1
|
Yelton CJ, Ray SK. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. ACTA ACUST UNITED AC 2018; 5. [PMID: 30701185 PMCID: PMC6348296 DOI: 10.20517/2347-8659.2018.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM), which is the most common primary central nervous system malignancy in adults, has long presented a formidable challenge to researchers and clinicians alike. Dismal 5-year survival rates of the patients with these tumors and the ability of the recurrent tumors to evade primary treatment strategies have prompted a need for alternative therapies in the treatment of GBM. Histone deacetylase (HDAC) inhibitors are currently a potential epigenetic therapy modality under investigation for use in GBM with mixed results. While these agents show promise through a variety of proposed mechanisms in the pre-clinical realm, only several of these agents have shown this same promise when translated into the clinical arena, either as monotherapy or for use in combination regimens. This review will examine the current state of use of HDAC inhibitors in GBM, the mechanistic rationale for use of HDAC inhibitors in GBM, and then examine an exciting new mechanistic revelation of certain HDAC inhibitors that promote antitumor immunity in GBM. The details of this antitumor immunity will be discussed with an emphasis on application of this antitumor immunity towards developing alternative therapies for treatment of GBM. The final section of this article will provide an overview of the current state of immunotherapy targeted specifically to GBM.
Collapse
Affiliation(s)
- Caleb J Yelton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
2
|
Shi J, Zhao G, Wei Y. Computational QSAR model combined molecular descriptors and fingerprints to predict HDAC1 inhibitors. Med Sci (Paris) 2018; 34 Focus issue F1:52-58. [PMID: 30403176 DOI: 10.1051/medsci/201834f110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamic balance between acetylation and deacetylation of histones plays a crucial role in the epigenetic regulation of gene expression. It is equilibrated by two families of enzymes: histone acetyltransferases and histone deacetylases (HDACs). HDACs repress transcription by regulating the conformation of the higher-order chromatin structure. HDAC inhibitors have recently become a class of chemical agents for potential treatment of the abnormal chromatin remodeling process involved in certain cancers. In this study, we constructed a large dataset to predict the activity value of HDAC1 inhibitors. Each compound was represented with seven fingerprints, and computational models were subsequently developed to predict HDAC1 inhibitors via five machine learning methods. These methods include naïve Bayes, κ-nearest neighbor, C4.5 decision tree, random forest, and support vector machine (SVM) algorithms. The best predicting model was CDK fingerprint with SVM, which exhibited an accuracy of 0.89. This model also performed best in five-fold cross-validation. Some representative substructure alerts responsible for HDAC1 inhibitors were identified by using MoSS in KNIME, which could facilitate the identification of HDAC1 inhibitors.
Collapse
Affiliation(s)
- Jingsheng Shi
- Division of Orthopaedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Division of Orthopaedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yibing Wei
- Division of Orthopaedic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Chueh AC, Tse JWT, Tögel L, Mariadason JM. Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells. Antioxid Redox Signal 2015; 23:66-84. [PMID: 24512308 PMCID: PMC4492771 DOI: 10.1089/ars.2014.5863] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cutaneous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective clinical use, and broadening their clinical potential. RECENT ADVANCES HDACi induce extensive transcriptional changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within and across tumor types. CRITICAL ISSUES The mechanistic basis for how HDACi activate, and in particular repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated by these agents both within and across tumor types has not been systematically addressed. A detailed understanding of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor types. FUTURE DIRECTIONS Understanding the mechanisms by which HDACi regulate gene expression and an appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving HDACi, and facilitate the identification of mechanism-based biomarkers of response.
Collapse
Affiliation(s)
- Anderly C Chueh
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Janson W T Tse
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Lars Tögel
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - John M Mariadason
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
4
|
Urbinati G, Marsaud V, Nicolas V, Vergnaud-Gauduchon J, Renoir JM. Liposomal trichostatin A: therapeutic potential in hormone-dependent and -independent breast cancer xenograft models. Horm Mol Biol Clin Investig 2015; 6:215-25. [PMID: 25961258 DOI: 10.1515/hmbci.2011.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Trichostatin A (TSA) is one of the most potent histone deacetylase inhibitors (HDACi) in vitro but it lacks biological activity in vivo when injected intravenously owing to its fast metabolism. MATERIALS AND METHODS TSA was incorporated into Stealth® liposomes (TSA-lipo) at a high loading and its anticancer activity was evaluated in several types of breast cancer cells and xenografts. RESULTS In estrogen receptor α (ERα)-positive MCF-7 and T47-D cells, TSA induced a long-term degradation of cyclin A and a proteasome-dependent loss of ERα and cyclin D1, allowed derepression of p21WAF1/CIP1, HDAC1 and RhoB GTPase, concomitantly with blockade in G2/M of the cell cycle and apoptosis induction. In MDA-MB-231 (MDA) and SKBr-3 cells, TSA increased ERα mRNA and p21WAF1/CIP1 protein expression, but decreased cyclin A with a G2/M blockade and cleavage of polyADP-ribose polymerase (PARP). No significant restoration of any ER protein was noticed in any cells. TSA-lipo markedly inhibited tumor growth in MCF-7 and MDA cells xenografts following intravenous injection. Their anticancer effects were characterized by inhibition of Ki-67 labeling, the inhibition of tumor vasculature and an increase of p21WAF1/CIP1 in both tumors. In MCF-7 cell tumors, enhanced RhoB accumulation in the cytoplasm of epithelial cells was noticed, inversely to ERα that was strongly decreased. CONCLUSION Such anticancer activity of TSA-lipo is exp-lained by the protection provided by HDACi encapsulation and by the strong tumor accumulation of the nanocarriers as revealed by fluorescence confocal microscopy experi-ments. Together with its lack of toxicity, the enhanced stability of TSA-lipo in vivo justifies its development for therapeutic use in the treatment estradiol-dependent and -independent breast cancers.
Collapse
|
5
|
Abstract
INTRODUCTION Advancements in epigenetic treatments are not only coming from new drugs, but also from modifications or encapsulation of the existing drugs into different formulations leading to greater stability and enhanced delivery to the target site. The epigenome is highly regulated and complex; therefore, it is important that off-target effects of epigenetic drugs be minimized. The step from in vitro to in vivo treatment of these drugs often requires development of a method of effective delivery for clinical translation. AREAS COVERED This review covers epigenetic mechanisms such as DNA methylation, chromatin remodeling and small-RNA-mediated gene regulation. There is a section in the review with examples of diseases where epigenetic alterations lead to impaired pathways, with an emphasis on cancer. Epigenetic drugs, their targets and clinical status are presented. Advantages of using a delivery method for epigenetic drugs as well as examples of current advancements and challenges are also discussed. EXPERT OPINION Epigenetic drugs have the potential to be very effective therapy against a number of diseases, especially cancers and neurological disorders. As with many chemotherapeutics, undesired side effects need to be minimized. Finding a suitable delivery method means reducing side effects and achieving a higher therapeutic index. Each drug may require a unique delivery method exploiting the drug's chemistry or other physical characteristic requiring interdisciplinary participation and would benefit from a better understanding of the mechanisms of action.
Collapse
Affiliation(s)
- Samantha A Cramer
- Lerner Research Institute, Cleveland Clinic, Department of Biomedical Engineering/ND20 , 9500 Euclid Avenue, Cleveland, OH 44195 , USA +1 216 445 9364 ; +1 216 444 9198 ;
| | | | | |
Collapse
|
6
|
Barazzuol L, Jeynes JCG, Merchant MJ, Wéra AC, Barry MA, Kirkby KJ, Suzuki M. Radiosensitization of glioblastoma cells using a histone deacetylase inhibitor (SAHA) comparing carbon ions with X-rays. Int J Radiat Biol 2014; 91:90-8. [DOI: 10.3109/09553002.2014.946111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Kim YZ. Altered histone modifications in gliomas. Brain Tumor Res Treat 2014; 2:7-21. [PMID: 24926467 PMCID: PMC4049557 DOI: 10.14791/btrt.2014.2.1.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022] Open
Abstract
Gliomas are the most frequently occurring primary brain tumors in adults. Although they exist in different malignant stages, including histologically benign forms and highly aggressive states, most gliomas are clinically challenging for neuro-oncologists because of their infiltrative growth patterns and inherent relapse tendency with increased malignancy. Once this disease reaches the glioblastoma multiforme stage, the prognosis of patients is dismal: median survival time is 15 months. Extensive genetic analyses of glial tumors have revealed a variety of deregulated genetic pathways involved in DNA repair, apoptosis, cell migration/adhesion, and cell cycle. Recently, it has become evident that epigenetic alterations may also be an important factor for glioma genesis. Of epigenetic marks, histone modification is a key mark that regulates gene expression and thus modulates a wide range of cellular processes. In this review, I discuss the neuro-oncological significance of altered histone modifications and modifiers in glioma patients while briefly overviewing the biological roles of histone modifications.
