1
|
Rajapakse A, Suraweera A, Boucher D, Naqi A, O'Byrne K, Richard DJ, Croft LV. Redox Regulation in the Base Excision Repair Pathway: Old and New Players as Cancer Therapeutic Targets. Curr Med Chem 2020; 27:1901-1921. [PMID: 31258058 DOI: 10.2174/0929867326666190430092732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/09/2019] [Accepted: 04/05/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Reactive Oxygen Species (ROS) are by-products of normal cellular metabolic processes, such as mitochondrial oxidative phosphorylation. While low levels of ROS are important signalling molecules, high levels of ROS can damage proteins, lipids and DNA. Indeed, oxidative DNA damage is the most frequent type of damage in the mammalian genome and is linked to human pathologies such as cancer and neurodegenerative disorders. Although oxidative DNA damage is cleared predominantly through the Base Excision Repair (BER) pathway, recent evidence suggests that additional pathways such as Nucleotide Excision Repair (NER) and Mismatch Repair (MMR) can also participate in clearance of these lesions. One of the most common forms of oxidative DNA damage is the base damage 8-oxoguanine (8-oxoG), which if left unrepaired may result in G:C to A:T transversions during replication, a common mutagenic feature that can lead to cellular transformation. OBJECTIVE Repair of oxidative DNA damage, including 8-oxoG base damage, involves the functional interplay between a number of proteins in a series of enzymatic reactions. This review describes the role and the redox regulation of key proteins involved in the initial stages of BER of 8-oxoG damage, namely Apurinic/Apyrimidinic Endonuclease 1 (APE1), human 8-oxoguanine DNA glycosylase-1 (hOGG1) and human single-stranded DNA binding protein 1 (hSSB1). Moreover, the therapeutic potential and modalities of targeting these key proteins in cancer are discussed. CONCLUSION It is becoming increasingly apparent that some DNA repair proteins function in multiple repair pathways. Inhibiting these factors would provide attractive strategies for the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Aleksandra Rajapakse
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Amila Suraweera
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Didier Boucher
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Ali Naqi
- Department of Chemistry, Pennsylvania State University, United States
| | - Kenneth O'Byrne
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Laura V Croft
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Programming of Cell Resistance to Genotoxic and Oxidative Stress. Biomedicines 2018; 6:biomedicines6010005. [PMID: 29301323 PMCID: PMC5874662 DOI: 10.3390/biomedicines6010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022] Open
Abstract
Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Collapse
|
3
|
Sepúlveda S, Valenzuela L, Ponce I, Sierra S, Bahamondes P, Ramirez S, Rojas V, Kemmerling U, Galanti N, Cabrera G. Expression, Functionality, and Localization of Apurinic/Apyrimidinic Endonucleases in Replicative and Non-Replicative Forms ofTrypanosoma cruzi. J Cell Biochem 2013; 115:397-409. [DOI: 10.1002/jcb.24675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
Affiliation(s)
- S. Sepúlveda
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - L. Valenzuela
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - I. Ponce
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - S. Sierra
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - P. Bahamondes
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - S. Ramirez
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - V. Rojas
- Laboratorio de Genética e Inmunología Molecular; Instituto de Biología, Pontificia Universidad Católica de Valparaíso; Chile
| | - U. Kemmerling
- Programa de Anatomía y Biología del Desarrollo; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - N. Galanti
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| | - G. Cabrera
- Programa de Biología Celular y Molecular; Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile; Santiago Chile
| |
Collapse
|
4
|
