scott Taylor
- Tumour Hypoxia Biology, Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Alexander Iles
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Ananya Choudhury
- Translational Radiobiology, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Isabel M Pires
- Centre for Biomedicine, HYMS, University of Hull, Hull, UK
- Tumour Hypoxia Biology, Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Islam MS, Jesmin. Exploring the Correlation Between Hypoxia, HIF1A Variants, and Breast Cancer in Different Ethnicities, and Bangladeshi Women: Through ELISA and Integrative Multi-Omics Analysis. Biomark Insights 2024; 19:11772719241278176. [PMID: 39314258 PMCID: PMC11418304 DOI: 10.1177/11772719241278176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Hypoxia, a condition where there is a lack of oxygen, is known to play a role in cancer progression. Objective This study investigates the correlation between HIF1A gene-altered expression and hypoxia in Bangladeshi breast cancer (BC) cases and TCGA_BC datasets. Design This case-control study compares BC cases to healthy controls to understand the relationship between gene changes and cancer. Method This study used advanced analysis methods to examine the transcriptional landscape of BC, and quantitatively assessed its correlation using integrated multi-omics analysis. Results In Bangladeshi BC cases, the T allele of HIF1A rs1154946 correlates notably (P-value < .001) with BC incidence. ELISA results confirmed a significant association (P-value < .005) between elevated HIF1A expression and BC-related hypoxia. Bioinformatics eQTL analysis validated the correlation between increased HIF1A expression and rs11549465 T allele (P-value < .01). Structural analyses suggested that rs11549465 (P582S) mutation may decrease protein stability (ΔΔG-value: -1.24 kcal/mole), potentially affecting HIF1A function. HIF1A enrichment analysis in BC underscores strong associations with oxygen levels, hypoxia, metabolic processes, apoptosis, and programed cell death (P-value < .001). Transcriptomic data demonstrated a robust correlation (P-value < .0001) between HIF1A expression and copy-number alterations, mutations, and abnormal methylation. Altered HIF1A expression showed strong negative correlations (P-value < .00001) with methylation and the expression of the ER (ESR1), in Whites. Survival analysis revealed marked differences in overall survival linked to high and low HIF1A expression (P-value < .00001). Furthermore, HIF1A expression significantly correlated (P-value < .000001) with hypoxia, TMB, MSI, and immune infiltration by CD8+ T cells, neutrophils, dendritic, and macrophages, providing deeper insights into the BC microenvironment. Conclusion Thus, the HIF1A gene could serve as a promising biomarker for breast cancer progression, control, and survival across ethnicities, emphasizing its role in disease development and regulation.
Collapse
Affiliation(s)
- Md. Shihabul Islam
- Department of Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jesmin
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
10
|
Xun Z, Zhou H, Shen M, Liu Y, Sun C, Du Y, Jiang Z, Yang L, Zhang Q, Lin C, Hu Q, Ye Y, Han L. Identification of Hypoxia-ALCAM high Macrophage- Exhausted T Cell Axis in Tumor Microenvironment Remodeling for Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309885. [PMID: 38956900 PMCID: PMC11434037 DOI: 10.1002/advs.202309885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Indexed: 07/04/2024]
Abstract
Although hypoxia is known to be associated with immune resistance, the adaptability to hypoxia by different cell populations in the tumor microenvironment and the underlying mechanisms remain elusive. This knowledge gap has hindered the development of therapeutic strategies to overcome tumor immune resistance induced by hypoxia. Here, bulk, single-cell, and spatial transcriptomics are integrated to characterize hypoxia associated with immune escape during carcinogenesis and reveal a hypoxia-based intercellular communication hub consisting of malignant cells, ALCAMhigh macrophages, and exhausted CD8+ T cells around the tumor boundary. A hypoxic microenvironment promotes binding of HIF-1α complex is demonstrated to the ALCAM promoter therefore increasing its expression in macrophages, and the ALCAMhigh macrophages co-localize with exhausted CD8+ T cells in the tumor spatial microenvironment and promote T cell exhaustion. Preclinically, HIF-1ɑ inhibition reduces ALCAM expression in macrophages and exhausted CD8+ T cells and potentiates T cell antitumor function to enhance immunotherapy efficacy. This study reveals the systematic landscape of hypoxia at single-cell resolution and spatial architecture and highlights the effect of hypoxia on immunotherapy resistance through the ALCAMhigh macrophage-exhausted T cell axis, providing a novel immunotherapeutic strategy to overcome hypoxia-induced resistance in cancers.
Collapse
Affiliation(s)
- Zhenzhen Xun
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Huanran Zhou
- Department of EndocrinologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Mingyi Shen
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Chengcao Sun
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Yanhua Du
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhou Jiang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Liuqing Yang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qing Zhang
- Simmons Comprehensive Cancer CenterDepartment of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Chunru Lin
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Youqiong Ye
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Leng Han
- Brown Center for ImmunotherapySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceSchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologyMcGovern Medical School at The University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
11
|
Ozcan BB, Wanniarachchi H, Mason RP, Dogan BE. Current status of optoacoustic breast imaging and future trends in clinical application: is it ready for prime time? Eur Radiol 2024; 34:6092-6107. [PMID: 38308678 PMCID: PMC11297194 DOI: 10.1007/s00330-024-10600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024]
Abstract
Optoacoustic imaging (OAI) is an emerging field with increasing applications in patients and exploratory clinical trials for breast cancer. Optoacoustic imaging (or photoacoustic imaging) employs non-ionizing, laser light to create thermoelastic expansion in tissues and detect the resulting ultrasonic emission. By combining high optical contrast capabilities with the high spatial resolution and anatomic detail of grayscale ultrasound, OAI offers unique opportunities for visualizing biological function of tissues in vivo. Over the past decade, human breast applications of OAI, including benign/malignant mass differentiation, distinguishing cancer molecular subtype, and predicting metastatic potential, have significantly increased. We discuss the current state of optoacoustic breast imaging, as well as future opportunities and clinical application trends. CLINICAL RELEVANCE STATEMENT: Optoacoustic imaging is a novel breast imaging technique that enables the assessment of breast cancer lesions and tumor biology without the risk of ionizing radiation exposure, intravenous contrast, or radionuclide injection. KEY POINTS: • Optoacoustic imaging (OAI) is a safe, non-invasive imaging technique with thriving research and high potential clinical impact. • OAI has been considered a complementary tool to current standard breast imaging techniques. • OAI combines parametric maps of molecules that absorb light and scatter acoustic waves (like hemoglobin, melanin, lipids, and water) with anatomical images, facilitating scalable and real-time molecular evaluation of tissues.
Collapse
Affiliation(s)
- B Bersu Ozcan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA.
| | - Hashini Wanniarachchi
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Basak E Dogan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| |
Collapse
|
12
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Pirrotta S, Masatti L, Bortolato A, Corrà A, Pedrini F, Aere M, Esposito G, Martini P, Risso D, Romualdi C, Calura E. Exploring public cancer gene expression signatures across bulk, single-cell and spatial transcriptomics data with signifinder Bioconductor package. NAR Genom Bioinform 2024; 6:lqae138. [PMID: 39363890 PMCID: PMC11447528 DOI: 10.1093/nargab/lqae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Understanding cancer mechanisms, defining subtypes, predicting prognosis and assessing therapy efficacy are crucial aspects of cancer research. Gene-expression signatures derived from bulk gene expression data have played a significant role in these endeavors over the past decade. However, recent advancements in high-resolution transcriptomic technologies, such as single-cell RNA sequencing and spatial transcriptomics, have revealed the complex cellular heterogeneity within tumors, necessitating the development of computational tools to characterize tumor mass heterogeneity accurately. Thus we implemented signifinder, a novel R Bioconductor package designed to streamline the collection and use of cancer transcriptional signatures across bulk, single-cell, and spatial transcriptomics data. Leveraging publicly available signatures curated by signifinder, users can assess a wide range of tumor characteristics, including hallmark processes, therapy responses, and tumor microenvironment peculiarities. Through three case studies, we demonstrate the utility of transcriptional signatures in bulk, single-cell, and spatial transcriptomic data analyses, providing insights into cell-resolution transcriptional signatures in oncology. Signifinder represents a significant advancement in cancer transcriptomic data analysis, offering a comprehensive framework for interpreting high-resolution data and addressing tumor complexity.