Collapse
Affiliation(s)
- Young Zoon Kim
- Division of Neuro-Oncology, Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
8
|
Hsieh YJ, Hwu L, Chen YC, Ke CC, Chen FD, Wang HE, Lin KP, Yeh HH, Chang CW, Liu RS. P21-driven multifusion gene system for evaluating the efficacy of histone deacetylase inhibitors by in vivo molecular imaging and for transcription targeting therapy of cancer mediated by histone deacetylase inhibitor. J Nucl Med 2014; 55:678-85. [PMID: 24639460 DOI: 10.2967/jnumed.113.126573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Overexpressed histone deacetylase (HDAC) activity has been linked with tumor initiation and progression that prompt the development of histone deacetylase inhibitors (HDACIs) as anticancer agents. HDACI was reported to be able to activate p21 promoter through the SP1 binding sites in the proximal region of p21(WAF1/CIP1) promoter. In this study, we established a p21(WAF1/CIP1) promoter-driven triple-fused reporter gene system (p21-3H) to evaluate the efficacy of HDACI and the ganciclovir (GCV)-mediated anticancer effect contributed by HDACI-induced and p21-driven truncated herpes simplex virus-1 thymidine kinase sr39 mutant (ttksr39) in vitro and in vivo. METHODS The p21-3H construct was generated and stably or transiently transfected into H1299 cell lines. These cells were treated with trichostatin A or vorinostat (suberoylanilide hydroxamic acid [SAHA]) to evaluate the activation of p21 promoter-driven reporter gene expression by in vitro confocal fluorescence microscopy, luciferase assay, 2'-fluoro-2'-deoxyarabinofuranosyl-5-ethyluracil ((3)H-FEAU) cellular uptake, in vivo bioluminescence imaging, and 9-(4-(18)F-fluoro-3-hydroxymethylbutyl) guanine ((18)F-FHBG) small-animal PET imaging. The therapeutic efficacy on p21-3H-expressing tumor xenografts was assessed by daily administration with SAHA (100 mg/kg intraperitoneally) or GCV (20 mg/kg) for 9 d, followed by tumor volume measurement. RESULTS On treatment with trichostatin A or SAHA, H1299 cells carrying p21-3H showed a significant increase of luciferase activity, cellular uptake of (3)H-FEAU (Moravek), and DsRed expression. In vivo tumor xenografts carrying p21-3H also showed increased luciferase activity by luminescent imaging and enhanced accumulation of (18)F-FHBG by small-animal PET imaging. Furthermore, when cells transfected with p21-3H or p21/PstI-3H (which lacks p53-binding sites) were treated, the increase of luciferase activity was similar in both groups, indicating that HDACI-induced p21 promoter activation is independent of p53. Both in vitro and in vivo results showed improved therapeutic effect by combined treatment of GCV and HDACI. CONCLUSION We have established an HDACI-inducible, p21-driven reporter system that has the potential for evaluating the anticancer effect of HDACIs on cancer cells by multiple molecular imaging modalities. Furthermore, ttksr39 in a p21-3H reporter construct provides a potential combination with thymidine kinase-mediated gene therapy to optimize the therapeutic benefit of HDACI.
Collapse
Affiliation(s)
- Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Min KN, Joung KE, Kim DK, Sheen YY. Anti-Cancer Effect of IN-2001 in MDA-MB-231 Human Breast Cancer. Biomol Ther (Seoul) 2013; 20:313-9. [PMID: 24130929 PMCID: PMC3794529 DOI: 10.4062/biomolther.2012.20.3.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/29/2022] Open
Abstract
In recent years, inhibition of HDACs has emerged as a potential strategy to reverse aberrant epigenetic changes associated with cancer, and several classes of HDAC inhibitors have been found to have potent and specific anticancer activities in preclinical studies. But their precise mechanism of action has not been elucidated. In this study, a novel synthetic inhibitor of HDAC, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide [IN-2001] was examined for its antitumor activity and the underlying molecular mechanisms of any such activity on human breast cancer cell lines. IN-2001 effectively inhibited cellular HDAC activity (IC50 = 0.585 nM) in MDA-MB-231 human breast cancer cells. IN-2001 caused a significant dose-dependent inhibition of cell proliferation in estrogen receptor (ER) negative MDA-MB-231 human breast cancer cells. Cell cycle analysis revealed that the gowth inhibitory effects of IN-2001 might be attributed to cell cycle arrest at G0/G1 and/or G2/Mphase and subsequent apoptosis in human breast cancer cells. These events are accompanied by modulating several cell cycle and apoptosis regulatory genes such as CDK inhibitors p21WAF1 and p27KIP1 cyclin D1, and other tumor suppressor genes such as cyclin D2. Collectively, IN-2001 inhibited cell proliferation and induced apoptosis in human breast cancer cells and these findings may provide new therapeutic approaches, combination of antiestrogen together with a HDAC inhibitor, in the hormonal therapy-resistant ER-negative breast cancers. In summary, our data suggest that this histone deacetylase inhibitor, IN-2001, is a novel promising therapeutic agent with potent antitumor effects against human breast cancers.
Collapse
Affiliation(s)
- Kyung Nan Min
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Improved therapeutic effect on malignant glioma with adenoviral suicide gene therapy combined with temozolomide. Gene Ther 2013; 20:1165-71. [PMID: 24067866 DOI: 10.1038/gt.2013.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/29/2013] [Accepted: 08/20/2013] [Indexed: 01/16/2023]
Abstract
Malignant gliomas (MGs) are cancers with poor prognosis and limited therapeutic options. Herpes Simplex virus-1 thymidine kinase expressed from adenoviruses with prodrug ganciclovir (TK/GCV) is the best-characterized suicide gene therapy, whereas temozolomide (TMZ) is the first-line chemotherapy for MG. However, the potential of their combination has not been studied thoroughly. The aim of this study was to evaluate the therapeutic response of this combination and to study whether addition of valproic acid (VPA) could benefit the treatment outcome. Efficacies of different treatments were first studied in vitro in BT4C rat MG cells. Therapeutic assessment in vivo was done in an immunocompetent rat MG model for treatment efficacy and toxicity. In vitro, VPA was able to significantly enhance cytotoxicity and increase adenovirus-mediated transduction efficiency up to sevenfold. In vivo, rats receiving TK/GCV+TMZ had notably smaller tumors and enhanced survival (P<0.001) in comparison with control rats. However, VPA was not able to further enhance the treatment response in vivo. Leukocytopenia and thrombocytopenia were the major side effects. We conclude that careful optimization of the treatment schedules and doses of individual therapies are necessary to achieve an optimal therapeutic effect with TK/GCV+TMZ combination. No further in vivo benefit with VPA was observed.
Collapse
|
11
|
Gabrielli B, Brown M. Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins. Adv Cancer Res 2013; 116:1-37. [PMID: 23088867 DOI: 10.1016/b978-0-12-394387-3.00001-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone deacetylase inhibitors exhibit pleiotropic effects on cell functions, both in vivo and in vitro. One of the more dramatic effects of these drugs is their ability to disrupt normal mitotic division, which is a significant contributor to the anticancer properties of these drugs. The most important feature of the disrupted mitosis is that drug treatment overcomes the mitotic spindle assembly checkpoint and drives mitotic slippage, but in a manner that triggers apoptosis. The mechanism by which histone deacetylase inhibitors affect mitosis is now becoming clearer through the identification of a number of chromatin and nonchromatin protein targets that are critical to the regulation of normal mitotic progression and cell division. These proteins are directly regulated by acetylation and deacetylation, or in some cases indirectly through the acetylation of essential partner proteins. There appears to be little contribution from deacetylase inhibitor-induced transcriptional changes to the mitotic effects of these drugs. The overall mitotic phenotype of drug treatment appears to be the sum of these disrupted mechanisms.