Storr SJ, Woolston CM, Zhang Y, Martin SG. Redox environment, free radical, and oxidative DNA damage. Antioxid Redox Signal 2013; 18:2399-408. [PMID: 23249296 DOI: 10.1089/ars.2012.4920] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Effective redox homeostasis is critical, and disruption of this process can have important cellular consequences. An array of systems protect the cell from potentially damaging reactive oxygen species (ROS), however if these systems are overwhelmed, for example, in aberrantly functioning cells, ROS can have a number of detrimental consequences, including DNA damage. Oxidative DNA damage can be repaired by a number of DNA repair pathways, such as base excision repair (BER). RECENT ADVANCES The role of ROS in oxidative DNA damage is well established, however, there is an emerging role for ROS and the redox environment in modulating the efficiency of DNA repair pathways targeting oxidative DNA lesions. CRITICAL ISSUES Oxidative DNA damage and modulation of DNA damage and repair by the redox environment are implicated in a number of diseases. Understanding how the redox environment plays such a critical role in DNA damage and repair will allow us to further understand the far reaching cellular consequence of ROS. FUTURE DIRECTIONS In this review, we discuss the detrimental effects of ROS, oxidative DNA damage repair, and the redox systems that exist to control redox homeostasis. We also describe how DNA pathways can be modulated by the redox environment and how the redox environment and oxidative DNA damage plays a role in disease.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals Trust, City Hospital Campus, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
5
|
Chen S, Xiong G, Wu S, Mo J. Downregulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 enhances the sensitivity of human pancreatic cancer cells to radiotherapy in vitro. Cancer Biother Radiopharm 2012; 28:169-76. [PMID: 23268706 DOI: 10.1089/cbr.2012.1266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Abstract Background: Radiotherapy is an important treatment for the patients with advanced pancreatic cancer. Emerging studies determined apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) might associate with the resistance of human pancreatic cancer cells to radiotherapy. AIMS To investigate whether downregulation of APE1/Ref-1 expression by ribonucleic acid interference would increase the sensitivity of chromic-P32 phosphate to pancreatic cancer cells. METHODS The plasmids containing APE-specific and unspecific short hairpin were transfected into Patu-8898 cells. Stable cell clones were selected by G418. The mRNA expression of APE1/Ref-1 was detected by semiquantitative reverse transcription-polymerase chain reaction and the protein expression of APE1/Ref-1 was detected by Western blot analysis; cell proliferation was studied by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and colony formation assay; apoptosis was detected by flow cytometry. RESULTS After 24 hours irradiation, APE1/Ref-1 mRNA and protein expression were upregulated, in a concentration-dependent manner. Suppression of APE1/Ref-1 by siRNA increased the pancreatic cancer cells hypersensitive to (32)P-CP. In the combination of (32)P-CP and siRNA group, MTT assay showed that the cell inhibition increased to (74.33%±9.02%), the surviving fraction in the colony formation assay was only 25.00%, and the apoptosis rate was up to (16.77%±0.98%). CONCLUSIONS Knockdown APE1/Ref-1 gene expression may significantly sensitize the Patu-8988 cells to radiotherapy, which may be a useful target for modifying radiation resistance of pancreatic cancer cells to irradiation.
Collapse
Affiliation(s)
- Sumei Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai, China
| | | | | | | |
Collapse
|
6
|
Abbotts R, Madhusudan S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 2010; 36:425-35. [PMID: 20056333 DOI: 10.1016/j.ctrv.2009.12.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 01/16/2023]
Abstract
DNA base excision repair (BER) is critically involved in the processing of DNA base damage induced by alkylating agents. Pharmacological inhibition of BER (using PARP inhibitors), either alone or in combination with chemotherapy has recently shown promise in clinical trials. Human apurinic/apyrimidinic endonuclease 1(APE1) is an essential BER protein that is involved in the processing of potentially cytotoxic abasic sites that are obligatory intermediates in BER. Here we provide a summary of the basic mechanistic role of APE1 in DNA repair and redox regulation and highlight preclinical and clinical data that confirm APE1 as a valid anticancer drug target. Development of small molecule inhibitors of APE1 is an area of intense research and current evidence using APE1 inhibitors has demonstrated potentiation of cytotoxicity of alkylating agents in preclinical models implying translational applications in cancer patients.