Collapse
Affiliation(s)
| | - Laura Masatti
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Anna Bortolato
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Anna Corrà
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua 35127, Italy
| | - Fabiola Pedrini
- Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Martina Aere
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Giovanni Esposito
- Immunology and Molecular Oncology Diagnostic Unit of The Veneto Institute of Oncology IOV – IRCCS, Padua 35128, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Davide Risso
- Department of Statistical Sciences, University of Padua, Padua 35121, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua 35121, Italy
| |
Collapse
|
14
|
Li Y, Yin Y, Zhang T, Wang J, Guo Z, Li Y, Zhao Y, Qin R, He Q. A comprehensive landscape analysis of autophagy in cancer development and drug resistance. Front Immunol 2024; 15:1412781. [PMID: 39253092 PMCID: PMC11381251 DOI: 10.3389/fimmu.2024.1412781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Background Autophagy plays important roles in cancer progression and therapeutic resistance, and the autophagy underlying the tumor pathogenesis and further mechanisms of chemoresistance emergence remains unknown. Methods In this study, via the single-sample gene set enrichment analysis (ssGSEA) method, an autophagy 45-gene list was identified to evaluate samples' autophagy activity, verified through six GEO datasets with a confirmed autophagy phenotype. It was further utilized to distinguish tumors into autophagy score-high and score-low subtypes, and analyze their transcriptome landscapes, including survival analysis, correlation analysis of autophagy- and resistance-related genes, biological functional enrichment, and immune- and hypoxia-related and genomic heterogeneity comparison, in TCGA pan-cancer datasets. Furthermore, we performed an analysis of autophagy status in breast cancer chemoresistance combined with multiple GEO datasets and in vitro experiments to validate the mechanisms of potential anticancer drugs for reversing chemoresistance, including CCK-8 cell viability assays, RT-qPCR, and immunofluorescence. Results The 45-gene list was used to identify autophagy score-high and score-low subtypes and further analyze their multi-dimensional features. We demonstrated that cancer autophagy status correlated with significantly different prognoses, molecular alterations, biological process activations, immunocyte infiltrations, hypoxia statuses, and specific mutational processes. The autophagy score-low subtype displayed a more favorable prognosis compared with the score-high subtype, associated with their immune-activated features, manifested as high immunocyte infiltration, including high CD8+T, Tfh, Treg, NK cells, and tumor-associated macrophages M1/M2. The autophagy score-low subtype also showed a high hypoxia score, and hypoxic tumors showed a significantly differential prognosis in different autophagy statuses. Therefore, "double-edged" cell fates triggered by autophagy might be closely correlated with the immune microenvironment and hypoxia induction. Results demonstrated that dysregulated autophagy was involved in many cancers and their therapeutic resistance and that the autophagy was induced by the resistance-reversing drug response, in five breast cancer GEO datasets and validated by in vitro experiments. In vitro, dihydroartemisinin and artesunate could reverse breast cancer doxorubicin resistance, through inducing autophagy via upregulating LC3B and ATG7. Conclusion Our study provided a comprehensive landscape of the autophagy-related molecular and tumor microenvironment patterns for cancer progression and resistance, and highlighted the promising potential of drug-induced autophagy in the activation of drug sensitivity and reversal of resistance.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yin
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Zhang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhua Wang
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeqi Guo
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyun Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Zhao
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihong Qin
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Lee TW, Singleton DC, Harms JK, Lu M, McManaway SP, Lai A, Tercel M, Pruijn FB, Macann AMJ, Hunter FW, Wilson WR, Jamieson SMF. Clinical relevance and therapeutic predictive ability of hypoxia biomarkers in head and neck cancer tumour models. Mol Oncol 2024; 18:1885-1903. [PMID: 38426642 PMCID: PMC11306523 DOI: 10.1002/1878-0261.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Tumour hypoxia promotes poor patient outcomes, with particularly strong evidence for head and neck squamous cell carcinoma (HNSCC). To effectively target hypoxia, therapies require selection biomarkers and preclinical models that can accurately model tumour hypoxia. We established 20 patient-derived xenograft (PDX) and cell line-derived xenograft (CDX) models of HNSCC that we characterised for their fidelity to represent clinical HNSCC in gene expression, hypoxia status and proliferation and that were evaluated for their sensitivity to hypoxia-activated prodrugs (HAPs). PDX models showed greater fidelity in gene expression to clinical HNSCC than cell lines, as did CDX models relative to their paired cell lines. PDX models were significantly more hypoxic than CDX models, as assessed by hypoxia gene signatures and pimonidazole immunohistochemistry, and showed similar hypoxia gene expression to clinical HNSCC tumours. Hypoxia or proliferation status alone could not determine HAP sensitivity across our 20 HNSCC and two non-HNSCC tumour models by either tumour growth inhibition or killing of hypoxia cells in an ex vivo clonogenic assay. In summary, our tumour models provide clinically relevant HNSCC models that are suitable for evaluating hypoxia-targeting therapies; however, additional biomarkers to hypoxia are required to accurately predict drug sensitivity.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | - Dean C. Singleton
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandNew Zealand
| | - Julia K. Harms
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
| | - Man Lu
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
| | - Sarah P. McManaway
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
| | - Amy Lai
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Department of Pharmacology and Clinical PharmacologyUniversity of AucklandNew Zealand
| | - Moana Tercel
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | - Frederik B. Pruijn
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | | | - Francis W. Hunter
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
- Oncology Therapeutic AreaJanssen Research and DevelopmentSpring HousePAUSA
| | - William R. Wilson
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
- Department of Pharmacology and Clinical PharmacologyUniversity of AucklandNew Zealand
| |
Collapse
|
16
|
Ren M, Zhang J, Zong R, Sun H. A Novel Pancreatic Cancer Hypoxia Status Related Gene Signature for Prognosis and Therapeutic Responses. Mol Biotechnol 2024; 66:1684-1703. [PMID: 37405638 DOI: 10.1007/s12033-023-00807-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer (PAC) is a highly fatal and aggressive type of cancer. Hypoxia is a common feature of PAC. The aim of this study was to develop a hypoxia status-related prognostic model for predicting the survival outcomes in PAC. The data sets of PAC from The Cancer Genome Atlas and the International Cancer Genome Consortium were used to construct and validate the signature. A 6 hypoxia status-related differential expression genes prognostic model for predicting the survival outcomes was established. The Kaplan-Meier analysis and Received operating characteristic curve indicated the good performance of the signature at predicting overall survival. Univariate and Multivariate Cox regression revealed that the signature was an independent prognostic factor in PAC. Weighted Gene Co-expression Network Analysis and immune infiltration analysis indicated that Immune-related pathways and immune cell infiltration was mostly enriched in the low-risk group, which presented a better prognosis. We also evaluated the predictive of the signature for immunotherapy and chemoradiotherapy. Risk gene LY6D may be a potential prognostic predictor of PAC. This model can be used as an independent prognostic factor for predicting clinical outcomes and a possible classifier for response to chemotherapy.
Collapse
Affiliation(s)
- Min Ren
- College of Life Science, Yan'an University, Yan'an, 716000, China.
| | - Jianing Zhang
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Rongrong Zong
- College of Life Science, Yan'an University, Yan'an, 716000, China
| | - Huiru Sun
- College of Life Science, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
17
|
Thomson DJ, Slevin NJ, Baines H, Betts G, Bolton S, Evans M, Garcez K, Irlam J, Lee L, Melillo N, Mistry H, More E, Nutting C, Price JM, Schipani S, Sen M, Yang H, West CM. Randomized Phase 3 Trial of the Hypoxia Modifier Nimorazole Added to Radiation Therapy With Benefit Assessed in Hypoxic Head and Neck Cancers Determined Using a Gene Signature (NIMRAD). Int J Radiat Oncol Biol Phys 2024; 119:771-782. [PMID: 38072326 DOI: 10.1016/j.ijrobp.2023.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE Tumor hypoxia is an adverse prognostic factor in head and neck squamous cell carcinoma (HNSCC). We assessed whether patients with hypoxic HNSCC benefited from the addition of nimorazole to definitive intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS NIMRAD was a phase 3, multicenter, placebo-controlled, double-anonymized trial of patients with HNSCC unsuitable for concurrent platinum chemotherapy or cetuximab with definitive IMRT (NCT01950689). Patients were randomized 1:1 to receive IMRT (65 Gy in 30 fractions over 6 weeks) plus nimorazole (1.2 g/m2 daily, before IMRT) or placebo. The primary endpoint was freedom from locoregional progression (FFLRP) in patients with hypoxic tumors, defined as greater than or equal to the median tumor hypoxia score of the first 50 patients analyzed (≥0.079), using a validated 26-gene signature. The planned sample size was 340 patients, allowing for signature generation in 85% and an assumed hazard ratio (HR) of 0.50 for nimorazole effectiveness in the hypoxic group and requiring 66 locoregional failures to have 80% power in a 2-tail log-rank test at the 5% significance level. RESULTS Three hundred thirty-eight patients were randomized by 19 centers in the United Kingdom from May 2014 to May 2019, with a median follow-up of 3.1 years (95% CI, 2.9-3.4). Hypoxia scores were available for 286 (85%). The median patient age was 73 years (range, 44-88; IQR, 70-76). There were 36 (25.9%) locoregional failures in the hypoxic group, in which nimorazole + IMRT did not improve FFLRP (adjusted HR, 0.72; 95% CI, 0.36-1.44; P = .35) or overall survival (adjusted HR, 0.96; 95% CI, 0.53-1.72; P = .88) compared with placebo + IMRT. Similarly, nimorazole + IMRT did not improve FFLRP or overall survival in the whole population. In total (N = 338), 73% of patients allocated nimorazole adhered to the drug for ≥50% of IMRT fractions. Nimorazole + IMRT caused more acute nausea compared with placebo + IMRT (Common Terminology Criteria for Adverse Events version 4.0 G1+2: 56.6% vs 42.4%, G3: 10.1% vs 5.3%, respectively; P < .05). CONCLUSIONS Addition of the hypoxia modifier nimorazole to IMRT for locally advanced HNSCC in older and less fit patients did not improve locoregional control or survival.
Collapse
Affiliation(s)
- David J Thomson
- The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Liverpool, Liverpool, United Kingdom; Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Nick J Slevin
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Helen Baines
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Northwood, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Guy Betts
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Steve Bolton
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mererid Evans
- Cardiff University and Velindre Cancer Centre, Cardiff, United Kingdom
| | - Kate Garcez
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Joely Irlam
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Lip Lee
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | - Hitesh Mistry
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; SystemsForecastingUK Ltd, Lancaster, United Kingdom
| | - Elisabet More
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | | | - James M Price
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Stefano Schipani
- Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, United Kingdom
| | - Mehmet Sen
- Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom
| | - Huiqi Yang
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Northwood, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Catharine M West
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| |
Collapse
|
18
|
Benej M, Hoyd R, Kreamer M, Wheeler CE, Grencewicz DJ, Choueiry F, Chan CHF, Zakharia Y, Ma Q, Dodd RD, Ulrich CM, Hardikar S, Churchman ML, Tarhini AA, Robinson LA, Singer EA, Ikeguchi AP, McCarter MD, Tinoco G, Husain M, Jin N, Tan AC, Osman AEG, Eljilany I, Riedlinger G, Schneider BP, Benejova K, Kery M, Papandreou I, Zhu J, Denko N, Spakowicz D. The Tumor Microbiome Reacts to Hypoxia and Can Influence Response to Radiation Treatment in Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1690-1701. [PMID: 38904265 PMCID: PMC11234499 DOI: 10.1158/2767-9764.crc-23-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - McKenzie Kreamer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Caroline E Wheeler
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dennis J Grencewicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Fouad Choueiry
- Department of Health Sciences, The Ohio State University, Columbus, Ohio
| | - Carlos H F Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Cornelia M Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Ahmad A Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lary A Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A Singer
- Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Alexandra P Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma
| | - Martin D McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Aik C Tan
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Afaf E G Osman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Clinical Science Lab, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gregory Riedlinger
- Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Bryan P Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Katarina Benejova
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Martin Kery
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jiangjiang Zhu
- Department of Health Sciences, The Ohio State University, Columbus, Ohio
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
19
|
Martin-Martin C, Suarez-Alvarez B, González M, Torres IB, Bestard O, Martín JE, Barceló-Coblijn G, Moreso F, Aransay AM, Lopez-Larrea C, Rodriguez RM. Exploring kidney allograft rejection: A proof-of-concept study using spatial transcriptomics. Am J Transplant 2024; 24:1161-1171. [PMID: 38692412 DOI: 10.1016/j.ajt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In this proof-of-concept study, spatial transcriptomics combined with public single-cell ribonucleic acid-sequencing data were used to explore the potential of this technology to study kidney allograft rejection. We aimed to map gene expression patterns within diverse pathologic states by examining biopsies classified across nonrejection, T cell-mediated acute rejection, interstitial fibrosis, and tubular atrophy. Our results revealed distinct immune cell signatures, including those of T and B lymphocytes, monocytes, mast cells, and plasma cells, and their spatial organization within the renal interstitium. We also mapped chemokine receptors and ligands to study immune cell migration and recruitment. Finally, our analysis demonstrated differential spatial enrichment of transcription signatures associated with kidney allograft rejection across various biopsy regions. Interstitium regions displayed higher enrichment scores for rejection-associated gene expression patterns than tubular areas, which had negative scores. This implies that these signatures are primarily driven by processes unfolding in the renal interstitium. Overall, this study highlights the value of spatial transcriptomics for revealing cellular heterogeneity and immune signatures in renal transplant biopsies and demonstrates its potential for studying the molecular and cellular mechanisms associated with rejection. However, certain limitations must be borne in mind regarding the development and future applications of this technology.