Collapse
Affiliation(s)
- Brian Gabrielli
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | |
Collapse
|
12
|
Johnson D, Walmsley R. Histone-deacetylase inhibitors produce positive results in the GADD45a-GFP GreenScreen HC assay. Mutat Res 2013; 751:96-100. [PMID: 23340162 DOI: 10.1016/j.mrgentox.2012.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/29/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
Abstract
Histone-deacetylase inhibitors (HDACi) are able to induce cell-cycle arrest, apoptosis and differentiation in a variety of tumour cell lines. The mechanisms leading to these cellular outcomes are not fully understood, however, it is has been proposed that induction of cell-cycle arrest might be a result of genotoxic stress. Despite the potential for genotoxic activity of this class of compounds, there are very few data available to provide evidence for this, either in vitro or in vivo. In this study, four HDACi, viz. trichostatin A, sodium butyrate, APHA compound 8 and apicidin, were tested in the human lymphoblastoid TK6 cell line-hosted GADD45a-GFP assay, which has high sensitivity and specificity in the detection of genotoxic carcinogens and in vivo genotoxicants. All four compounds produced positive genotoxicity results within the acceptable toxic dose range of the assay, with APHA compound 8 producing the weakest response. Taken alongside recent evidence demonstrating that GADD45a is not induced by non-genotoxic apoptogens, this study suggests that genotoxicity contributes to the anti-tumour activity of HDACi drugs.
Collapse
Affiliation(s)
- Donna Johnson
- Harper Adams University College, Newport, Shropshire, UK.
| | | |
Collapse
|
13
|
Seidel C, Florean C, Schnekenburger M, Dicato M, Diederich M. Chromatin-modifying agents in anti-cancer therapy. Biochimie 2012; 94:2264-79. [DOI: 10.1016/j.biochi.2012.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/14/2012] [Indexed: 01/12/2023]
|
14
|
Min KN, Joung KE, Kim DK, Sheen YY. Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2012; 27:e2012010. [PMID: 22639737 PMCID: PMC3355273 DOI: 10.5620/eht.2012.27.e2012010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVES In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the anti-tumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. METHODS We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. RESULTS In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at G(2)/M phase and of the sub-G(1) population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased p21(WAF1) expression. CONCLUSIONS In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.
Collapse
Affiliation(s)
- Kyung Nan Min
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ki Eun Joung
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Dae-Kee Kim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
15
|
Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, Teo SH, Saunders N, Cheong SC. Valproic acid: growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck 2011; 34:344-53. [PMID: 21438066 DOI: 10.1002/hed.21734] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/11/2010] [Accepted: 12/22/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There are limited studies on the effects of drugs that modulate epigenetic regulation for head and neck squamous cell carcinoma (HNSCC). This study determined the effect of valproic acid (VPA) on HNSCC. METHODS Growth inhibition effects of VPA alone or in combination with 5-aza-2'deoxycytidine (5-aza-dC) or all-trans retinoic acid (ATRA) was evaluated with MTT and clonogenic assays on 5 HNSCC cell lines. The mechanism of growth inhibition was investigated by looking at markers of terminal differentiation and senescence. RESULTS Growth inhibition profiles of HNSCC cell lines varied in response to VPA. Inhibition of clonogenic survival in response to VPA was associated with an upregulation of p21, expression of terminal differentiation markers, and cellular senescence. Notably, a combination treatment of 5-Aza-dC-VPA-ATRA enhanced growth inhibition in cells resistant to VPA. CONCLUSION VPA is a potent inhibitor of proliferation in some HNSCC cell lines, and may be used to treat HNSCC.
Collapse
Affiliation(s)
- Chai Phei Gan
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, Second Floor, Outpatient Centre, Sime Darby Medical Centre, 47500 Subang Jaya, Selangor, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brazelle W, Kreahling JM, Gemmer J, Ma Y, Cress WD, Haura E, Altiok S. Histone deacetylase inhibitors downregulate checkpoint kinase 1 expression to induce cell death in non-small cell lung cancer cells. PLoS One 2010; 5:e14335. [PMID: 21179472 PMCID: PMC3001870 DOI: 10.1371/journal.pone.0014335] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACis) are promising anticancer drugs; however, the molecular mechanisms leading to HDACi-induced cell death have not been well understood and no clear mechanism of resistance has been elucidated to explain limited efficacy of HDACis in clinical trials. METHODS AND FINDINGS Here, we show that protein levels of checkpoint kinase 1 (Chk1), which has a major role in G(2) cell cycle checkpoint regulation, was markedly reduced at the protein and transcriptional levels in lung cancer cells treated with pan-and selective HDACis LBH589, scriptaid, valproic acid, apicidin, and MS-275. In HDACi treated cells Chk1 function was impaired as determined by decreased inhibitory phosphorylation of cdc25c and its downstream target cdc2 and increased expression of cdc25A and phosphorylated histone H3, a marker of mitotic entry. In time course experiments, Chk1 downregulation occurred after HDACi treatment, preceding apoptosis. Ectopic expression of Chk1 overcame HDACi-induced cell death, and pretreating cells with the cdc2 inhibitor purvalanol A blocked entry into mitosis and prevented cell death by HDACis. Finally, pharmacological inhibition of Chk1 showed strong synergistic effect with LBH589 in lung cancer cells. CONCLUSIONS These results define a pathway through which Chk1 inhibition can mediate HDACi-induced mitotic entry and cell death and suggest that Chk1 could be an early pharmacodynamic marker to assess HDACi efficacy in clinical samples.
Collapse
Affiliation(s)
- William Brazelle
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jenny M. Kreahling
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jennifer Gemmer
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yihong Ma
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - W. Douglas Cress
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Eric Haura
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Soner Altiok
- Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wagner JM, Hackanson B, Lübbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 2010; 1:117-136. [PMID: 21258646 PMCID: PMC3020651 DOI: 10.1007/s13148-010-0012-4] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/19/2010] [Indexed: 12/15/2022] Open
Abstract
Heritable changes in gene expression that are not based upon alterations in the DNA sequence are defined as epigenetics. The most common mechanisms of epigenetic regulation are the methylation of CpG islands within the DNA and the modification of amino acids in the N-terminal histone tails. In the last years, it became evident that the onset of cancer and its progression may not occur only due to genetic mutations but also because of changes in the patterns of epigenetic modifications. In contrast to genetic mutations, which are almost impossible to reverse, epigenetic changes are potentially reversible. This implies that they are amenable to pharmacological interventions. Therefore, a lot of work in recent years has focussed on the development of small molecule enzyme inhibitors like DNA-methyltransferase inhibitors or inhibitors of histone-modifying enzymes. These may reverse misregulated epigenetic states and be implemented in the treatment of cancer or other diseases, e.g., neurological disorders. Today, several epigenetic drugs are already approved by the FDA and the EMEA for cancer treatment and around ten histone deacetylase (HDAC) inhibitors are in clinical development. This review will give an update on recent clinical trials of the HDAC inhibitors used systemically that were reported in 2009 and 2010 and will present an overview of different biomarkers to monitor the biological effects.
Collapse
Affiliation(s)
- Julia M. Wagner
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Björn Hackanson
- Department of Hematology/Oncology, University Medical Center Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology/Oncology, University Medical Center Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Baud MGJ, Leiser T, Meyer-Almes FJ, Fuchter MJ. New synthetic strategies towards psammaplin A, access to natural product analogues for biological evaluation. Org Biomol Chem 2010; 9:659-62. [PMID: 21113514 DOI: 10.1039/c0ob00824a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New synthetic routes towards the natural product psammaplin A were developed with the particular view to preparing diverse analogues for biological assessment. These routes utilize cheap and commercially available starting materials, and allowed access to psammaplin A analogues not accessible via currently reported methods. Preliminary biological studies revealed these compounds to be the most potent non peptidic inhibitors of the enzyme histone deacetylase 1 (HDAC1, class I) discovered so far. Interestingly, psammaplin A and our synthetic analogues show class I selectivity in vitro, an important feature for the design and synthesis of future isoform selective inhibitors.