Collapse
Affiliation(s)
- Rachel Abbotts
- Translational DNA Repair Group, Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
7
|
Naidu MD, Mason JM, Pica RV, Fung H, Peña LA. Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1. JOURNAL OF RADIATION RESEARCH 2010; 51:393-404. [PMID: 20679741 DOI: 10.1269/jrr.09077] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Since radiation therapy remains a primary treatment modality for gliomas, the radioresistance of glioma cells and targets to modify their radiation tolerance are of significant interest. Human apurinic endonuclease 1 (Ape1, Ref-1, APEX, HAP1, AP endo) is a multifunctional protein involved in base excision repair of DNA and a redox-dependent transcriptional co-activator. This study investigated whether there is a direct relationship between Ape1 and radioresistance in glioma cells, employing the human U87 and U251 cell lines. U87 is intrinsically more radioresistant than U251, which is partly attributable to more cycling U251 cells found in G2/M, the most radiosensitive cell stage, while more U87 cells are found in S and G1, the more radioresistant cell stages. But observed radioresistance is also related to Ape1 activity. U87 has higher levels of Ape1 than does U251, as assessed by Western blot and enzyme activity assays (approximately 1.5-2 fold higher in cycling cells, and approximately 10 fold higher at G2/M). A direct relationship was seen in cells transfected with CMV-Ape1 constructs; there was a dose-dependent relationship between increasing Ape1 overexpression and increasing radioresistance. Conversely, knock down by siRNA or by pharmacological down regulation of Ape1 resulted in decreased radioresistance. The inhibitors lucanthone and CRT004876 were employed, the former a thioxanthene previously under clinical evaluation as a radiosensitizer for brain tumors and the latter a more specific Ape1 inhibitor. These data suggest that Ape1 may be a useful target for modifying radiation tolerance.
Collapse
Affiliation(s)
- Mamta D Naidu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | | | | | | |
Collapse
|
8
|
Lu J, Zhang S, Chen D, Wang H, Wu W, Wang X, Lei Y, Wang J, Qian J, Fan W, Hu Z, Jin L, Shen H, Huang W, Wei Q, Lu D. Functional characterization of a promoter polymorphism in APE1/Ref-1 that contributes to reduced lung cancer susceptibility. FASEB J 2009; 23:3459-69. [PMID: 19541747 DOI: 10.1096/fj.09-136549] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor-1 (APE1/Ref-1) is a ubiquitous multifunctional protein that possesses both DNA-repair and redox regulatory activities. Although it was originally identified as a DNA-repair enzyme, accumulating evidence supports a role of APE1/Ref-1 in tumor development. To investigate association between APE1/Ref-1 polymorphisms and lung cancer risk in Chinese populations, we first genotyped three variants of APE1/Ref-1 and found a -141 T-to-G variant (rs1760944) in the promoter associated with decreased risk of lung cancer [odds ratio (OR) = 0.62 for GG; P=0.043]. Similar results were obtained in a follow-up replication study. Combined data from the two studies comprising a total of 1072 lung cancer patients and 1064 cancer-free control participants generated a more significant association (P=0.002). We observed lower APE1/Ref-1 mRNA levels in the presence of the protective G allele in human peripheral blood mononuclear cells and normal lung tissues. The -141G-allele-promoter construct exhibited decreased luciferase reporter gene expression. Electrophoretic mobility shift assays and surface plasmon resonance analysis showed that the -141G allele impaired the binding affinity of some transcription factor, accounting for lower APE1/Ref-1-promoter activity. Supershift assays further revealed that the protein of interest was octamer-binding transcription factor-1 (Oct-1). Chromatin immunoprecipitation reconfirmed binding of Oct-1 to the APE1/Ref-1 -141-promoter region. We also found that Oct-1 conferred attenuated transactivation capacity toward the -141G variant by exogenously introducing Oct-1. These data indicate that genetic variations in APE1/Ref-1 may modify susceptibility to lung cancer and provide new insights into an unexpected effect of APE1/Ref-1 on lung carcinogenesis.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Luo M, Delaplane S, Jiang A, Reed A, He Y, Fishel M, Nyland RL, Borch RF, Qiao X, Georgiadis MM, Kelley MR. Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1. Antioxid Redox Signal 2008; 10:1853-67. [PMID: 18627350 PMCID: PMC2587278 DOI: 10.1089/ars.2008.2120] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The DNA base excision-repair pathway is responsible for the repair of DNA damage caused by oxidation/alkylation and protects cells against the effects of endogenous and exogenous agents. Removal of the damaged base creates a baseless (AP) site. AP endonuclease1 (Ape1) acts on this site to continue the BER-pathway repair. Failure to repair baseless sites leads to DNA strand breaks and cytotoxicity. In addition to the repair role of Ape1, it also functions as a major redox-signaling factor to reduce and activate transcription factors such as AP1, p53, HIF-1alpha, and others that control the expression of genes important for cell survival and cancer promotion and progression. Thus, the Ape1 protein interacts with proteins involved in DNA repair, growth-signaling pathways, and pathways involved in tumor promotion and progression. Although knockdown studies with siRNA have been informative in studying the role of Ape1 in both normal and cancer cells, knocking down Ape1 does not reveal the individual role of the redox or repair functions of Ape1. The identification of small-molecule inhibitors of specific Ape1 functions is critical for mechanistic studies and translational applications. Here we discuss small-molecule inhibition of Ape1 redox and its effect on both cancer and endothelial cells.