Collapse
Affiliation(s)
- Cristina Martin-Martin
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain; RICORS2040, Kidney Disease Research Network, ISCIII, Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain; RICORS2040, Kidney Disease Research Network, ISCIII, Madrid, Spain
| | - Monika González
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Irina B Torres
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Nephrology and Renal Transplant Laboratory, Vall Hebron Research Institute (VHIR), Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Oriol Bestard
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Nephrology and Renal Transplant Laboratory, Vall Hebron Research Institute (VHIR), Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - José E Martín
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Francesc Moreso
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Nephrology and Renal Transplant Laboratory, Vall Hebron Research Institute (VHIR), Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carlos Lopez-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain; RICORS2040, Kidney Disease Research Network, ISCIII, Madrid, Spain; Department of Immunology, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain.
| | - Ramon M Rodriguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| |
Collapse
|
20
|
Mahmood U, Blake A, Rathee S, Samuel L, Murray G, Sebag-Montefiore D, Gollins S, West NP, Begum R, Bach SP, Richman SD, Quirke P, Redmond KL, Salto-Tellez M, Koelzer VH, Leedham SJ, Tomlinson I, Dunne PD, Buffa FM, Maughan TS, Domingo E. Stratification to Neoadjuvant Radiotherapy in Rectal Cancer by Regimen and Transcriptional Signatures. CANCER RESEARCH COMMUNICATIONS 2024; 4:1765-1776. [PMID: 39023969 PMCID: PMC11257085 DOI: 10.1158/2767-9764.crc-23-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Response to neoadjuvant radiotherapy (RT) in rectal cancer has been associated with immune and stromal features that are captured by transcriptional signatures. However, how such associations perform across different chemoradiotherapy regimens and within individual consensus molecular subtypes (CMS) and how they affect survival remain unclear. In this study, gene expression and clinical data of pretreatment biopsies from nine cohorts of primary rectal tumors were combined (N = 826). Exploratory analyses were done with transcriptomic signatures for the endpoint of pathologic complete response (pCR), considering treatment regimen or CMS subtype. Relevant findings were tested for overall survival and recurrence-free survival. Immune and stromal signatures were strongly associated with pCR and lack of pCR, respectively, in RT and capecitabine (Cap)/5-fluorouracil (5FU)-treated patients (N = 387), in which the radiosensitivity signature (RSS) showed the strongest association. Upon addition of oxaliplatin (Ox; N = 123), stromal signatures switched direction and showed higher chances to achieve pCR than without Ox (p for interaction 0.02). Among Cap/5FU patients, most signatures performed similarly across CMS subtypes, except cytotoxic lymphocytes that were associated with pCR in CMS1 and CMS4 cases compared with other CMS subtypes (p for interaction 0.04). The only variables associated with survival were pCR and RSS. Although the frequency of pCR across different chemoradiation regimens is relatively similar, our data suggest that response rates may differ depending on the biological landscape of rectal cancer. Response to neoadjuvant RT in stroma-rich tumors may potentially be improved by the addition of Ox. RSS in preoperative biopsies provides predictive information for response specifically to neoadjuvant RT with 5FU. SIGNIFICANCE Rectal cancers with stromal features may respond better to RT and 5FU/Cap with the addition of Ox. Within patients not treated with Ox, high levels of cytotoxic lymphocytes associate with response only in immune and stromal tumors. Our analyses provide biological insights about the outcome by different radiotherapy regimens in rectal cancer.
Collapse
Affiliation(s)
- Umair Mahmood
- Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom.
| | - Andrew Blake
- Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom.
| | - Sanjay Rathee
- Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom.
| | - Leslie Samuel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| | - Graeme Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| | | | - Simon Gollins
- North Wales Cancer Treatment Centre, Besti Cadwaladr University Health Board, Bodelwyddan, United Kingdom.
- Lingen Davies Cancer Centre, Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, United Kingdom.
| | - Nicholas P. West
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Rubina Begum
- Cancer Research & University College London Clinical Trial Unit, London, United Kingdom.
| | - Simon P. Bach
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom.
| | - Susan D. Richman
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Phil Quirke
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| | - Keara L. Redmond
- The Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, United Kingdom.
| | - Manuel Salto-Tellez
- The Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, United Kingdom.
| | - Viktor H. Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Oncology and Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Simon J. Leedham
- Wellcome Trust Centre for Human genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Ian Tomlinson
- Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom.
| | - Philip D. Dunne
- The Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, United Kingdom.
| | - Francesca M. Buffa
- Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom.
- Department of Computing Sciences, Bocconi University, and Bocconi Institute for Data Science and Analytics (BIDSA), Milano, Italy.
| | | | - Tim S. Maughan
- Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.
| | - Enric Domingo
- Department of Oncology, Medical Science Division, University of Oxford, Oxford, United Kingdom.
- Cancer Research UK Scotland Centre, Edinburgh, United Kingdom.
| |
Collapse
|
21
|
Van Eyck A, Kwanten WJ, Peleman C, Makhout S, Van Laere S, Van De Maele K, Van Hoorenbeeck K, De Man J, De Winter BY, Francque S, Verhulst SL. The role of adipose tissue and subsequent liver tissue hypoxia in obesity and early stage metabolic dysfunction associated steatotic liver disease. Int J Obes (Lond) 2024; 48:512-522. [PMID: 38142264 DOI: 10.1038/s41366-023-01443-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Obesity is linked to several health complication, including Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD). Adipose tissue hypoxia has been suggested as an important player in the pathophysiological mechanism leading to chronic inflammation in obesity, and in the progression of MASLD. The study aims to investigate the effect of progressive obesity on adipose and liver tissue hypoxia. METHODS Male 8-week-old C57BL/6J mice were fed a high-fat high-fructose diet (HFHFD) or control diet (CD) for 4, 8, 12, 16 and 20 weeks. Serum ALT, AST and lipid levels were determined, and glucose and insulin tolerance testing was performed. Liver, gonadal and subcutaneous adipose tissue was assessed histologically. In vivo tissue pO2 measurements were performed in gonadal adipose tissue and liver under anesthesia. A PCR array for hypoxia responsive genes was performed in liver and adipose tissue. The main findings in the liver were validated in another diet-induced MASLD mice model, the choline-deficient L-amino acid defined high-fat diet (CDAHFD). RESULTS HFHFD feeding induced a progressive obesity, dyslipidaemia, insulin resistance and MASLD. In vivo pO2 was decreased in gonadal adipose tissue after 8 weeks of HFHFD compared to CD, and decreased further until 20 weeks. Liver pO2 was only significantly decreased after 16 and 20 weeks of HFHFD. Gene expression and histology confirmed the presence of hypoxia in liver and adipose tissue. Hypoxia could not be confirmed in mice fed a CDAHFD. CONCLUSION Diet-induced obesity in mice is associated with hypoxia in liver and adipose tissue. Adipose tissue hypoxia develops early in obesity, while liver hypoxia occurs later in the obesity development but still within the early stages of MASLD. Liver hypoxia could not be directly confirmed in a non-obese liver-only MASLD mice model, indicating that obesity-related processes such as adipose tissue hypoxia are important in the pathophysiology of obesity and MASLD.
Collapse
Affiliation(s)
- Annelies Van Eyck
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium.
| | - Wilhelmus J Kwanten
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Cédric Peleman
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sanae Makhout
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Steven Van Laere
- Center of Oncological Research (CORE), MIPRO, IPPON, University of Antwerp, Antwerp, Belgium
| | - Karolien Van De Maele
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Kim Van Hoorenbeeck
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Joris De Man
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Stijn L Verhulst
- Laboratory of Experimental Medicine and Pediatrics and member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
22
|
Sadozai H, Acharjee A, Kayani HZ, Gruber T, Gorczynski RM, Burke B. High hypoxia status in pancreatic cancer is associated with multiple hallmarks of an immunosuppressive tumor microenvironment. Front Immunol 2024; 15:1360629. [PMID: 38510243 PMCID: PMC10951397 DOI: 10.3389/fimmu.2024.1360629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is a particularly lethal disease that is often diagnosed late and is refractory to most forms of treatment. Tumour hypoxia is a key hallmark of PDAC and is purported to contribute to multiple facets of disease progression such as treatment resistance, increased invasiveness, metabolic reprogramming, and immunosuppression. Methods We used the Buffa gene signature as a hypoxia score to profile transcriptomics datasets from PDAC cases. We performed cell-type deconvolution and gene expression profiling approaches to compare the immunological phenotypes of cases with low and high hypoxia scores. We further supported our findings by qPCR analyses in PDAC cell lines cultured in hypoxic conditions. Results First, we demonstrated that this hypoxia score is associated with increased tumour grade and reduced survival suggesting that this score is correlated to disease progression. Subsequently, we compared the immune phenotypes of cases with high versus low hypoxia score expression (HypoxiaHI vs. HypoxiaLOW) to show that high hypoxia is associated with reduced levels of T cells, NK cells and dendritic cells (DC), including the crucial cDC1 subset. Concomitantly, immune-related gene expression profiling revealed that compared to HypoxiaLOW tumours, mRNA levels for multiple immunosuppressive molecules were notably elevated in HypoxiaHI cases. Using a Random Forest machine learning approach for variable selection, we identified LGALS3 (Galectin-3) as the top gene associated with high hypoxia status and confirmed its expression in hypoxic PDAC cell lines. Discussion In summary, we demonstrated novel associations between hypoxia and multiple immunosuppressive mediators in PDAC, highlighting avenues for improving PDAC immunotherapy by targeting these immune molecules in combination with hypoxia-targeted drugs.