Collapse
Affiliation(s)
- Matthias G J Baud
- Imperial College London, South Kensington Campus, Department of Chemistry, London, UK SW7 2AZ
| | | | | | | |
Collapse
|
19
|
Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A 2010; 107:14639-44. [PMID: 20679231 DOI: 10.1073/pnas.1008522107] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) developed as anti-cancer agents have a high degree of selectivity for killing cancer cells. HDACi induce acetylation of histones and nonhistone proteins, which affect gene expression, cell cycle progression, cell migration, and cell death. The mechanism of the tumor selective action of HDACi is unclear. Here, we show that the HDACi, vorinostat (Suberoylanilide hydroxamic acid, SAHA), induces DNA double-strand breaks (DSBs) in normal (HFS) and cancer (LNCaP, A549) cells. Normal cells in contrast to cancer cells repair the DSBs despite continued culture with vorinostat. In transformed cells, phosphorylated H2AX (gammaH2AX), a marker of DNA DSBs, levels increased with continued culture with vorinostat, whereas in normal cells, this marker decreased with time. Vorinostat induced the accumulation of acetylated histones within 30 min, which could alter chromatin structure-exposing DNA to damage. After a 24-h culture of cells with vorinostat, and reculture without the HDACi, gammaH2AX was undetectable by 2 h in normal cells, while persisting in transformed cells for the duration of culture. Further, we found that vorinostat suppressed DNA DSB repair proteins, e.g., RAD50, MRE11, in cancer but not normal cells. Thus, the HDACi, vorinostat, induces DNA damage which normal but not cancer cells can repair. This DNA damage is associated with cancer cell death. These findings can explain, in part, the selectivity of vorinostat in causing cancer cell death at concentrations that cause little or no normal cell death.
Collapse
|
20
|
Purrucker JC, Mahlknecht U. Targeting the epigenome: effects of epigenetic treatment strategies on genomic stability in healthy human cells. Clin Epigenetics 2010; 1:45-54. [PMID: 22704088 PMCID: PMC3365366 DOI: 10.1007/s13148-010-0007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/12/2010] [Indexed: 02/02/2023] Open
Abstract
Epigenetic treatment concepts have long been ascribed as being tumour-selective. Over the last decade, it has become evident that epigenetic mechanisms are essential for a wide range of intracellular functions in healthy cells as well. Evaluation of possible side-effects and their underlying mechanisms in healthy human cells is necessary in order to improve not only patient safety, but also to support future drug development. Since epigenetic regulation directly interacts with genomic and chromosomal packaging density, increasing genomic instability may be a result subsequent to drug-induced epigenetic modifications. This review highlights past and current research efforts on the influence of epigenetic modification on genomic stability in healthy human cells.
Collapse
Affiliation(s)
- Jan C Purrucker
- Division of Immunotherapy and Gene Therapy, José Carreras Center for Immunotherapy and Gene Therapy, Department of Internal Medicine, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | | |
Collapse
|
21
|
Sharma P, Kumar S, Kundu GC. Transcriptional regulation of human osteopontin promoter by histone deacetylase inhibitor, trichostatin A in cervical cancer cells. Mol Cancer 2010; 9:178. [PMID: 20609221 PMCID: PMC2911447 DOI: 10.1186/1476-4598-9-178] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022] Open
Abstract
Background Trichostatin A (TSA), a potent inhibitor of histone deacetylases exhibits strong anti-tumor and growth inhibitory activities, but its mechanism(s) of action is not completely understood. Osteopontin (OPN) is a secreted glycoprotein which has long been associated with tumor metastasis. Elevated OPN expression in various metastatic cancer cells and the surrounding stromal cells often correlates with enhanced tumor formation and metastasis. To investigate the effects of TSA on OPN transcription, we analyzed a proximal segment of OPN promoter in cervical carcinoma cells. Results In this paper, we for the first time report that TSA suppresses PMA-induced OPN gene expression in human cervical carcinoma cells and previously unidentified AP-1 transcription factor is involved in this event. Deletion and mutagenesis analyses of OPN promoter led to the characterization of a proximal sequence (-127 to -70) that contain AP-1 binding site. This was further confirmed by gel shift and chromatin immunoprecipitation (ChIP) assays. Western blot and reverse transcription-PCR analyses revealed that TSA suppresses c-jun recruitment to the OPN promoter by inhibiting c-jun levels while c-fos expression was unaffected. Silencing HDAC1 followed by stimulation with PMA resulted in significant decrease in OPN promoter activity suggesting that HDAC1 but not HDAC3 or HDAC4 was required for AP-1-mediated OPN transcription. TSA reduces the PMA-induced hyperacetylation of histones H3 and H4 and recruitment of RNA pol II and TFIIB, components of preinitiation complex to the OPN promoter. The PMA-induced expression of other AP-1 regulated genes like cyclin D1 and uPA was also altered by TSA. Interestingly, PMA promoted cervical tumor growth in mice xenograft model was significantly suppressed by TSA. Conclusions In conclusion, these findings provide new insights into mechanisms underlying anticancer activity of TSA and blocking OPN expression at transcriptional level by TSA may act as novel therapeutic strategy for the management of cervical cancer.
Collapse
|
22
|
Fayyad-Kazan H, Rouas R, Merimi M, El Zein N, Lewalle P, Jebbawi F, Mourtada M, Badran H, Ezzeddine M, Salaun B, Romero P, Burny A, Martiat P, Badran B. Valproate treatment of human cord blood CD4-positive effector T cells confers on them the molecular profile (microRNA signature and FOXP3 expression) of natural regulatory CD4-positive cells through inhibition of histone deacetylase. J Biol Chem 2010; 285:20481-91. [PMID: 20427269 PMCID: PMC2898312 DOI: 10.1074/jbc.m110.119628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/20/2010] [Indexed: 01/17/2023] Open
Abstract
Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.
Collapse
Affiliation(s)
- Hussein Fayyad-Kazan
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Redouane Rouas
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Makram Merimi
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Nabil El Zein
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Lewalle
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Fadi Jebbawi
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | | | - Hussein Badran
- the Department of Informatics, Faculty of Sciences, Lebanese University, Hadath Beirut 6573-14, Lebanon, and
| | | | - Bruno Salaun
- the Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, 4 Av. Pierre-Decker, 1005 Lausanne, Switzerland
| | - Pedro Romero
- the Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, 4 Av. Pierre-Decker, 1005 Lausanne, Switzerland
| | - Arsène Burny
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Martiat
- From the Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Bassam Badran
- the Department of Biochemistry, Laboratory of Immunology, and
| |
Collapse
|
23
|
Iglesias-Linares A, Yañez-Vico R, González-Moles M. Potential role of HDAC inhibitors in cancer therapy: Insights into oral squamous cell carcinoma. Oral Oncol 2010; 46:323-9. [DOI: 10.1016/j.oraloncology.2010.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 01/13/2023]
|
24
|
Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev 2010; 32:1-165. [PMID: 20162725 DOI: 10.1002/med.20200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. HDAC inhibitors (HDACIs) block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumor cells. In this article, a survey of published quantitative structure-activity relationships (QSARs) studies are presented and discussed in the hope of identifying the structural determinants for anticancer activity. Secondly a two-dimensional QSAR study was carried out on biological results derived from various types of HDACIs and from different assays using the C-QSAR program of Biobyte. The QSAR analysis presented here is an attempt to organize the knowledge on the HDACIs with the purpose of designing new chemical entities with enhanced inhibitory potencies and to study the mechanism of action of the compounds. This study revealed that lipophilicity is one of the most important determinants of activity. Additionally, steric factors such as the overall molar refractivity (CMR), molar volume (MgVol), the substituent's molar refractivity (MR) (linear or parabola), or the sterimol parameters B(1) and L are important. Electronic parameters indicated as σ(p), are found to be present only in one case.