Collapse
Affiliation(s)
- Meihua Luo
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sykora P, Snow ET. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite. Toxicol Appl Pharmacol 2007; 228:385-94. [PMID: 18252256 DOI: 10.1016/j.taap.2007.12.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 11/29/2022]
Abstract
Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase beta (Pol beta) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol beta and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 microM. However, at lower doses Pol beta mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol beta was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis.
Collapse
Affiliation(s)
- Peter Sykora
- Centre for Cellular and Molecular Biology, School of Biological Sciences, Deakin University, Australia
| | | |
Collapse
|
11
|
Zhang H, Mizumachi T, Carcel-Trullols J, Li L, Naito A, Spencer HJ, Spring PM, Smoller BR, Watson AJ, Margison GP, Higuchi M, Fan CY. Targeting human 8-oxoguanine DNA glycosylase (hOGG1) to mitochondria enhances cisplatin cytotoxicity in hepatoma cells. Carcinogenesis 2007; 28:1629-37. [PMID: 17389610 DOI: 10.1093/carcin/bgm072] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many chemoradiation therapies cause DNA damage through oxidative stress. An important cellular mechanism that protects cells against oxidative stress involves DNA repair. One of the primary DNA repair mechanisms for oxidative DNA damage is base excision repair (BER). BER involves the tightly coordinated function of four enzymes (glycosylase, apurinic/apyrimidinic endonuclease, polymerase and ligase), in which 8-oxoguanine DNA glycosylase 1 initiates the cycle. An imbalance in the production of any one of these enzymes may result in the generation of more DNA damage and increased cell killing. In this study, we targeted mitochondrial DNA to enhance cancer chemotherapy by over-expressing a human 8-oxoguanine DNA glycosylase 1 (hOGG1) gene in the mitochondria of human hepatoma cells. Increased hOGG1 transgene expression was achieved at RNA, protein and enzyme activity levels. In parallel, we observed enhanced mitochondrial DNA damage, increased mitochondrial respiration rate, increased membrane potential and elevated free radical production. A greater proportion of the hOGG1-over-expressing hepatoma cells experienced apoptosis. Following exposure to a commonly used chemotherapeutic agent, cisplatin, cancer cells over-expressing hOGG1 displayed much shortened long-term survival when compared with control cells. Our results suggest that over-expression of hOGG1 in mitochondria may promote mitochondrial DNA damage by creating an imbalance in the BER pathway and sensitize cancer cells to cisplatin. These findings support further evaluation of hOGG1 over-expression strategies for cancer therapy.
Collapse
Affiliation(s)
- Haihong Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dai J, Li W, Chang L, Zhang Z, Tang C, Wang N, Zhu Y, Wang X. Role of redox factor-1 in hyperhomocysteinemia-accelerated atherosclerosis. Free Radic Biol Med 2006; 41:1566-77. [PMID: 17045925 DOI: 10.1016/j.freeradbiomed.2006.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 02/03/2023]
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. We have previously shown that homocysteine can induce monocyte chemoattractant protein-1 (MCP-1) secretion via reactive oxygen species (ROS) in human monocytes in vitro. In the present study, we investigated whether redox factor-1 (Ref-1) is involved in HHcy-accelerated atherosclerosis. We used a mild HHcy animal model, aortic roots and peritoneal macrophages were isolated for immunohistochemistry and Western blotting, from apoE-/- and C57BL/6J mice fed a high Hcy diet (1.8 g/L) for 4 or 12 weeks. Four-week HHcy apoE-/- mice showed more plaques and significantly increased immunostaining of Ref-1 and MCP-1 in foam cells, and HHcy mice showed enhanced Ref-1 expression in peritoneal macrophages. To explore the mediating mechanism, incubation with Hcy (100 microM) increased Ref-1 protein level and translocation in human monocytes in vitro. In addition, Hcy-induced NADPH oxidase activity mediated the upregulation of Ref-1. Furthermore, overexpressed Ref-1 upregulated NF-kappaB and MCP-1 promoter activity, and antisense Ref-1 reduced Hcy-induced NF-kappaB DNA-binding activity and MCP-1 secretion. These data indicate that Hcy-induced ROS upregulate the expression and translocation of Ref-1 via NADPH oxidase, and then Ref-1 increases NF-kappaB activity and MCP-1 secretion in human monocytes/macrophages, which may accelerate the development of atherosclerosis.