Collapse
Affiliation(s)
- Hassan Sadozai
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hateem Z. Kayani
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Thomas Gruber
- Independent Scholar, National Coalition of Independent Scholars, Visp, Switzerland
| | | | - Bernard Burke
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
23
|
Li X, Gao Z, Diao H, Guo C, Yu Y, Liu S, Feng Z, Peng Z. Lung adenocarcinoma: selection of surgical approaches in solid adenocarcinoma from the viewpoint of clinicopathologic features and tumor microenvironmental heterogeneity. Front Oncol 2024; 14:1326626. [PMID: 38505588 PMCID: PMC10949368 DOI: 10.3389/fonc.2024.1326626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Solid adenocarcinoma represents a notably aggressive subtype of lung adenocarcinoma. Amidst the prevailing inclination towards conservative surgical interventions for diminutive lung cancer lesions, the critical evaluation of this subtype's malignancy and heterogeneity stands as imperative for the formulation of surgical approaches and the prognostication of long-term patient survival. Methods A retrospective dataset, encompassing 2406 instances of non-solid adenocarcinoma (comprising lepidic, acinar, and papillary adenocarcinoma) and 326 instances of solid adenocarcinoma, was analyzed to ascertain the risk factors concomitant with diverse histological variants of lung adenocarcinoma. Concurrently, RNA-sequencing data delineating explicit pathological subtypes were extracted from 261 cases in the TCGA database and 188 cases in the OncoSG database. This data served to illuminate the heterogeneity across lung adenocarcinoma (LUAD) specimens characterized by differential histological features. Results Solid adenocarcinoma is associated with an elevated incidence of pleural invasion, microscopic vessel invasion, and lymph node metastasis, relative to other subtypes of lung adenocarcinoma. Furthermore, the tumor microenvironment (TME) in solid pattern adenocarcinoma displayed suboptimal oxygenation and acidic conditions, concomitant with augmented tumor cell proliferation and invasion capacities. Energy and metabolic activities were significantly upregulated in tumor cells of the solid pattern subtype. This subtype manifested robust immune tolerance and capabilities for immune evasion. Conclusion This present investigation identifies multiple potential metrics for evaluating the invasive propensity, metastatic likelihood, and immune resistance of solid pattern adenocarcinoma. These insights may prove instrumental in devising surgical interventions that are tailored to patients diagnosed with disparate histological subtypes of LUAD, thereby offering valuable directional guidance.
Collapse
Affiliation(s)
- Xiao Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhen Gao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Haixiao Diao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Chenran Guo
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yue Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Shang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Feng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongmin Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Suszynska M, Machowska M, Fraszczyk E, Michalczyk M, Philips A, Galka-Marciniak P, Kozlowski P. CMC: Cancer miRNA Census - a list of cancer-related miRNA genes. Nucleic Acids Res 2024; 52:1628-1644. [PMID: 38261968 PMCID: PMC10899758 DOI: 10.1093/nar/gkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
A growing body of evidence indicates an important role of miRNAs in cancer; however, there is no definitive, convenient-to-use list of cancer-related miRNAs or miRNA genes that may serve as a reference for analyses of miRNAs in cancer. To this end, we created a list of 165 cancer-related miRNA genes called the Cancer miRNA Census (CMC). The list is based on a score, built on various types of functional and genetic evidence for the role of particular miRNAs in cancer, e.g. miRNA-cancer associations reported in databases, associations of miRNAs with cancer hallmarks, or signals of positive selection of genetic alterations in cancer. The presence of well-recognized cancer-related miRNA genes, such as MIR21, MIR155, MIR15A, MIR17 or MIRLET7s, at the top of the CMC ranking directly confirms the accuracy and robustness of the list. Additionally, to verify and indicate the reliability of CMC, we performed a validation of criteria used to build CMC, comparison of CMC with various cancer data (publications and databases), and enrichment analyses of biological pathways and processes such as Gene Ontology or DisGeNET. All validation steps showed a strong association of CMC with cancer/cancer-related processes confirming its usefulness as a reference list of miRNA genes associated with cancer.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Magdalena Machowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Eliza Fraszczyk
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Maciej Michalczyk
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
25
|
Amgad M, Hodge JM, Elsebaie MAT, Bodelon C, Puvanesarajah S, Gutman DA, Siziopikou KP, Goldstein JA, Gaudet MM, Teras LR, Cooper LAD. A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer. Nat Med 2024; 30:85-97. [PMID: 38012314 DOI: 10.1038/s41591-023-02643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023]
Abstract
Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists grade the microscopic appearance of breast tissue using the Nottingham criteria, which are qualitative and do not account for noncancerous elements within the tumor microenvironment. Here we present the Histomic Prognostic Signature (HiPS), a comprehensive, interpretable scoring of the survival risk incurred by breast tumor microenvironment morphology. HiPS uses deep learning to accurately map cellular and tissue structures to measure epithelial, stromal, immune, and spatial interaction features. It was developed using a population-level cohort from the Cancer Prevention Study-II and validated using data from three independent cohorts, including the Prostate, Lung, Colorectal, and Ovarian Cancer trial, Cancer Prevention Study-3, and The Cancer Genome Atlas. HiPS consistently outperformed pathologists in predicting survival outcomes, independent of tumor-node-metastasis stage and pertinent variables. This was largely driven by stromal and immune features. In conclusion, HiPS is a robustly validated biomarker to support pathologists and improve patient prognosis.
Collapse
Affiliation(s)
- Mohamed Amgad
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James M Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Maha A T Elsebaie
- Department of Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Clara Bodelon
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - David A Gutman
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kalliopi P Siziopikou
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffery A Goldstein
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mia M Gaudet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Shi C, Liu X, Han SS, Tang YF, Zeng HL, Du ML, Yang Y, Jia JN, Shi Q, Hou FG. Mechanism of Preventing Recurrence of Stage II-III Colorectal Cancer Metastasis with Immuno-inflammatory and Hypoxic Microenvironment by a Four Ingredients Chinese Herbal Formula: A Bioinformatics and Network Pharmacology Analysis. Curr Pharm Des 2024; 30:2007-2026. [PMID: 38867534 DOI: 10.2174/0113816128294401240523092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Colorectal Cancer (CRC) is one of the top three malignancies with the highest incidence and mortality. OBJECTIVE The study aimed to identify the effect of Traditional Chinese Medicine (TCM) on postoperative patients with stage II-III CRC and explore the core herb combination and its mechanism. METHODS An observational cohort study was conducted on patients diagnosed with stage II-III CRC from January 2016 to January 2021. The primary outcome was disease-free survival, which was compared between the patients who received TCM or not, and the secondary outcome was the hazard ratio. The relevance principle was used to obtain the candidate herb combinations, and the core combination was evaluated through an assessment of efficacy and representativeness. Then, biological processes and signaling pathways associated with CRC were obtained by Gene Ontology function, Kyoto Encyclopedia of Gene and Genomes pathway, and Wikipathway. Furthermore, hub genes were screened by the Kaplan-Meier estimator, and molecular docking was employed to predict the binding sites of key ingredients to hub genes. The correlation analysis was employed for the correlations between the hub genes and tumor-infiltrating immune cells and hypoxiarelated genes. Ultimately, a quantitative polymerase chain reaction was performed to verify the regulation of hub genes by their major ingredients. RESULTS A total of 707 patients were included. TCM could decrease the metastatic recurrence associated with stage II-III CRC (HR: 0.61, log-rank P < 0.05). Among those patients in the TCM group, the core combination was Baizhu → Yinchen, Chenpi, and Fuling (C combination), and its antitumor mechanism was most likely related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients, quercetin and tangeretin. The expression of these genes was significantly correlated with both tumor-infiltrating immune cells and hypoxia- related genes. In addition, quercetin and tangeretin down-regulated the mRNA levels of BCL2L1, XIAP, and TOP1, thereby inhibiting the growth of HCT116 cells. CONCLUSION Overall, a combination of four herbs, Baizhu → Yinchen, Chenpi, and Fuling, could reduce metastatic recurrence in postoperative patients with stage II-III CRC. The mechanism may be related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients quercetin and tangeretin.
Collapse
Affiliation(s)
- Chuan Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Su-Su Han
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yu-Fei Tang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hai-Lun Zeng
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Mei-Lu Du
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yi Yang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia-Ning Jia
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Qi Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Feng-Gang Hou
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
27
|
Diao L, He M, Xu B, Chen L, Wang Z, Yang Y, Xia S, Hu S, Guo S, Li D. Identification of Proteome-Based Immune Subtypes of Early Hepatocellular Carcinoma and Analysis of Potential Metabolic Drivers. Mol Cell Proteomics 2024; 23:100686. [PMID: 38008179 PMCID: PMC10772821 DOI: 10.1016/j.mcpro.2023.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, ranking fourth in frequency. The relationship between metabolic reprogramming and immune infiltration has been identified as having a crucial impact on HCC progression. However, a deeper understanding of the interplay between the immune system and metabolism in the HCC microenvironment is required. In this study, we used a proteomic dataset to identify three immune subtypes (IM1-IM3) in HCC, each of which has distinctive clinical, immune, and metabolic characteristics. Among these subtypes, IM3 was found to have the poorest prognosis, with the highest levels of immune infiltration and T-cell exhaustion. Furthermore, IM3 showed elevated glycolysis and reduced bile acid metabolism, which was strongly correlated with CD8 T cell exhaustion and regulatory T cell accumulation. Our study presents the proteomic immune stratification of HCC, revealing the possible link between immune cells and reprogramming of HCC glycolysis and bile acid metabolism, which may be a viable therapeutic strategy to improve HCC immunotherapy.
Collapse
Affiliation(s)
- Lihong Diao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mengqi He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Binsheng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Lanhui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ze Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yuting Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; Shanghai Yang Zhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Simin Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Luo Q, Li X, Meng Z, Rong H, Li Y, Zhao G, Zhu H, Cen L, Liao Q. Identification of hypoxia-related gene signatures based on multi-omics analysis in lung adenocarcinoma. J Cell Mol Med 2024; 28:e18032. [PMID: 38013642 PMCID: PMC10826438 DOI: 10.1111/jcmm.18032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer and one of the malignancies with the highest incidence rate and mortality worldwide. Hypoxia is a typical feature of tumour microenvironment (TME), which affects the progression of LUAD from multiple molecular levels. However, the underlying molecular mechanisms behind LUAD hypoxia are not fully understood. In this study, we estimated the level of hypoxia by calculating a score based on 15 hypoxia genes. The hypoxia scores were relatively high in LUAD patients with poor prognosis and were bound up with tumour node metastasis (TNM) stage, tumour size, lymph node, age and gender. By comparison of high hypoxia score group and low hypoxia score group, 1820 differentially expressed genes were identified, among which up-regulated genes were mainly about cell division and proliferation while down-regulated genes were primarily involved in cilium-related biological processes. Besides, LUAD patients with high hypoxia scores had higher frequencies of gene mutations, among which TP53, TTN and MUC16 had the highest mutation rates. As for DNA methylation, 1015 differentially methylated probes-related genes were found and may play potential roles in tumour-related neurobiological processes and cell signal transduction. Finally, a prognostic model with 25 multi-omics features was constructed and showed good predictive performance. The area under curve (AUC) values of 1-, 3- and 5-year survival reached 0.863, 0.826 and 0.846, respectively. Above all, our findings are helpful in understanding the impact and molecular mechanisms of hypoxia in LUAD.