Collapse
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|
25
|
Davies G, Ross A, Arnason T, Juurlink B, Harkness T. Troglitazone inhibits histone deacetylase activity in breast cancer cells. Cancer Lett 2010; 288:236-50. [DOI: 10.1016/j.canlet.2009.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
26
|
Kim IA, Kim IH, Kim HJ, Chie EK, Kim JS. HDAC inhibitor-mediated radiosensitization in human carcinoma cells: a general phenomenon? JOURNAL OF RADIATION RESEARCH 2010; 51:257-263. [PMID: 20505264 DOI: 10.1269/jrr.09115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Histone deacetylase inhibitors (HDIs) have attracted considerable attention for anticancer therapy strategy, including radiosensitization. Regarding a potential application of HDI as a radiosensitizer in the treatment of solid tumors, an important question is whether treatment efficacy would be influenced by intrinsic differences between cancer cells, such as different histologic origin and status of ATM or p53. First we have observed the in vitro radiosensitization by Trichostatin A (TSA) on the broad spectrum of human tumor cell lines having different histologic origin such as HCT116 adenocarcinoma of colon, A549 adenocarcinoma of lung, HN-3 squamous cell carcinoma of head/neck, and HeLa squamous carcinoma of uterine cervix, using clonogenic assay. Next, we have systematically assessed the radiosensitization on the cell lines having different ATM or p53 status. We found that pretreatment of HDI consistently resulted in radiosensitization of all cell lines tested, though the sensitizer enhancement ratio of individual cell lines was variable. We also observed that TSA-mediated radiosensitization was clearly influenced by p53 and ATM status of cells tested. The data presented here indicate that HDI enhances the radiation induced cell killing in the various cancer cells having intrinsic differences and may serve as a general strategy for enhancing tumor cell radiosensitivity. These results have potential implications for the clinical utility of HDI in increasing the anticancer efficacy of radiation.
Collapse
Affiliation(s)
- In Ah Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
27
|
Biochemical mechanism of acetylsalicylic acid (Aspirin) selective toxicity toward melanoma cell lines. Melanoma Res 2009; 18:386-99. [PMID: 18971789 DOI: 10.1097/cmr.0b013e3283107df7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the current work, we investigated the biochemical toxicity of acetylsalicylic acid (ASA; Aspirin) in human melanoma cell lines using tyrosinase enzyme as a molecular cancer therapeutic target. At 2 h, ASA was oxidized 88% by tyrosinase. Ascorbic acid and NADH, quinone reducing agents, were significantly depleted during the enzymatic oxidation of ASA by tyrosinase to quinone. The 50% inhibitory concentration (48 h) of ASA and salicylic acid toward SK-MEL-28 cells were 100 micromol/l and 5.2 mmol/l, respectively. ASA at 100 micromol/l was selectively toxic toward human melanocytic SK-MEL-28, MeWo, and SK-MEL-5 and murine melanocytic B16-F0 and B16-F10 melanoma cell lines. However, ASA was not significantly toxic to human amelanotic C32 melanoma cell line, which does not express tyrosinase enzyme, and human nonmelanoma BJ, SW-620, Saos, and PC-3 cells. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased ASA toxicity toward SK-MEL-28 cells indicating quinone formation and intracellular GSH depletion played important mechanistic roles in ASA-induced melanoma toxicity. Ascorbic acid, a quinone reducing agent, and GSH, an antioxidant and quinone trap substrate, prevented ASA cell toxicity. Trifluoperazine, inhibitor of permeability transition pore in mitochondria, prevented ASA toxicity. ASA led to significant intracellular GSH depletion in melanocytic SK-MEL-28 melanoma cells but not in amelanotic C32 melanoma cells. ASA also led to significant reactive oxygen species (ROS) formation in melanocytic SK-MEL-28 melanoma cells but not in amelanotic C32 melanoma cells. ROS formation was exacerbated by dicoumarol and 1-bromoheptane in SK-MEL-28. Our investigation suggests that quinone species, intracellular GSH depletion, ROS formation, and mitochondrial toxicity significantly contributed toward ASA selective toxicity in melanocytic SK-MEL-28 melanoma cells.
Collapse
|
28
|
Nagarajan RP, Costello JF. Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics 2009; 6:436-46. [PMID: 19560734 PMCID: PMC3981537 DOI: 10.1016/j.nurt.2009.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/26/2009] [Accepted: 04/09/2009] [Indexed: 01/25/2023] Open
Abstract
Gliomas arise through genetic and epigenetic alterations of normal brain cells, although the exact cell of origin for each glioma subtype is unknown. The alteration-induced changes in gene expression and protein function allow uncontrolled cell division, tumor expansion, and infiltration into surrounding normal brain parenchyma. The genetic and epigenetic alterations are tumor subtype and tumor-grade specific. Particular alterations predict tumor aggressiveness, tumor response to therapy, and patient survival. Genetic alterations include deletion, gain, amplification, mutation, and translocation, which result in oncogene activation and tumor suppressor gene inactivation, or in some instances the alterations may simply be a consequence of tumorigenesis. Epigenetic alterations in brain tumors include CpG island hypermethylation associated with tumor suppressor gene silencing, gene-specific hypomethylation associated with aberrant gene activation, and genome-wide hypomethylation potentially leading to loss of imprinting, chromosomal instability, and cellular hyperproliferation. Other epigenetic alterations, such as changes in the position of histone variants and changes in histone modifications are also likely to be important in the molecular pathology of brain tumors. Given that histone deacetylases are targets for drugs that are already in clinical trial, surprisingly little is known about histone acetylation in primary brain tumors. Although a majority of epigenetic alterations are independent of genetic alterations, there is interaction on specific genes, signaling pathways and within chromosomal domains. Next-generation sequencing technology is now the method of choice for genomic and epigenome profiling, allowing more comprehensive understanding of genetic and epigenetic contributions to tumorigenesis in the brain.
Collapse
Affiliation(s)
- Raman P. Nagarajan
- grid.266102.10000000122976811Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94143 San Francisco, California
| | - Joseph F. Costello
- grid.266102.10000000122976811Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94143 San Francisco, California
| |
Collapse
|
29
|
Abstract
Epigenetics is the study of differences in phenotype, in the absence of variation in the genetic code. Epigenetics is relevant in the pathogenesis of many skin diseases. In the case of the common skin cancers, aberrant methylation of tumor suppressor gene promoters is associated with their transcriptional inactivation. Environmental carcinogens such as ultraviolet radiation and arsenic may act through epigenetic mechanisms. Hypomethylation is associated with activation of systemic autoimmune diseases, such as systemic lupus erythematosus, subacute cutaneous lupus erythematosus and scleroderma. This may be through a mechanism of immunological cross-reactivity with hypomethylated DNA from pathogenic bacteria. Epigenetic factors may also be relevant in the pathogenesis of psoriasis and other inflammatory skin diseases, as well as in the pathogenesis of the disorders of genomic imprinting with cutaneous features.
Collapse
Affiliation(s)
- George W M Millington
- Dermatology Department, Norfolk & Norwich University Hospitals, NHS Foundation Trust, Colney Lane, Norwich, NR4 7UZ, UK.
| |
Collapse
|
30
|
Nagarajan RP, Costello JF. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol 2009; 19:188-97. [PMID: 19429483 DOI: 10.1016/j.semcancer.2009.02.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/11/2009] [Indexed: 11/26/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal cancer, accounting for the majority of primary brain tumors in adults. GBMs are characterized by genetic alterations large and small, affecting genes that control cell growth, apoptosis, angiogenesis, and invasion. Epigenetic alterations also affect the expression of cancer genes alone, or in combination with genetic mechanisms. For example, in each GBM, hundreds of genes are subject to DNA hypermethylation at their CpG island promoters. A subset of GBMs is also characterized by locus-specific and genome-wide decrease in DNA methylation, or DNA hypomethylation. Other epigenetic alterations, such as changes in the position of histone variants and changes in histone modifications are also likely important in the molecular pathology of GBM, but somewhat surprisingly there are very limited data about these in GBM. Alterations in histone modifications are especially important to understand, given that histone deacetylases are targets for drugs that are in clinical trial for GBMs. The technological wave of next-generation sequencing will accelerate GBM epigenome profiling, allowing the direct integration of DNA methylation, histone modification and gene expression profiles. Ultimately, genomic and epigenomic data should provide new predictive markers of response and lead to more effective therapies for GBM.