Collapse
Affiliation(s)
- Jing Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gao LL, Wu BY, Wang MW, Huang HL, Wu YQ, You WD, Wang WH. Construction and identification of eukaryotic expression vector of gastric cancer associated gene GCRG213. Shijie Huaren Xiaohua Zazhi 2006; 14:1453-1457. [DOI: 10.11569/wcjd.v14.i15.1453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct and identify the gastric cancer associated gene GCRG213 eukaryotic expression vector.
METHODS: The sense and anti-sense fragment of GCRG213 were obtained by polymerase chain reaction (PCR), which were GCRG213-a and GCRG213-b respectively. They were cloned into eukaryotic expression vector pcDNA3.1(+) after introduced the sites of restrictive endonuclease enzyme KpnI, BamHI and EcoRI, BamHI. The recombinant plasmid pcDNA3.1-a, pcDNA3.1-b and the vector pcDNA3.1 were transfected separately into MKN45 cells conducted by lipofectamineTM 2000. G418 selection was used to obtain the stably transfected cells. The expression of GCRG213 was detected at both mRNA and protein level with semi-quantitative reverse transcription PCR (RT-PCR) and Western blot, respectively.
RESULTS: After sequencing, sense GCRG213 and anti-sense GCRG213 were confirmed to be successfully cloned into eukaryotic expression vector pcDNA3.1, which were named pcDNA3.1-a and pcDNA3.1-b correspondingly. The recombinant plasmid pcDNA3.1-a, pcDNA3.1-b, and the vector pcDNA3.1 were transfected successfully into MKN45 cells by lipofectamineTM 2000. After G418 selection, the stably transfected cells were obtained. Transfection with pcDNA3.1-a significantly increased the expression of GCRG213 in MKN45 cells both at mRNA (35.4%) and protein (49.4%) level, while transfection of pcDNA3.1-b significantly decreased the expression of GCRG213 both at mRNA (32.1%) and protein (50.3%) level.
CONCLUSION: The eukaryotic expression vector of gastric cancer associated gene GCRG213 is successfully constructed and identified.
Collapse
|
14
|
Sossou M, Flohr-Beckhaus C, Schulz I, Daboussi F, Epe B, Radicella JP. APE1 overexpression in XRCC1-deficient cells complements the defective repair of oxidative single strand breaks but increases genomic instability. Nucleic Acids Res 2005; 33:298-306. [PMID: 15647512 PMCID: PMC546158 DOI: 10.1093/nar/gki173] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
XRCC1 protein is essential for mammalian viability and is required for the efficient repair of single strand breaks (SSBs) and damaged bases in DNA. XRCC1-deficient cells are genetically unstable and sensitive to DNA damaging agents. XRCC1 has no known enzymatic activity and is thought to act as a scaffold protein for both SSB and base excision repair activities. To further define the defects leading to genetic instability in XRCC1-deficient cells, we overexpressed the AP endonuclease APE1, shown previously to interact with and be stimulated by XRCC1. Here, we report that the overexpression of APE1 can compensate for the impaired capability of XRCC1-deficient cells to repair SSBs induced by oxidative DNA damage, both in vivo and in whole-cell extracts. We show that, for this kind of damage, the repair of blocked DNA ends is rate limiting and can be performed by APE1. Conversely, APE1 overproduction resulted in a 3-fold increase in the sensitivity of XRCC1-deficient cells to an alkylating agent, most probably due to the accumulation of SSBs. Finally, the overproduction of APE1 results in increases of 40% in the frequency of micronuclei and 33% in sister chromatid exchanges of XRCC1− cells. These data suggest that the spontaneous generation of AP sites could be at the origin of the SSBs responsible for the spontaneous genetic instability characteristic of XRCC1-deficient cells.