Collapse
Affiliation(s)
- Qineng Luo
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Xing Li
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Zixing Meng
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Hao Rong
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Yanguo Li
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Guofang Zhao
- Department of Thoracic SurgeryHwa Mei HospitalUniversity of Chinese Academy of SciencesNingboZhejiangP. R. China
| | - Huangkai Zhu
- Department of Thoracic SurgeryHwa Mei HospitalUniversity of Chinese Academy of SciencesNingboZhejiangP. R. China
| | - Lvjun Cen
- The First Affiliated HospitalNingbo UniversityNingboZhejiangP. R. China
| | - Qi Liao
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
- The First Affiliated HospitalNingbo UniversityNingboZhejiangP. R. China
| |
Collapse
|
29
|
Triantafyllidis CP, Barberis A, Hartley F, Cuervo AM, Gjerga E, Charlton P, van Bijsterveldt L, Rodriguez JS, Buffa FM. A machine learning and directed network optimization approach to uncover TP53 regulatory patterns. iScience 2023; 26:108291. [PMID: 38047081 PMCID: PMC10692668 DOI: 10.1016/j.isci.2023.108291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
TP53, the Guardian of the Genome, is the most frequently mutated gene in human cancers and the functional characterization of its regulation is fundamental. To address this we employ two strategies: machine learning to predict the mutation status of TP53from transcriptomic data, and directed regulatory networks to reconstruct the effect of mutations on the transcipt levels of TP53 targets. Using data from established databases (Cancer Cell Line Encyclopedia, The Cancer Genome Atlas), machine learning could predict the mutation status, but not resolve different mutations. On the contrary, directed network optimization allowed to infer the TP53 regulatory profile across: (1) mutations, (2) irradiation in lung cancer, and (3) hypoxia in breast cancer, and we could observe differential regulatory profiles dictated by (1) mutation type, (2) deleterious consequences of the mutation, (3) known hotspots, (4) protein changes, (5) stress condition (irradiation/hypoxia). This is an important first step toward using regulatory networks for the characterization of the functional consequences of mutations, and could be extended to other perturbations, with implications for drug design and precision medicine.
Collapse
Affiliation(s)
- Charalampos P. Triantafyllidis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alessandro Barberis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fiona Hartley
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Ana Miar Cuervo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Enio Gjerga
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Philip Charlton
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Julio Saez Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Francesca M. Buffa
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Computing Sciences, BIDSA, Bocconi University, Milan, Italy
| |
Collapse
|
30
|
Guo C, Xu L, Li X, Fu Y, Wang H, Han R, Li G, Feng Z, Li M, Ren W, Peng Z. Computed tomography imaging and clinical characteristics of pulmonary ground-glass nodules ≤2 cm with micropapillary pattern. Thorac Cancer 2023; 14:3433-3444. [PMID: 37876115 PMCID: PMC10719660 DOI: 10.1111/1759-7714.15136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the imaging features, lymph node metastasis, and genetic mutations in micropapillary lung adenocarcinoma (imaging with mixed ground-glass nodules) ≤2 cm, to provide a more precise and refined basis for the selection of lung segment resection. METHODS A retrospective analysis of 162 patients with surgically resected pathologically confirmed cancers ≤2.0 cm in diameter (50 cases of micropapillary mixed ground-glass nodules [mGGNs], 50 cases of nonmicropapillary mGGNs, and 62 cases of micropapillary SNs [solid nodules]) was performed. mGGNs were classified into five categories according to imaging features. The distribution of these five morphologies in micropapillary with mGGN and nonmicropapillary with mGGN was analyzed. The postoperative pathology and prognosis of lymph node metastasis were also compared between micropapillary mGGNs and micropapillary with SNs. After searching the TCGA database, we demonstrated heterogeneity, high malignancy and high risk of microcapillary lung cancer cancers. RESULTS Different pathological subtypes of mGGN differed in morphological features (p < 0.05). The rate of lymph node metastasis was significantly higher in micropapillary mGGNs than in nonmicropapillary mGGNs. In the TCGA database samples, lactate transmembrane protein activity, collagen transcription score, and fibroblast EMT score were remarkably higher in micropapillary adenocarcinoma. Other pathological subtypes had a better survival prognosis and longer disease-free survival compared with micropapillary adenocarcinoma. CONCLUSION mGGNs ≤2 cm with a micropapillary pattern have a higher risk of lymph node metastasis compared with SNs, and computed tomography (CT) imaging features can assist in their diagnosis.
Collapse
Affiliation(s)
- Chen‐ran Guo
- Department of Thoracic Surgery, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Lin Xu
- Department of Thoracic Surgery, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Xiao Li
- Department of Thoracic Surgery, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Yi‐lin Fu
- Department of Thoracic SurgeryShandong Provincial HospitalJinanChina
| | - Hui Wang
- Department of Thoracic SurgeryShandong Provincial HospitalJinanChina
| | - Rui Han
- Peking Union Medical CollegeBeijingChina
| | - Geng‐sheng Li
- Department of AnesthesiologyShandong Provincial HospitalJinanChina
| | - Zhen Feng
- Department of Thoracic SurgeryShandong Provincial HospitalJinanChina
| | - Meng Li
- Department of Thoracic SurgeryShandong Provincial HospitalJinanChina
| | - Wan‐gang Ren
- Department of Thoracic SurgeryShandong Provincial HospitalJinanChina
| | - Zhong‐min Peng
- Department of Thoracic Surgery, Shandong Provincial HospitalShandong UniversityJinanChina
| |
Collapse
|
31
|
Zschaeck S, Klinger B, van den Hoff J, Cegla P, Apostolova I, Kreissl MC, Cholewiński W, Kukuk E, Strobel H, Amthauer H, Blüthgen N, Zips D, Hofheinz F. Combination of tumor asphericity and an extracellular matrix-related prognostic gene signature in non-small cell lung cancer patients. Sci Rep 2023; 13:20840. [PMID: 38012155 PMCID: PMC10681996 DOI: 10.1038/s41598-023-46405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
One important aim of precision oncology is a personalized treatment of patients. This can be achieved by various biomarkers, especially imaging parameters and gene expression signatures are commonly used. So far, combination approaches are sparse. The aim of the study was to independently validate the prognostic value of the novel positron emission tomography (PET) parameter tumor asphericity (ASP) in non small cell lung cancer (NSCLC) patients and to investigate associations between published gene expression profiles and ASP. This was a retrospective evaluation of PET imaging and gene expression data from three public databases and two institutional datasets. The whole cohort comprised 253 NSCLC patients, all treated with curative intent surgery. Clinical parameters, standard PET parameters and ASP were evaluated in all patients. Additional gene expression data were available for 120 patients. Univariate Cox regression and Kaplan-Meier analysis was performed for the primary endpoint progression-free survival (PFS) and additional endpoints. Furthermore, multivariate cox regression testing was performed including clinically significant parameters, ASP, and the extracellular matrix-related prognostic gene signature (EPPI). In the whole cohort, a significant association with PFS was observed for ASP (p < 0.001) and EPPI (p = 0.012). Upon multivariate testing, EPPI remained significantly associated with PFS (p = 0.018) in the subgroup of patients with additional gene expression data, while ASP was significantly associated with PFS in the whole cohort (p = 0.012). In stage II patients, ASP was significantly associated with PFS (p = 0.009), and a previously published cutoff value for ASP (19.5%) was successfully validated (p = 0.008). In patients with additional gene expression data, EPPI showed a significant association with PFS, too (p = 0.033). The exploratory combination of ASP and EPPI showed that the combinatory approach has potential to further improve patient stratification compared to the use of only one parameter. We report the first successful validation of EPPI and ASP in stage II NSCLC patients. The combination of both parameters seems to be a very promising approach for improvement of risk stratification in a group of patients with urgent need for a more personalized treatment approach.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Bertram Klinger
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
- Computational Modelling in Medicine, Instiute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
| | - Ivayla Apostolova
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, Otto Von Guericke University, Magdeburg, Germany
| | - Michael C Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, Otto Von Guericke University, Magdeburg, Germany
| | - Witold Cholewiński
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
| | - Emily Kukuk
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helen Strobel
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Amthauer
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, Otto Von Guericke University, Magdeburg, Germany
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nils Blüthgen
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
- Computational Modelling in Medicine, Instiute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
| |
Collapse
|
32
|
Hoyd R, Wheeler CE, Liu Y, Jagjit Singh MS, Muniak M, Jin N, Denko NC, Carbone DP, Mo X, Spakowicz DJ. Exogenous Sequences in Tumors and Immune Cells (Exotic): A Tool for Estimating the Microbe Abundances in Tumor RNA-seq Data. CANCER RESEARCH COMMUNICATIONS 2023; 3:2375-2385. [PMID: 37850841 PMCID: PMC10662017 DOI: 10.1158/2767-9764.crc-22-0435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
The microbiome affects cancer, from carcinogenesis to response to treatments. New evidence suggests that microbes are also present in many tumors, though the scope of how they affect tumor biology and clinical outcomes is in its early stages. A broad survey of tumor microbiome samples across several independent datasets is needed to identify robust correlations for follow-up testing. We created a tool called {exotic} for "exogenous sequences in tumors and immune cells" to carefully identify the tumor microbiome within RNA sequencing (RNA-seq) datasets. We applied it to samples collected through the Oncology Research Information Exchange Network (ORIEN) and The Cancer Genome Atlas. We showed how the processing removes contaminants and batch effects to yield microbe abundances consistent with non-high-throughput sequencing-based approaches and DNA-amplicon-based measurements of a subset of the same tumors. We sought to establish clinical relevance by correlating the microbe abundances with various clinical and tumor measurements, such as age and tumor hypoxia. This process leveraged the two datasets and raised up only the concordant (significant and in the same direction) associations. We observed associations with survival and clinical variables that are cancer specific and relatively few associations with immune composition. Finally, we explored potential mechanisms by which microbes and tumors may interact using a network-based approach. Alistipes, a common gut commensal, showed the highest network degree centrality and was associated with genes related to metabolism and inflammation. The {exotic} tool can support the discovery of microbes in tumors in a way that leverages the many existing and growing RNA-seq datasets. SIGNIFICANCE The intrinsic tumor microbiome holds great potential for its ability to predict various aspects of cancer biology and as a target for rational manipulation. Here, we describe a tool to quantify microbes from within tumor RNA-seq and apply it to two independent datasets. We show new associations with clinical variables that justify biomarker uses and more experimentation into the mechanisms by which tumor microbiomes affect cancer outcomes.