Collapse
Affiliation(s)
- Raman P Nagarajan
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
31
|
Bai S, Tong A, Lau QC, Liu R, Tang M, Chen L, Huang C. Proteomic analysis of liver cancer cells treated with 5-Aza-2′-deoxycytidine (AZA). Drug Dev Res 2009. [DOI: 10.1002/ddr.20279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Tischler JL, Abuaita B, Cuthpert SC, Fage C, Murphy K, Saxe A, Furr EB, Hedrick J, Meyers J, Snare D, Zand AR. Simple inhibitors of histone deacetylase activity that combine features of short-chain fatty acid and hydroxamic acid inhibitors. J Enzyme Inhib Med Chem 2008; 23:549-55. [PMID: 18608778 DOI: 10.1080/14756360701715703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Butyric acid and trichostatin A (TSA) are anti-cancer compounds that cause the upregulation of genes involved in differentiation and cell cycle regulation by inhibiting histone deacetylase (HDAC) activity. In this study we have synthesized and evaluated compounds that combine the bioavailability of short-chain fatty acids, like butyric acid, with the bidentate binding ability of TSA. A series of analogs were made to examine the effects of chain length, simple aromatic cap groups, and substituted hydroxamates on the compounds' ability to inhibit rat-liver HDAC using a fluorometric assay. In keeping with previous structure-activity relationships, the most effective inhibitors consisted of longer chains and hydroxamic acid groups. It was found that 5-phenylvaleric hydroxamic acid and 4-benzoylbutyric hydroxamic acid were the most potent inhibitors with IC50's of 5 microM and 133 microM respectively.
Collapse
Affiliation(s)
- Jessica L Tischler
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI 48502, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Masuoka Y, Shindoh N, Inamura N. Histone deacetylase inhibitors from microorganisms: the Astellas experience. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:335, 337-59. [PMID: 18416310 DOI: 10.1007/978-3-7643-8595-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone deacetylase (HDAC) inhibitors, such as trichostatin A and trapoxin, which were first found in microorganisms, potently and selectively inhibit HDAC enzymes. They have made a strong contribution to research on HDACs, chromatin control, abnormal epigenetic control in various diseases and the significance of acetylation in posttranslational modification. Recently, HDAC inhibitors have been focused on as potential drugs for the treatment of several diseases, including cancer, although trichostatin A and trapoxin show no effects in animal models because of their metabolic instability in vivo. Chemical modification has been conducted in order to overcome this drawback. We discovered the microbial metabolites FK228 (also known as FR901228, romidepsin, depsipeptide, NSC-630176 and NSC-630176D) and YM753 (spiruchostatin A). Both compounds have bicyclic structures and represent a novel structural class of HDAC inhibitor. The enzyme and tumor cell growth inhibitory activities of FK228 were found to be very potent. It also showed potent HDAC inhibitory activity in vivo. FK228 is the first potent HDAC inhibitor to undergo clinical development as a potential treatment for solid and hematological cancers. Due to its dramatic effect in patients with refractory cutaneous T-cell lymphoma (CTCL), in October 2004 the US Food & Drug Administration (FDA) granted fast-track status to FK228 as monotherapy for the treatment of CTCL in patients who have relapsed following, or become refractory to, another systemic therapy. Thus HDAC inhibitors such as FK228 and YM753 have potential as tools for life science studies and also as therapeutic agents for various intractable diseases.
Collapse
Affiliation(s)
- Yuhta Masuoka
- Fermentation Research Labs, Drug Discovery Research, Astellas Pharma Inc., 2-3, Tokodai 5-chome, Tsukuba-shi, Ibaraki 300-2698, Japan.
| | | | | |
Collapse
|
34
|
Kim YS, Song YM, Kwon HJ. Functional analysis of a histone deacetylase-like protein of Thermus caldophilus GK24 in mammalian cell. Biochem Biophys Res Commun 2007; 362:995-1000. [PMID: 17767915 DOI: 10.1016/j.bbrc.2007.08.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 11/23/2022]
Abstract
The function of eukaryotic histone deacetylase (HDAC) has been extensively studied for its critical role in transcriptional regulation and carcinogenesis. However that of the prokaryotic counterpart remains largely unknown. Recently, we cloned HDAC-like protein in Thermus caldophilus GK24 (Tca HDAC) from a genomic library of the microorganism based on homology analysis with human HDAC1. To explore the function of Tca HDAC in mammalian cells, Tca HDAC gene expressing vector was transfected into a human fibrosarcoma cell line, HT1080. Tca HDAC was mainly localized in nuclei of the mammalian cells as a human HDAC1 was, due to an N-terminal HDAC association domain. We further generated histidine-substituted Tca HDAC mutants and investigated their role in biochemical and cellular activity of the enzyme. Tca HDAC mutants exhibited dramatic loss of enzymatic activity and conditioned media (CM) from HT1080 cells transfected with mutant Tca HDAC was unable to stimulate angiogenic phenotypes of endothelial cells in vitro whereas that of wild Tca HDAC did. Collectively, these results demonstrate that a prokaryotic histone deacetylase from T. caldophilus GK24 is functionally active in mammalian cells and its function in gene expression is conserved from prokaryotes to eukaryotes.
Collapse
Affiliation(s)
- You Sun Kim
- Chemical Genomics Laboratory, Department of Biotechnology, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | |
Collapse
|
35
|
Yasukawa K, Sawamura D, Goto M, Nakamura H, Shimizu H. Histone deacetylase inhibitors preferentially augment transient transgene expression in human dermal fibroblasts. Br J Dermatol 2007; 157:662-9. [PMID: 17711521 DOI: 10.1111/j.1365-2133.2007.08122.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin is an attractive target for gene therapy. However, low efficiency of gene transfection has been a major problem. Histone deacetylase (HDAC) inhibitors have been reported to increase transgene expression in malignant cells. OBJECTIVES We have estimated how much HDAC inhibitors might increase transgene expression in HaCaT cells, normal human epidermal keratinocyte (NHEK) cells, normal human dermal fibroblast (NHDF) cells and also in stratified cultured epidermal sheets that mimic the structure of the skin. METHODS After treatment with each HDAC inhibitor [trichostatin A, FK228 and cyclic hydroxamic acid-containing peptide 31 (CHAP31)], transient transgene expression in HaCaT, NHEK and NHDF cells and stratified cultured epidermal sheets was compared with that of respective controls without treatment. Reactivation of transgene expression using HDAC inhibitors in HaCaT cells stably expressing the transgene was also studied. RESULTS All HDAC inhibitors equally increased transient transgene expression by 2-fold in NHEK cells, 20-fold in NHDF cells and 6-fold in HaCaT cells when compared with untreated cells. This augmented expression continued for 72 h in all cell lines maintained under each HDAC inhibitor. In cells stably expressing the transgene, only CHAP31 reactivated transgene expression. In stratified cultured epidermal sheets, CHAP31 most effectively improved transient transgene expression. CONCLUSIONS HDAC inhibitors are most efficient at amplifying transient transgene expression in NHDF cells. This suggests that NHDF cells may be most suitable as transgene targets for transient gene transfection using HDAC inhibitors. Specific HDAC inhibitors may not prove so useful for treating genetic dermatoses requiring cells stably expressing the correct gene, but may be advantageous in treating nonhealing cutaneous wounds or cancer.
Collapse
Affiliation(s)
- K Yasukawa
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo 060-8638, Japan.
| | | | | | | | | |
Collapse
|
36
|
Lillehammer T, Engesaeter BO, Prasmickaite L, Maelandsmo GM, Fodstad O, Engebraaten O. Combined treatment with Ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines. J Gene Med 2007; 9:440-51. [PMID: 17410615 DOI: 10.1002/jgm.1036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Currently, dacarbazine (DTIC) is the only approved systemic treatment for metastatic malignant melanoma. However, the modest treatment effect encourages studies on novel therapeutic molecules, delivery systems and combination therapies. Full-length TRAIL, delivered from an adenoviral vector (Ad-hTRAIL), was studied in combination with DTIC or the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in human melanoma cell lines. METHODS The cytotoxic potential of the combination treatments was assessed by cell viability measurements and CalcuSyn analysis. Involvement of apoptosis was analyzed by TUNEL staining, mitochondrial membrane potential measurements, and activation and expression levels of caspases and other mediators of apoptosis. RESULTS Ad-hTRAIL in combination with DTIC or SAHA resulted in additive or synergistic growth inhibition compared to each treatment used as single agent. Both combinations augmented apoptosis, which was mediated through the death receptor (DR) pathway by enhanced activation of caspase-8, and through increased loss of mitochondrial integrity. Provoked cleavage of Bid, which bridges the extrinsic and intrinsic apoptosis pathways, and downregulation of the anti-apoptotic mediators Bcl-X(L), Mcl-1 and XIAP (but not Bcl-2) were critical contributing factors. Increased levels of DR4 and DR5 were not a common underlying mechanism as DTIC did not affect the levels of either of the receptors. However, SAHA-induced expression of DR4 may have reduced the TRAIL resistance in the SKMEL-28 cell line. CONCLUSION Administration of Ad-hTRAIL in combination with DTIC or SAHA enhances apoptosis in human melanoma cell lines, and suggests that the therapeutic potential of such treatment strategies should be further evaluated for possible clinical use.