Collapse
Affiliation(s)
| | | | - Ina Schulz
- Institute of Pharmacy, University of MainzD-55128 Mainz, Germany
| | | | - Bernd Epe
- Institute of Pharmacy, University of MainzD-55128 Mainz, Germany
| | - J. Pablo Radicella
- To whom correspondence should be addressed. Tel: +33 1 46 54 88 57; Fax: +33 1 46 54 88 59;
| |
Collapse
|
15
|
Abstract
Human apurinic/apyrimidinic endonuclease/redox factor-1 (hAPE/Ref-1) is a multifunctional protein involved in the repair of DNA damaged by oxidative or alkylating compounds as well as in the regulation of stress inducible transcription factors such as AP-1, NF-kappaB, HIF-1 and p53. With respect to transcriptional regulation, both redox dependent and independent mechanisms have been described. APE/Ref-1 also acts as a transcriptional repressor. Recent data indicate that APE/Ref-1 negatively regulates the activity of the Ras-related GTPase Rac1. How these different physiological activities of APE/Ref-1 are coordinated is poorly understood. So far, convincing evidence is available that the expression of the APE/Ref-1 gene is inducible by oxidative stress and that overexpressed APE/Ref-1 protein protects cells against the genotoxic and cell killing effects of reactive oxygen species (ROS), whereas down-regulation sensitizes cells. Therefore, APE/Ref-1 can be considered to be part of an adaptive cellular response mechanism to oxidative genotoxic stress. The physiological relevance of increase of either the repair or redox activity of APE/Ref-1 for this adaptive response is unclear. Data will be shown that transfection of the truncated protein exhibiting either one of the activities provoked increase of resistance. Since APE/Ref-1 expression level and intracellular localization is variable in different types of tumors and frequently found to be different in non-malignant compared to the corresponding malignant human tissue, the protein is thought to be a diagnostic and prognostic tumor marker. Because of its involvement in DNA repair and apoptosis-related signaling mechanisms, APE/Ref-1 is also being discussed as a novel target for tumor-therapeutic approaches.
Collapse
Affiliation(s)
- Gerhard Fritz
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
16
|
Abstract
The repair of damage to DNA is critical to the survival of a cell. However, not all organisms nor all individuals express a similar response to challenges to their genetic material. Numerous polymorphisms in genes involved in DNA repair have been found in individuals with DNA repair-related disease as well as in the general population. Studies of these variants are critical in understanding the response of the cell to DNA damage. In some cases, these changes predispose the carrier to a greatly increased risk of cancer. In other cases, the effects are subtler and depend on interactions between the alleles of several genes, or with environmental factors. Consequently, the health effects of exposure to genotoxic or carcinogenic compounds or agents can depend on the variations in these genes. This review will highlight some of the effects that variants, found in many of the genes involved in human DNA repair pathways, have on the response to damage, and their role in susceptibility of the cell and organism to environmental genotoxins. This review will concentrate on the mismatch repair, nucleotide repair, base excision repair, strand break repair, and direct alkyl repair pathways.
Collapse
Affiliation(s)
- Johan G de Boer
- Centre for Biomedical Research, University of Victoria, PO Box 3020, STC CSC, Victoria, Canada, BC V8W 3N5.