Collapse
Affiliation(s)
- Rebecca Hoyd
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Caroline E. Wheeler
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - YunZhou Liu
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Mitchell Muniak
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ning Jin
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Nicholas C. Denko
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James Cancer Hospital, and Solove Research Institute, Columbus, Ohio
| | - David P. Carbone
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James Cancer Hospital, and Solove Research Institute, Columbus, Ohio
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Daniel J. Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center – James Cancer Hospital, and Solove Research Institute, Columbus, Ohio
| |
Collapse
|
33
|
Park S, Cho JH, Kim JH, Park M, Park S, Kim SY, Kim SK, Kim K, Park S, Park B, Moon J, Lee G, Kim S, Kim JA, Kim JH. Hypoxia stabilizes SETDB1 to maintain genome stability. Nucleic Acids Res 2023; 51:11178-11196. [PMID: 37850636 PMCID: PMC10639076 DOI: 10.1093/nar/gkad796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.
Collapse
Affiliation(s)
- Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Hwan Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mijin Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seulki Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seon-Kyu Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kidae Kim
- R&D Center, PharmAbcine Inc., Daejeon 34047, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byoung Chul Park
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Gaseul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sunhong Kim
- Drug Discovery Center, LG Chem Ltd., Seoul 07796, Republic of Korea
| | - Jung-Ae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
34
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
35
|
Arolt C, Dugan M, Wild R, Richartz V, Holz B, Scheel AH, Brägelmann J, Wagener-Ryczek S, Merkelbach-Bruse S, Wolf J, Buettner R, Catanzariti L, Scheffler M, Hillmer AM. KEAP1/NFE2L2 Pathway Signature Outperforms KEAP1/NFE2L2 Mutation Status and Reveals Alternative Pathway-Activating Mutations in NSCLC. J Thorac Oncol 2023; 18:1550-1567. [PMID: 37473958 DOI: 10.1016/j.jtho.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Activation of the antioxidant KEAP1/NFE2L2 (NRF2) pathway leads to increased glutamine dependence and an aggressive phenotype in NSCLC. Because this pathway has been explored as a clinical target, we developed a transcriptomic signature for identifying KEAP1/NFE2L2-activated tumors. METHODS A total of 971 NSCLC samples were used to train an expression signature (K1N2-score) to predict KEAP1/NFE2L2 mutations. There were 348 in-house NSCLCs that were analyzed using a NanoString expression panel for validation. RESULTS The 46-gene K1N2 score robustly predicted KEAP1/NFE2L2 mutations in the validation set irrespective of histology and mutation (area under the curve: 89.5, sensitivity: 90.2%), suggesting that approximately 90% of KEAP1/NFE2L2 mutations are pathway-activating. The K1N2-score outperformed KEAP1/NFE2L2 mutational status when predicting patient survival (score p = 0.047; mutation p = 0.215). In K1N2 score-positive but KEAP1/NFE2L2 wild-type samples, enrichment testing identified SMARCA4/BRG1 and CUL3 mutations as mimics of KEAP1/NFE2L2 mutations. CONCLUSIONS The K1N2-score identified KEAP1/NFE2L2-activated NSCLC by robustly detecting KEAP1/NFE2L2mut cases and discovering alternative genomic activators. It is a potential means for selecting patients with a constitutively active KEAP1/NFE2L2 pathway.
Collapse
Affiliation(s)
- Christoph Arolt
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Robert Wild
- Dracen Pharmaceuticals Inc., San Diego, California
| | - Vanessa Richartz
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Barbara Holz
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Andreas H Scheel
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Johannes Brägelmann
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Mildred Scheel School of Oncology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Svenja Wagener-Ryczek
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Juergen Wolf
- Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany; Department I for Internal Medicine, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | | | - Matthias Scheffler
- Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany; Department I for Internal Medicine, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
36
|
Meng J, Jiang A, Lu X, Gu D, Ge Q, Bai S, Zhou Y, Zhou J, Hao Z, Yan F, Wang L, Wang H, Du J, Liang C. Multiomics characterization and verification of clear cell renal cell carcinoma molecular subtypes to guide precise chemotherapy and immunotherapy. IMETA 2023; 2:e147. [PMID: 38868222 PMCID: PMC10989995 DOI: 10.1002/imt2.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 06/14/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor with different genetic and molecular alterations. Schemes for ccRCC classification system based on multiomics are urgent, to promote further biological insights. Two hundred and fifty-five ccRCC patients with paired data of clinical information, transcriptome expression profiles, copy number alterations, DNA methylation, and somatic mutations were collected for identification. Bioinformatic analyses were performed based on our team's recently developed R package "MOVICS." With 10 state-of-the-art algorithms, we identified the multiomics subtypes (MoSs) for ccRCC patients. MoS1 is an immune exhausted subtype, presented the poorest prognosis, and might be caused by an exhausted immune microenvironment, activated hypoxia features, but can benefit from PI3K/AKT inhibitors. MoS2 is an immune "cold" subtype, which represented more mutation of VHL and PBRM1, favorable prognosis, and is more suitable for sunitinib therapy. MoS3 is the immune "hot" subtype, and can benefit from the anti-PD-1 immunotherapy. We successfully verified the different molecular features of the three MoSs in external cohorts GSE22541, GSE40435, and GSE53573. Patients that received Nivolumab therapy helped us to confirm that MoS3 is suitable for anti-PD-1 therapy. E-MTAB-3267 cohort also supported the fact that MoS2 patients can respond more to sunitinib treatment. We also confirm that SETD2 is a tumor suppressor in ccRCC, along with the decreased SETD2 protein level in advanced tumor stage, and knock-down of SETD2 leads to the promotion of cell proliferation, migration, and invasion. In summary, we provide novel insights into ccRCC molecular subtypes based on robust clustering algorithms via multiomics data, and encourage future precise treatment of ccRCC patients.
Collapse
Affiliation(s)
- Jialin Meng
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Aimin Jiang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Xiaofan Lu
- Department of Cancer and Functional GenomicsInstitute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRAIllkirchFrance
| | - Di Gu
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Qintao Ge
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Suwen Bai
- The Second Affiliated Hospital, School of MedicineThe Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of ShenzhenShenzhenChina
| | - Yundong Zhou
- Department of Surgery, Ningbo Medical Center Lihuili HospitalNingbo UniversityNingboZhejiangChina
| | - Jun Zhou
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Zongyao Hao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Fangrong Yan
- Research Center of Biostatistics and Computational PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Linhui Wang
- Department of Urology, Changhai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Haitao Wang
- Cancer Center, Faculty of Health SciencesUniversity of MacauMacau SARChina
- Present address:
Center for Cancer ResearchBethesdaMarylandUSA
| | - Juan Du
- The Second Affiliated Hospital, School of MedicineThe Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of ShenzhenShenzhenChina
| | - Chaozhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
37
|
Pervin J, Asad M, Cao S, Jang GH, Feizi N, Haibe-Kains B, Karasinska JM, O’Kane GM, Gallinger S, Schaeffer DF, Renouf DJ, Zogopoulos G, Bathe OF. Clinically impactful metabolic subtypes of pancreatic ductal adenocarcinoma (PDAC). Front Genet 2023; 14:1282824. [PMID: 38028629 PMCID: PMC10643182 DOI: 10.3389/fgene.2023.1282824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by a diverse tumor microenvironment. The heterogeneous cellular composition of PDAC makes it challenging to study molecular features of tumor cells using extracts from bulk tumor. The metabolic features in tumor cells from clinical samples are poorly understood, and their impact on clinical outcomes are unknown. Our objective was to identify the metabolic features in the tumor compartment that are most clinically impactful. Methods: A computational deconvolution approach using the DeMixT algorithm was applied to bulk RNASeq data from The Cancer Genome Atlas to determine the proportion of each gene's expression that was attributable to the tumor compartment. A machine learning algorithm designed to identify features most closely associated with survival outcomes was used to identify the most clinically impactful metabolic genes. Results: Two metabolic subtypes (M1 and M2) were identified, based on the pattern of expression of the 26 most important metabolic genes. The M2 phenotype had a significantly worse survival, which was replicated in three external PDAC cohorts. This PDAC subtype was characterized by net glycogen catabolism, accelerated glycolysis, and increased proliferation and cellular migration. Single cell data demonstrated substantial intercellular heterogeneity in the metabolic features that typified this aggressive phenotype. Conclusion: By focusing on features within the tumor compartment, two novel and clinically impactful metabolic subtypes of PDAC were identified. Our study emphasizes the challenges of defining tumor phenotypes in the face of the significant intratumoral heterogeneity that typifies PDAC. Further studies are required to understand the microenvironmental factors that drive the appearance of the metabolic features characteristic of the aggressive M2 PDAC phenotype.
Collapse
Affiliation(s)
- Jannat Pervin
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammad Asad
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Shaolong Cao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Centre, Houston, TX, United States
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Nikta Feizi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | - Grainne M. O’Kane
- University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - David F. Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J. Renouf
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - George Zogopoulos
- Department of Surgery, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Oliver F. Bathe
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Lau HSH, Tan VKM, Tan BKT, Sim Y, Quist J, Thike AA, Tan PH, Pervaiz S, Grigoriadis A, Sabapathy K. Adipose-enriched peri-tumoral stroma, in contrast to myofibroblast-enriched stroma, prognosticates poorer survival in breast cancers. NPJ Breast Cancer 2023; 9:84. [PMID: 37863888 PMCID: PMC10589339 DOI: 10.1038/s41523-023-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Despite our understanding of the genetic basis of intra-tumoral heterogeneity, the role of stromal heterogeneity arising from an altered tumor microenvironment in affecting tumorigenesis is poorly understood. In particular, extensive study on the peri-tumoral stroma in the morphologically normal tissues surrounding the tumor is lacking. Here, we examine the heterogeneity in tumors and peri-tumoral stroma from 8 ER+/PR+/HER2- invasive breast carcinomas, through multi-region transcriptomic profiling by microarray. We describe the regional heterogeneity observed at the intrinsic molecular subtype, pathway enrichment, and cell type composition levels within each tumor and its peri-tumoral region, up to 7 cm from the tumor margins. Moreover, we identify a pro-inflammatory adipose-enriched peri-tumoral subtype which was significantly associated with poorer overall survival in breast cancer patients, in contrast to an adaptive immune cell- and myofibroblast-enriched subtype. These data together suggest that peri-tumoral heterogeneity may be an important determinant of the evolution and treatment of breast cancers.