Collapse
Affiliation(s)
- Trine Lillehammer
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
37
|
Kumagai T, Wakimoto N, Yin D, Gery S, Kawamata N, Takai N, Komatsu N, Chumakov A, Imai Y, Koeffler HP. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 2007; 121:656-65. [PMID: 17417771 DOI: 10.1002/ijc.22558] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor suppressor genes are often silenced in human cancer; this can occur by transcriptional repression by deacetylation in the promoter regions, mediated by histone deacetylase (HDAC). HDAC inhibitors can block cancer cell growth by restoring expression of tumor suppressor genes. In this study, we investigated the effects of a HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA) on pancreatic cancer cells. SAHA inhibited the growth of 6 pancreatic cancer cell lines in a dose-dependent manner as measured by MTT and clonogenic assays (ED(50) approximately 10(-6) M) associated with induction of apoptosis, G2 cell cycle arrest and also induced differentiation as indicated by morphology and increased expression of cytokeratin 7. It increased expression of p21(WAF1) (independent of the mutational status of p53), C/EBPalpha, RARalpha and E-cadherin; these genes have been associated with decreased proliferation in other cancers. SAHA decreased cyclin B1 expression; this cyclin normally promotes progression through G2 of the cell cycle. SAHA mediated acetylation of histone H3 globally, as well as, associated with the p21(WAF1) promoter, as measured by chromatin immunoprecipitation. SAHA also decreased levels of c-myc and cyclin D1, independent of an active beta-catenin pathway. In further studies, the combination of SAHA and an inhibitor of DNA methylation, 5-Aza-2'-deoxycytidine, had an enhanced antiproliferative effect on pancreatic cancer cells. In summary, SAHA inhibited the growth of human pancreatic cancer cells by inducing apoptosis, differentiation and cell cycle arrest, as well as increase in the expression of several tumor suppressor genes. SAHA is a novel, promising therapeutic agent for human pancreatic cancers.
Collapse
Affiliation(s)
- Takashi Kumagai
- Division of Hematology/Oncology, UCLA School of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gojo I, Jiemjit A, Trepel JB, Sparreboom A, Figg WD, Rollins S, Tidwell ML, Greer J, Chung EJ, Lee MJ, Gore SD, Sausville EA, Zwiebel J, Karp JE. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 2007; 109:2781-90. [PMID: 17179232 PMCID: PMC1852211 DOI: 10.1182/blood-2006-05-021873] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 11/01/2006] [Indexed: 12/20/2022] Open
Abstract
MS-275 is a benzamide derivative with potent histone deacetylase (HDAC) inhibitory and antitumor activity in preclinical models. We conducted a phase 1 trial of orally administered MS-275 in 38 adults with advanced acute leukemias. Cohorts of patients were treated with MS-275 initially once weekly x 2, repeated every 4 weeks from 4 to 8 mg/m2, and after 13 patients were treated, once weekly x 4, repeated every 6 weeks from 8 to 10 mg/m2. The maximum-tolerated dose was 8 mg/m2 weekly for 4 weeks every 6 weeks. Dose-limiting toxicities (DLTs) included infections and neurologic toxicity manifesting as unsteady gait and somnolence. Other frequent non-DLTs were fatigue, anorexia, nausea, vomiting, hypoalbuminemia, and hypocalcemia. Treatment with MS-275 induced increase in protein and histone H3/H4 acetylation, p21 expression, and caspase-3 activation in bone marrow mononuclear cells. No responses by classical criteria were seen. Our results show that MS-275 effectively inhibits HDAC in vivo in patients with advanced myeloid leukemias and should be further tested, preferably in patients with less-advanced disease.
Collapse
Affiliation(s)
- Ivana Gojo
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gensert JM, Baranova OV, Weinstein DE, Ratan RR. CD81, a cell cycle regulator, is a novel target for histone deacetylase inhibition in glioma cells. Neurobiol Dis 2007; 26:671-80. [PMID: 17481908 DOI: 10.1016/j.nbd.2007.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/08/2007] [Accepted: 03/10/2007] [Indexed: 11/29/2022] Open
Abstract
Recent advances in cancer cell biology have focused on histone deacetylase inhibitors (HDACi's) because they target pathways critical to the development and progression of disease. In particular, HDACi's can induce expression of epigenetically silenced genes that promote growth arrest, differentiation and cell death. In glioma cells, one such repressed gene is the tetraspanin CD81, which regulates cytostasis in various cell lines and in astrocytes, the major cellular component of gliomas. Our studies show that HDACi's, trichostatin and sodium butyrate, promote growth arrest and differentiation with negligible cell death in glioma cells and induce expression of CD81 and cyclin-dependent kinase inhibitor 1A (p21(CIP/WAF-1)), another regulator of cytostasis in astrocytes. Interference RNA knock-down of CD81 abrogates cytostasis promoted by HDAC inhibition indicating that HDACi-induced CD81 is responsible for growth arrest. Induction of CD81 expression through HDAC inhibition is a novel strategy to promote growth arrest in glioma cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Brain Neoplasms/enzymology
- Brain Neoplasms/genetics
- Brain Neoplasms/physiopathology
- Butyrates/pharmacology
- Butyrates/therapeutic use
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinase Inhibitor p21/drug effects
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Gene Silencing/drug effects
- Gene Silencing/physiology
- Genes, cdc/drug effects
- Glioma/enzymology
- Glioma/genetics
- Glioma/physiopathology
- Histone Deacetylase Inhibitors
- Histone Deacetylases/metabolism
- Hydroxamic Acids/pharmacology
- Hydroxamic Acids/therapeutic use
- RNA Interference
- Rats
- Rats, Inbred F344
- Rats, Wistar
- Tetraspanin 28
Collapse
Affiliation(s)
- JoAnn M Gensert
- The Winifred Masterson Burke/Cornell Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
In recent years the study of chemical modifications to chromatin and their effects on cellular processes has become increasingly important in the field of cancer research. Disruptions to the normal epigenetic pattern of the cell can serve as biomarkers and are important determinants of cancer progression. Accordingly, drugs that inhibit the enzymes responsible for modulating these epigenetic markers, in particular histone deacetylases, are the focus of intense research and development. In this chapter we provide an overview of class I and II histone deacetylases as well as a guide to the diverse types of histone deacetylase inhibitors and their activities in the context of APL. We also discuss the rationale for the use of histone deacetylase inhibitors in combination therapy for the treatment of cancer and the current status of clinical trials.
Collapse
Affiliation(s)
- K Petrie
- Section of Haemato-Oncology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
41
|
Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2007; 9:809-24. [PMID: 16083344 DOI: 10.1517/14728222.9.4.809] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) have recently emerged as an important target for therapeutic intervention in cancer and potentially other human diseases. By modulating the acetylation status of histones, histone deacetylase inhibitors (HDACIs) alter the transcription of genes involved in cell growth, maturation, survival and apoptosis, among other processes. Early clinical results suggest a potentially useful role for HDACIs in the treatment of certain forms of lymphoma (e.g., cutaneous T cell lymphoma) and acute leukaemia. An unresolved question is how HDACIs induce cell death in tumour cells. Recent studies suggest that acetylation of nonhistone proteins may play an important role in the biological effects of this class of compounds, and may explain lack of correlation between histone acetylation and induction of cell death by HDACIs in some circumstances. Recently, attention has focussed on the effects of HDACIs on disruption of co-repressor complexes, induction of oxidative injury, upregulation of the expression of death receptors, generation of lipid second messengers such as ceramide, interference with the function of chaperone proteins and modulation of the activity of NF-kappaB as critical determinants of lethality. Aside from providing critical insights into the mechanism of action of HDACIs in neoplastic disease, these findings may provide a foundation for the rational development of combination studies, involving HDACIs in combination with either conventional cytotoxic drugs as well as more novel targeted agents.