| |
Collapse
|
17
|
Martinet W, Knaapen MWM, De Meyer GRY, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002; 106:927-32. [PMID: 12186795 DOI: 10.1161/01.cir.0000026393.47805.21] [Citation(s) in RCA: 316] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The formation of reactive oxygen species is a critical event in atherosclerosis because it promotes cell proliferation, hypertrophy, growth arrest, and/or apoptosis and oxidation of LDL. In the present study, we investigated whether reactive oxygen species-induced oxidative damage to DNA occurs in human atherosclerotic plaques and whether this is accompanied by the upregulation of DNA repair mechanisms. METHODS AND RESULTS We observed increased immunoreactivity against the oxidative DNA damage marker 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) in plaques of the carotid artery compared with the adjacent inner media and nonatherosclerotic mammary arteries. Strong 8-oxo-dG immunoreactivity was found in all cell types of the plaque including macrophages, smooth muscle cells, and endothelial cells. As shown by competitive ELISA, carotid plaques contained 160+/-29 8-oxo-dG residues/10(5) dG versus 3+/-1 8-oxo-dG residues/10(5) dG in mammary arteries. Single-cell gel electrophoresis showed elevated levels of DNA strand breaks in the plaque. The overall number of apoptotic nuclei was low (1% to 2%) and did not correlate with the amount of 8-oxo-dG immunoreactive cells (>90%). This suggests that initial damage to DNA occurs at a sublethal level. Several DNA repair systems that are involved in base excision repair (redox factor/AP endonuclease [Ref 1] and poly(ADP-ribose) polymerase 1 [PARP-1]) or nonspecific repair pathways (p53, DNA-dependent protein kinase) were upregulated, as shown by Western blotting and immunohistochemistry. Overexpression of DNA repair enzymes was associated with elevated levels of proliferating cell nuclear antigen. CONCLUSIONS Our findings provide evidence that oxidative DNA damage and repair increase significantly in human atherosclerotic plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
18
|
Flaherty DM, Monick MM, Hunninghake GW. AP endonucleases and the many functions of Ref-1. Am J Respir Cell Mol Biol 2001; 25:664-7. [PMID: 11726389 DOI: 10.1165/ajrcmb.25.6.f220] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- D M Flaherty
- Department of Internal Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
19
|
Kreklau EL, Limp-Foster M, Liu N, Xu Y, Kelley MR, Erickson LC. A novel fluorometric oligonucleotide assay to measure O( 6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase. Nucleic Acids Res 2001; 29:2558-66. [PMID: 11410664 PMCID: PMC55735 DOI: 10.1093/nar/29.12.2558] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O(6)-methylguanine DNA methyltransferase (MGMT) and base excision repair (BER) involving methylpurine DNA glycosylase (MPG), human 8-oxoguanine DNA glycosylase (hOGG1) and yeast and human abasic endonuclease (APN1 and APE/ref-1, respectively) from a single cell extract. This approach involves preparation of cell extracts in a common buffer in which all of the DNA repair proteins are active and the use of fluorometrically labeled oligonucleotide substrates containing DNA lesions specific to each repair protein. This method enables methylation and BER capacities to be determined rapidly from a small amount of starting sample. In addition, the stability of the fluorometric oligonucleotides precludes the substrate variability caused by continual radiolabeling. In this report this technique was applied to human breast carcinoma MDA-MB231 cells overexpressing human MPG in order to assess whether up-regulation of the initial step in BER alters the activity of selected other BER (hOGG1 and APE/ref-1) or direct reversal (MGMT) repair activities.
Collapse
Affiliation(s)
- E L Kreklau
- Department of Pharmacology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
20
|
Koukourakis MI, Giatromanolaki A, Kakolyris S, Sivridis E, Georgoulias V, Funtzilas G, Hickson ID, Gatter KC, Harris AL. Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. Int J Radiat Oncol Biol Phys 2001; 50:27-36. [PMID: 11316543 DOI: 10.1016/s0360-3016(00)01561-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE HAP1/Ref-1 endonuclease is involved in the repair of DNA strand breaks and in the activation of DNA binding of several transcription factors. HAP1 is also a potent activator of wild type p53. It therefore has multiple possible roles in the response of human cancer to radiotherapy and chemotherapy. METHODS AND MATERIALS The nuclear expression of HAP1 and p53 proteins was studied by immunohistochemistry in paraffin-embedded material from 95 patients with locally advanced squamous cell head-and-neck cancer (HNC) treated with radical radiotherapy (38 cases with induction platinum-based chemotherapy and 57 with concurrent platinum chemoradiotherapy). RESULTS HAP1 was present in the nuclei of normal epithelium and stromal cells. Loss of HAP1 nuclear expression was frequently noted in cancer cells. Tumors with high HAP1 nuclear expression (% of positive cells > mean; mean = 11%) were of good differentiation (p = 0.06) and presented frequently with advanced nodal disease (p = 0.01). High nuclear HAP1 expression was significantly associated with poor complete response rate (p = 0.00001), shorter local relapse-free interval (p < 0.0001), and poorer survival (p < 0.0008). HAP1 nuclear reactivity was inversely associated with p53 nuclear accumulation (p = 0.003). The inverse correlation between HAP1 expression and prognosis was independent of p53 status. CONCLUSION HAP1 nuclear expression in HNC is inversely associated with p53 nuclear accumulation and directly related to resistance to chemoradiotherapy and poor survival. Further clinical investigation is required to confirm these findings.