Collapse
Affiliation(s)
- Hannah Si Hui Lau
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Veronique Kiak Mien Tan
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
| | - Benita Kiat Tee Tan
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
- Department of General Surgery, Sengkang General Hospital, Singapore, 544886, Singapore
| | - Yirong Sim
- Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore, 168753, Singapore
| | - Jelmar Quist
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kanaga Sabapathy
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
39
|
Jiang W, Zhang M, Gao C, Yan C, Gao R, He Z, Wei X, Xiong J, Ruan Z, Yang Q, Li J, Li Q, Zhong Z, Zhang M, Yuan Q, Hu H, Wang S, Hu M, Cai C, Wu G, Jiang C, Zhang Y, Zhang C, Zhang J. A mitochondrial EglN1-AMPKα axis drives breast cancer progression by enhancing metabolic adaptation to hypoxic stress. EMBO J 2023; 42:e113743. [PMID: 37661833 PMCID: PMC10577635 DOI: 10.15252/embj.2023113743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the β2β3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its β2β3 loop region, suggesting a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Mengyao Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Chuan Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Chaojun Yan
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Ronghui Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Ziwei He
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Xin Wei
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jingjing Xiong
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Zilun Ruan
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Qifang Li
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Ziyi Zhong
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Shuang Wang
- Mabnus Biological Technology IncorporationWuhanChina
| | - Ming‐Ming Hu
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Gao‐Song Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Chao Jiang
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Ya‐Lin Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityFujianChina
| | - Chen‐Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityFujianChina
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
40
|
Buzatu I, Tache DE, Manea Carneluti EV, Zlatian O. ELTD1 Review: New Regulator of Angiogenesis in Glioma. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:495-502. [PMID: 38559823 PMCID: PMC10976199 DOI: 10.12865/chsj.49.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024]
Abstract
Glioblastoma (GBM) is a severe brain cancer in which angiogenesis is controlled by G protein-coupled receptors (GPCRs), such as Epidermal Growth Factor Latrophilin and seven transmembrane domain-containing protein 1 (ELTD1), which are crucial for tumor progression. ELTD1 is an understudied GPCR with a broad expression profile in various tissues, including the human brain, especially in the cerebral cortex. It plays a significant role in angiogenesis and tumorigenesis and is regulated by interconnected VEGF and DLL4/Notch pathways. ELTD1 also modulates the JAK/STAT3/HIF-1α signaling axis, affecting the response of cells to low-oxygen conditions and promoting cell proliferation. However, their specific ligands and functional mechanisms remain unclear. ELTD1 expression is associated with different outcomes in various cancers. For example, in GBM, higher ELTD1 levels are linked to more mature and less leaky blood vessels, potentially enhancing drug delivery and therapeutic success. It also has divergent prognostic implications in renal, ovarian, and colorectal cancer. Additionally, ELTD1 overexpression in central nervous system endothelial cells suggests that it is a potential biomarker for multiple sclerosis. Therapeutically, blocking ELTD1 inhibits vessel formation, possibly slowing tumor growth. Initial therapies used polyclonal antibodies, but the shift has been towards more targeted monoclonal antibodies, particularly in preclinical glioma models. This review aimed to translate these insights into effective clinical treatments. However, several gaps remain in our knowledge regarding ELTD1 ligands and their potential involvement in other physiological or pathological processes that future research can address to elucidate the role of ELTD1 in cancer, through angiogenesis and other intracellular pathways.
Collapse
Affiliation(s)
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Ovidiu Zlatian
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
41
|
Lundgren C, Tutzauer J, Church SE, Stål O, Ekholm M, Forsare C, Nordenskjöld B, Fernö M, Bendahl PO, Rydén L. Tamoxifen-predictive value of gene expression signatures in premenopausal breast cancer: data from the randomized SBII:2 trial. Breast Cancer Res 2023; 25:110. [PMID: 37773134 PMCID: PMC10540453 DOI: 10.1186/s13058-023-01719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Gene expression (GEX) signatures in breast cancer provide prognostic information, but little is known about their predictive value for tamoxifen treatment. We examined the tamoxifen-predictive value and prognostic effects of different GEX signatures in premenopausal women with early breast cancer. METHODS RNA from formalin-fixed paraffin-embedded tumor tissue from premenopausal women randomized between two years of tamoxifen treatment and no systemic treatment was extracted and successfully subjected to GEX profiling (n = 437, NanoString Breast Cancer 360™ panel). The median follow-up periods for a recurrence-free interval (RFi) and overall survival (OS) were 28 and 33 years, respectively. Associations between GEX signatures and tamoxifen effect were assessed in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+ /HER2-) tumors using Kaplan-Meier estimates and Cox regression. The prognostic effects of GEX signatures were studied in the entire cohort. False discovery rate adjustments (q-values) were applied to account for multiple hypothesis testing. RESULTS In patients with ER+/HER2- tumors, FOXA1 expression below the median was associated with an improved effect of tamoxifen after 10 years with regard to RFi (hazard ratio [HR]FOXA1(high) = 1.04, 95% CI = 0.61-1.76, HRFOXA1(low) = 0.30, 95% CI = 0.14-0.67, qinteraction = 0.0013), and a resembling trend was observed for AR (HRAR(high) = 1.15, 95% CI = 0.60-2.20, HRAR(low) = 0.42, 95% CI = 0.24-0.75, qinteraction = 0.87). Similar patterns were observed for OS. Tamoxifen was in the same subgroup most beneficial for RFi in patients with low ESR1 expression (HRRFi ESR1(high) = 0.76, 95% CI = 0.43-1.35, HRRFi, ESR1(low) = 0.56, 95% CI = 0.29-1.06, qinteraction = 0.37). Irrespective of molecular subtype, higher levels of ESR1, Mast cells, and PGR on a continuous scale were correlated with improved 10 years RFi (HRESR1 = 0.80, 95% CI = 0.69-0.92, q = 0.005; HRMast cells = 0.74, 95% CI = 0.65-0.85, q < 0.0001; and HRPGR = 0.78, 95% CI = 0.68-0.89, q = 0.002). For BC proliferation and Hypoxia, higher scores associated with worse outcomes (HRBCproliferation = 1.54, 95% CI = 1.33-1.79, q < 0.0001; HRHypoxia = 1.38, 95% CI = 1.20-1.58, q < 0.0001). The results were similar for OS. CONCLUSIONS Expression of FOXA1 is a promising predictive biomarker for tamoxifen effect in ER+/HER2- premenopausal breast cancer. In addition, each of the signatures BC proliferation, Hypoxia, Mast cells, and the GEX of AR, ESR1, and PGR had prognostic value, also after adjusting for established prognostic factors. Trial registration This trial was retrospectively registered in the ISRCTN database the 6th of December 2019, trial ID: https://clinicaltrials.gov/ct2/show/ISRCTN12474687 .
Collapse
Affiliation(s)
- Christine Lundgren
- Department of Oncology, Region Jönköping County, Jönköping, Sweden.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden.
| | - Julia Tutzauer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | | | - Olle Stål
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Ekholm
- Department of Oncology, Region Jönköping County, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Carina Forsare
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mårten Fernö
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
42
|
Wang Y, Liu B, Min Q, Yang X, Yan S, Ma Y, Li S, Fan J, Wang Y, Dong B, Teng H, Lin D, Zhan Q, Wu N. Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression. Cell Discov 2023; 9:96. [PMID: 37723144 PMCID: PMC10507052 DOI: 10.1038/s41421-023-00591-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/27/2023] [Indexed: 09/20/2023] Open
Abstract
Indolent (lepidic) and aggressive (micropapillary, solid, and poorly differentiated acinar) histologic subtypes often coexist within a tumor tissue of lung adenocarcinoma (LUAD), but the molecular features associated with different subtypes and their transitions remain elusive. Here, we combine spatial transcriptomics and multiplex immunohistochemistry to elucidate molecular characteristics and cellular plasticity of distinct histologic subtypes of LUAD. We delineate transcriptional reprogramming and dynamic cell signaling that determine subtype progression, especially hypoxia-induced regulatory network. Different histologic subtypes exhibit heterogeneity in dedifferentiation states. Additionally, our results show that macrophages are the most abundant cell type in LUAD, and identify different tumor-associated macrophage subpopulations that are unique to each histologic subtype, which might contribute to an immunosuppressive microenvironment. Our results provide a systematic landscape of molecular profiles that drive LUAD subtype progression, and demonstrate potentially novel therapeutic strategies and targets for invasive lung adenocarcinoma.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shaolei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiawen Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yaqi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
- State Key Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- International Cancer Institute, Peking University Health Science Center, Beijing, China.
- Soochow University Cancer institute, Suzhou, Jiangsu, China.
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
43
|
Hu J, Smith DJ, Wu L. VHL L169P Variant Does Not Alter Cellular Hypoxia Tension in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:14075. [PMID: 37762376 PMCID: PMC10530985 DOI: 10.3390/ijms241814075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In the current era of tumor genome sequencing, single amino acid missense variants in the von Hippel-Lindau (VHL) tumor suppressor gene are frequently identified in clear cell renal carcinoma (ccRCC). Due to the incomplete knowledge of the structural architecture of VHL protein, the functional significance of many missense mutations cannot be assigned. L169P is one such missense mutation identified in the case of aggressive, metastatic ccRCC. Here, we characterized the biochemical activity, transcriptomic hypoxia signature and biological functions of the L169P variant. Lentiviral vector expressing either wildtype (WT) or L169P VHL were used to transduce two VHL-deficient human ccRCC cell lines, 786-O and RCC4. The stability of the VHL protein and the expression level of VHL, HIF1α and HIF2α were analyzed. The impact of restoring L169P or WT VHL on the hypoxia gene expression program in 786-O cells was assessed by mRNA sequencing (RNAseq) and computed hypoxic scores. The impact of restoring VHL expression on the growth of ccRCC models was assessed in cell cultures and in chorioallantoic membrane (CAM) xenografts. In the 786-O cells, the protein stability of L169P VHL was comparable to WT VHL. No obvious difference in the capability of degrading HIF1α and HIF2α was observed between WT and L169P VHL in the 786-O or RCC4 cells. The hypoxic scores were not significantly different in the 786-O cells expressing either wildtype or L169P VHL. From the cellular function perspective, both WT and L169P VHL slowed cell proliferation in vitro and in vivo. The L169P VHL variant is comparable to WT VHL in terms of protein stability, ability to degrade HIF1α factors and ability to regulate hypoxia gene expression, as well as in the suppression of ccRCC tumor cell growth. Taken together, our data indicate that the L169P VHL variant alone is unlikely to drive the oncogenesis of sporadic ccRCC.