Collapse
Affiliation(s)
- M I Koukourakis
- Department of Radiotherapy and Oncology, University Hospital of Iraklion, Iraklion 71306, Crete, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chiarini LB, Linden R. Tissue biology of apoptosis. Ref-1 and cell differentiation in the developing retina. Ann N Y Acad Sci 2001; 926:64-78. [PMID: 11193042 DOI: 10.1111/j.1749-6632.2000.tb05599.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Programmed cell death by apoptosis plays a major role in neurogenesis. The sensitivity to apoptosis in developing nervous tissue is strongly dependent on cell interactions taking place within a highly structured environment, composed of various cell types at distinct stages of differentiation. In this article, we review evidence gathered both in vivo and in a histotypical retinal explant preparation in vitro that the bifunctional AP endonuclease/redox factor Ref-1 (HAP1, APE, APEX) may be an anti-apoptotic protein associated with cell differentiation in the developing retina.
Collapse
Affiliation(s)
- L B Chiarini
- Instituto de Biofísica da UFRJ, CCS, bloco G, Cidade Universitária, 21949-900, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Abstract
The DNA base excision repair (BER) pathway is responsible for the repair of cellular alkylation and oxidative DNA damage. A crucial and the second step in the BER pathway involves the cleavage of baseless sites in DNA by an AP endonuclease. The major AP endonuclease in mammalian cells is Ape1/ref-1. Ape1/ref-1 is a multifunctional protein that is not only responsible for repair of AP sites, but also functions as a reduction-oxidation (redox) factor maintaining transcription factors in an active reduced state. Ape1/ref-1 has been shown to stimulate the DNA binding activity of numerous transcription factors that are involved in cancer promotion and progression such as Fos, Jun, NF(B, PAX, HIF-1(, HLF and p53. Ape1/ref-1 has also been implicated in the activation of bioreductive drugs which require reduction in order to be active and has been shown to interact with a subunit of the Ku antigen to act as a negative regulator of the parathyroid hormone promoter, as well as part of the HREBP transcription factor complex. Ape1/ref-1 levels have been found to be elevated in a number of cancers such as ovarian, cervical, prostate, rhabdomyosarcomas and germ cell tumors and correlated with the radiosensitivity of cervical cancers. In this review, we have attempted to try and assimilated as much data concerning Ape1/ref-1 and incorporate the rapidly growing information on Ape1/ref-1 in a wide variety of functions and systems.
Collapse
Affiliation(s)
- A R Evans
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
23
|
Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2135-49. [PMID: 10759836 DOI: 10.1046/j.1432-1327.2000.01266.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A significant contribution to human mutagenesis and carcinogenesis may come from DNA damage of endogenous, rather than exogenous, origin. Efficient repair mechanisms have evolved to cope with this. The main repair pathway involved in repair of endogenous damage is DNA base excision repair. In addition, an important contribution is given by O6-alkylguanine DNA alkyltranferase, that repairs specifically the miscoding base O6-alkylguanine. In recent years, several attempts have been carried out to enhance the efficiency of repair of endogenous damage by overexpressing in mammalian cells single enzymatic activities. In some cases (e.g. O6-alkylguanine DNA alkyltransferase or yeast AP endonuclease) this approach has been successful in improving cellular protection from endogenous and exogenous mutagens, while overexpression of other enzymatic activities (e.g. alkyl N-purine glycosylase or DNA polymerase beta) were detrimental and even produced a genome instability phenotype. The reasons for these different outcomes are analyzed and alternative enzymatic activities whose overexpression may improve the efficiency of repair of endogenous damage in human cells are proposed.
Collapse
Affiliation(s)
- G Frosina
- DNA Repair Unit, Mutagenesis laboratory, Istituto Nazionale Ricerca Cancro, Genova, Italy.
| |
Collapse
|