Collapse
Affiliation(s)
- Junhui Hu
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Desmond J. Smith
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lily Wu
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Yang Z, Su W, Wei X, Qu S, Zhao D, Zhou J, Wang Y, Guan Q, Qin C, Xiang J, Zen K, Yao B. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1. Cell Rep 2023; 42:112945. [PMID: 37542723 DOI: 10.1016/j.celrep.2023.112945] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Solid tumors have developed robust ferroptosis resistance. The mechanism underlying ferroptosis resistance regulation in solid tumors, however, remains elusive. Here, we report that the hypoxic tumor microenvironment potently promotes ferroptosis resistance in solid tumors in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner. In combination with HIF-2α, which promotes tumor ferroptosis under hypoxia, HIF-1α is the main driver of hypoxia-induced ferroptosis resistance. Mechanistically, HIF-1α-induced lactate contributes to ferroptosis resistance in a pH-dependent manner that is parallel to the classical SLC7A11 and FSP1 systems. In addition, HIF-1α also enhances transcription of SLC1A1, an important glutamate transporter, and promotes cystine uptake to promote ferroptosis resistance. In support of the role of hypoxia in ferroptosis resistance, silencing HIF-1α sensitizes mouse solid tumors to ferroptosis inducers. In conclusion, our results reveal a mechanism by which hypoxia drives ferroptosis resistance and identify the combination of hypoxia alleviation and ferroptosis induction as a promising therapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- Zhou Yang
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Su
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dan Zhao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingwan Zhou
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qin
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.
| | - Bing Yao
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Koi L, Bitto V, Weise C, Möbius L, Linge A, Löck S, Yaromina A, Besso MJ, Valentini C, Pfeifer M, Overgaard J, Zips D, Kurth I, Krause M, Baumann M. Prognostic biomarkers for the response to the radiosensitizer nimorazole combined with RCTx: a pre-clinical trial in HNSCC xenografts. J Transl Med 2023; 21:576. [PMID: 37633930 PMCID: PMC10464469 DOI: 10.1186/s12967-023-04439-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Tumor hypoxia is associated with resistance to radiotherapy and chemotherapy. In head and neck squamous cell carcinoma (HNSCC), nimorazole, an oxygen mimic, combined with radiotherapy (RT) enabled to improve loco-regional control (LRC) in some patients with hypoxic tumors but it is unknown whether this holds also for radiochemotherapy (RCTx). Here, we investigated the impact of nimorazole combined with RCTx in HNSCC xenografts and explored molecular biomarkers for its targeted use. METHODS Irradiations were performed with 30 fractions in 6 weeks combined with weekly cisplatin. Nimorazole was applied before each fraction, beginning with the first or after ten fractions. Effect of RCTx with or without addition of nimorazole was quantified as permanent local control after irradiation. For histological evaluation and targeted gene expression analysis, tumors were excised untreated or after ten fractions. Using quantitative image analysis, micromilieu parameters were determined. RESULTS Nimorazole combined with RCTx significantly improved permanent local control in two tumor models, and showed a potential improvement in two additional models. In these four models, pimonidazole hypoxic volume (pHV) was significantly reduced after ten fractions of RCTx alone. Our results suggest that nimorazole combined with RCTx might improve TCR compared to RCTx alone if hypoxia is decreased during the course of RCTx but further experiments are warranted to verify this association. Differential gene expression analysis revealed 12 genes as potential for RCTx response. When evaluated in patients with HNSCC who were treated with primary RCTx, these genes were predictive for LRC. CONCLUSIONS Nimorazole combined with RCTx improved local tumor control in some but not in all HNSCC xenografts. We identified prognostic biomarkers with the potential for translation to patients with HNSCC.
Collapse
Affiliation(s)
- Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Verena Bitto
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany.
| | - Corina Weise
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Möbius
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - María José Besso
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Valentini
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manuel Pfeifer
- Institute of Legal Medicine, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Jens Overgaard
- Department of Radiation Oncology, University Hospital Aarhus, Aarhus, Denmark
| | - Daniel Zips
- Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ina Kurth
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, Helmholtz-Zentrum Dresden - Rossendorf, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Radiooncology / Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Heft Neal ME, Brenner JC. Prognosis to Radiation Unlocked: How Hypoxia Methylome May Hold the Key in HNSCC. Clin Cancer Res 2023; 29:2954-2956. [PMID: 37310809 PMCID: PMC10527007 DOI: 10.1158/1078-0432.ccr-23-1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Hypoxia in head and neck tumors has proven to be predictive of outcomes. Current hypoxia signatures have failed for patient treatment selection. In a recent study, the authors identified a hypoxia methylation signature as a more robust biomarker in head and neck squamous cell carcinoma and shed light into the mechanism of hypoxia-mediated treatment resistance. See related article by Tawk et al., p. 3051.
Collapse
Affiliation(s)
- Molly E Heft Neal
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
47
|
Tawk B, Rein K, Schwager C, Knoll M, Wirkner U, Hörner-Rieber J, Liermann J, Kurth I, Balermpas P, Rödel C, Linge A, Löck S, Lohaus F, Tinhofer I, Krause M, Stuschke M, Grosu AL, Zips D, Combs SE, Belka C, Stenzinger A, Herold-Mende C, Baumann M, Schirmacher P, Debus J, Abdollahi A. DNA-Methylome-Based Tumor Hypoxia Classifier Identifies HPV-Negative Head and Neck Cancer Patients at Risk for Locoregional Recurrence after Primary Radiochemotherapy. Clin Cancer Res 2023; 29:3051-3064. [PMID: 37058257 PMCID: PMC10425733 DOI: 10.1158/1078-0432.ccr-22-3790] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in head and neck squamous cell carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. EXPERIMENTAL DESIGN A DNA-methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA (The Cancer Genome Atlas)-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of human papillomavirus (HPV)-negative patients with HNSCC treated with primary radiochemotherapy (RCHT). RESULTS Although hypoxia-GES failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (HR, 4.3; P = 0.001) and overall survival (HR, 2.34; P = 0.03) but not distant metastasis after RCHT in both cohorts. Hypoxia-M status was inversely associated with CD8 T-cell infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR, 1.83; P = 0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS Our findings highlight an unexplored avenue for DNA methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. See related commentary by Heft Neal and Brenner, p. 2954.
Collapse
Affiliation(s)
- Bouchra Tawk
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Rein
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Knoll
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Wirkner
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Liermann
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), partner site, Frankfurt, Germany
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), partner site, Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Steffen Löck
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Ingeborg Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Mechtild Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anca Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Freiburg, Germany
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, German Cancer Consortium (DKTK), partner site Tuebingen, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Germany
| | - Stephanie E. Combs
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Munich, Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany
- Department of Radiation Oncology, University Hospital Ludwig-Maximilians-University of Munich, Munich, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Albrecht Stenzinger
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
48
|
Song JJ, Chobrutskiy A, Chobrutskiy BI, Cios KJ, Huda TI, Eakins RA, Diaz MJ, Blanck G. TRB CDR3 chemical complementarity with HBV epitopes correlates with increased hepatocellular carcinoma, disease-free survival. J Med Virol 2023; 95:e29043. [PMID: 37621059 DOI: 10.1002/jmv.29043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The liver is a site of immune privilege, compared with the bladder and skin, for example. To study this attenuation of the immune response in the cancer setting, we compared quantities and features of adaptive immune receptor (IR) recombination reads obtained from hepatocellular carcinoma (HCC) and six other cancers. Of these cancers, HCC had the lowest numbers of IR recombination reads and was the only cancer with a greater number immunoglobulin rather than T-cell receptor recombination reads. To better understand the role of adaptive IRs obtained from the tumor microenvironment in shaping the outcome of HCC cases, we quantified the chemical complementarity between HCC tumor TRB and IGH complementarity determining region-3 (CDR3) amino acid (AA) sequences, and known hepatitis B virus (HBV) epitopes. High chemical complementarity between HCC-resident CDR3s and three HBV epitopes correlated with increased survival probabilities, for two sources of CDR3s representing different CDR3 recovery algorithms. These results suggest the potential of CDR3 AA sequences as biomarkers for HCC patient stratification and as guides for future development of therapeutics.
Collapse
Affiliation(s)
- Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
49
|
Kuhn CK, Meister J, Kreft S, Stiller M, Puppel SH, Zaremba A, Scheffler B, Ullrich V, Schöneberg T, Schadendorf D, Horn S. TERT expression is associated with metastasis from thin primaries, exhausted CD4+ T cells in melanoma and with DNA repair across cancer entities. PLoS One 2023; 18:e0281487. [PMID: 37418389 PMCID: PMC10328343 DOI: 10.1371/journal.pone.0281487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations occur frequently in cancer, have been associated with increased TERT expression and cell proliferation, and could potentially influence therapeutic regimens for melanoma. As the role of TERT expression in malignant melanoma and the non-canonical functions of TERT remain understudied, we aimed to extend the current knowledge on the impact of TERT promoter mutations and expression alterations in tumor progression by analyzing several highly annotated melanoma cohorts. Using multivariate models, we found no consistent association for TERT promoter mutations or TERT expression with the survival rate in melanoma cohorts under immune checkpoint inhibition. However, the presence of CD4+ T cells increased with TERT expression and correlated with the expression of exhaustion markers. While the frequency of promoter mutations did not change with Breslow thickness, TERT expression was increased in metastases arising from thinner primaries. As single-cell RNA-sequencing (RNA-seq) showed that TERT expression was associated with genes involved in cell migration and dynamics of the extracellular matrix, this suggests a role of TERT during invasion and metastasis. Co-regulated genes found in several bulk tumors and single-cell RNA-seq cohorts also indicated non-canonical functions of TERT related to mitochondrial DNA stability and nuclear DNA repair. This pattern was also evident in glioblastoma and across other entities. Hence, our study adds to the role of TERT expression in cancer metastasis and potentially also immune resistance.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jaroslawna Meister
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Mathias Stiller
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sven-Holger Puppel
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
50
|
Dubec MJ, Buckley DL, Berks M, Clough A, Gaffney J, Datta A, McHugh DJ, Porta N, Little RA, Cheung S, Hague C, Eccles CL, Hoskin PJ, Bristow RG, Matthews JC, van Herk M, Choudhury A, Parker GJM, McPartlin A, O'Connor JPB. First-in-human technique translation of oxygen-enhanced MRI to an MR Linac system in patients with head and neck cancer. Radiother Oncol 2023; 183:109592. [PMID: 36870608 DOI: 10.1016/j.radonc.2023.109592] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ΔR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ΔR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ΔR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ΔR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ΔR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ΔR1 magnitude and time-course trends were similar on both systems. CONCLUSION We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy.
Collapse
Affiliation(s)
- Michael J Dubec
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.
| | - David L Buckley
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Biomedical Imaging, University of Leeds, Leeds, UK
| | - Michael Berks
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Abigael Clough
- Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - John Gaffney
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Anubhav Datta
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Damien J McHugh
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Ross A Little
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Christina Hague
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Cynthia L Eccles
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Clinical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Robert G Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Julian C Matthews
- Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Geoff J M Parker
- Bioxydyn Ltd, Manchester, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Andrew McPartlin
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Radiation Oncology, Princess Margaret Cancer Center, Toronto, Canada
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiology, The Christie NHS Foundation Trust, Manchester, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|