Collapse
Affiliation(s)
- Roberto R Rosato
- Department of Medicine, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298, USA
| | | |
Collapse
|
42
|
Mukhopadhyay NK, Weisberg E, Gilchrist D, Bueno R, Sugarbaker DJ, Jaklitsch MT. Effectiveness of trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer. Ann Thorac Surg 2006; 81:1034-42. [PMID: 16488717 DOI: 10.1016/j.athoracsur.2005.06.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/15/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND A well-known histone deacetylase inhibitor, trichostatin A, was applied to non-small-cell lung cancer cells to determine whether inhibition of histone deacetylase leads to the production of proteins that either arrest tumor cell growth or lead to tumor cell death. METHODS Trichostatin A (0.01 to 1.0 micromol/L) was applied to one normal lung fibroblast and four non-small-cell lung cancer lines, and its effect was determined by flow cytometry, annexin-V staining, immunoprecipitation, and Western blot analysis. RESULTS Trichostatin A demonstrated tenfold greater growth inhibition in all four non-small-cell lung cancer lines compared with normal controls, with a concentration producing 50% inhibition ranging from 0.01 to 0.04 micromol/L for the tumor cell lines and 0.7 micromol/L for the normal lung fibroblast line. Trichostatin A treatment reduced the percentage of cells in S phase (10% to 23%) and increased G1 populations (10% to 40%) as determined by flow cytometry. Both annexin-V binding assay and upregulation of the protein, gelsolin (threefold to tenfold), demonstrated that the tumor cells were apoptotic, whereas normal cells were predominantly in cell cycle arrest. Trichostatin A increased histone H4 acetylation and expression of p21 twofold to 15-fold without significant effect on p16, p27, CDK2, and cyclin D1. CONCLUSIONS Collectively, these data suggest that inhibition of histone deacetylation may provide a valuable approach for lung cancer treatment. We evaluated trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Nishit K Mukhopadhyay
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Milano A, Chiofalo MG, Basile M, Salzano de Luna A, Pezzullo L, Caponigro F. New molecular targeted therapies in thyroid cancer. Anticancer Drugs 2006; 17:869-79. [PMID: 16940797 DOI: 10.1097/01.cad.0000224449.16329.c5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carcinoma of the thyroid gland is the most common malignancy of the endocrine system. Differentiated tumors are often curable with surgical resection and radioactive iodine. A small percentage of such patients, however, do not undergo remission and need new therapeutic approaches. Both anaplastic and medullary thyroid carcinomas exhibit aggressive behavior and are usually resistant to current therapeutic modalities. Thyroid carcinoma represents a fascinating model and a particularly promising paradigm for targeted therapy because some of the key oncogenic events are activating mutations of genes coding for tyrosine kinases, and these occur early in cancer development. A prototype is the RET proto-oncogene, a receptor tyrosine kinase, which is a key regulator of development and a 'hotspot' for oncogenic mutations. Mutations in the RET proto-oncogene have been identified as causative for papillary carcinoma and familial medullary thyroid carcinoma, making it an attractive target for selective inhibition in these subtypes. ZD 6474 has shown promising activity in preclinical models against RET kinase, and its contemporary inhibition of vascular endothelial growth factor and epidermal growth factor pathways renders it a very attractive drug for clinical trials in thyroid cancer. Activating point mutation of B-RAF can occur early in the development of papillary carcinoma. Moreover, papillary carcinomas with these mutations have more aggressive properties and are diagnosed more often at an advanced stage. Clinical evaluation of B-RAF-targeting drugs is undergoing and trials in thyroid cancer are planned. Agents that restore radioiodine uptake, such as histone deacetylase inhibitors and retinoids, represent another exciting field in new drug development in thyroid cancer.
Collapse
Affiliation(s)
- Amalia Milano
- National Tumor Institute of Naples, Fondazione G. Pascale, Via M. Semmola, 80131 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Kaouass M, Beaulieu R, Balicki D. Histonefection: Novel and potent non-viral gene delivery. J Control Release 2006; 113:245-54. [PMID: 16806557 DOI: 10.1016/j.jconrel.2006.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/26/2006] [Indexed: 11/21/2022]
Abstract
Protein/peptide-mediated gene delivery has recently emerged as a powerful approach in non-viral gene transfer. In previous studies, we and other groups found that histones efficiently mediate gene transfer (histonefection). Histonefection has been demonstrated to be effective with various members of the histone family. The DNA binding domains and natural nuclear localisation signal sequences make histones excellent candidates for effective gene transfer. In addition, their positive charge promotes binding to anionic molecules and helps them to overcome the negative charge of cells that is an important barrier to cellular penetration. Histonefection appears to have particular promise in cancer gene transfer and therapy.
Collapse
Affiliation(s)
- Mohammadi Kaouass
- Research Centre and Department of Medicine, Centre hospitalier de l'Université de Montréal, Canada
| | | | | |
Collapse
|
45
|
Abstract
Nuclear morphometric descriptors such as nuclear size, shape, DNA content and chromatin organization are used by pathologists as diagnostic markers for cancer. Tumorigenesis involves a series of poorly understood morphological changes that lead to the development of hyperplasia, dysplasia, in situ carcinoma, invasive carcinoma, and in many instances finally metastatic carcinoma. Nuclei from different stages of disease progression exhibit changes in shape and the reorganization of chromatin, which appears to correlate with malignancy. Multistep tumorigenesis is a process that results from alterations in the function of DNA. These alterations result from stable genetic changes, including those of tumor suppressor genes, oncogenes and DNA stability genes, and potentially reversible epigenetic changes, which are modifications in gene function without a change in the DNA sequence. DNA methylation and histone modifications are two epigenetic mechanisms that are altered in cancer cells. The impact of genetic (e.g., mutations in Rb and ras family) and epigenetic alterations with a focus on histone modifications on chromatin structure and function in cancer cells are reviewed here.
Collapse
Affiliation(s)
- Bojan Drobic
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, R3E OV9 Canada.
| | | | | | | |
Collapse
|
46
|
Schroeder TM, Westendorf JJ. Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res 2005; 20:2254-63. [PMID: 16294278 DOI: 10.1359/jbmr.050813] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/25/2005] [Accepted: 08/04/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED HDIs are potential therapeutic agents for cancer and neurological diseases because of their abilities to alter gene expression, induce growth arrest or apoptosis of tumors cells, and stimulate differentiation. In this report, we show that several HDIs promote osteoblast maturation in vitro and in calvarial organ cultures. INTRODUCTION Histone deacetylase inhibitors (HDIs) are currently in phase I and II clinical trials as anticancer agents. Some HDIs are also commonly prescribed treatments for epilepsy and bipolar disorders. Although administered systemically, the effects of HDIs on osteoblasts and bone formation have not been extensively examined. In this study, we investigated the effect of histone deacetylase inhibition on osteoblast proliferation and differentiation. MATERIALS AND METHODS MC3T3-E1 cells, calvarial-derived primary osteoblasts, and calvarial organ cultures were treated with various commercially available HDIs (trichostatin A [TSA], sodium butyrate [NaB], valproic acid [VPA], or MS-275). The effects of these inhibitors on cell proliferation, viability, cell cycle progression, Runx2 transcriptional activity, alkaline phosphatase production, and matrix mineralization were determined. Expression levels of osteoblast maturation genes, type I collagen, osteopontin, bone sialoprotein, and osteocalcin in response to TSA were measured by quantitative PCR. RESULTS Concentrations of HDIs that caused hyperacetylation of histone H3 induced transient increases in osteoblast proliferation and viability but did not alter cell cycle profiles. These concentrations of HDIs also increased the transcriptional activity of Runx2. TSA accelerated alkaline phosphatase production in MC3T3-E1 cells and calvarial organ cultures. In addition, TSA accelerated matrix mineralization and the expression of osteoblast genes, type I collagen, osteopontin, bone sialoprotein, and osteocalcin in MC3T3-E1 cells. CONCLUSIONS These studies show that histone deacetylase activity regulates osteoblast differentiation and bone formation at least in part by enhancing Runx2-dependent transcriptional activation. Therefore, HDIs are a potentially new class of bone anabolic agents that may be useful in the treatment of diseases that are associated with bone loss such as osteoporosis and cancer.
Collapse
Affiliation(s)
- Tania M Schroeder
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
47
|
Palmieri C, Coombes RC, Vigushin DM. Targeted histone deacetylase inhibition for cancer prevention and therapy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 63:147-81. [PMID: 16265880 DOI: 10.1007/3-7643-7414-4_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Carlo Palmieri
- Department of Cancer Medicine, 7th Floor MRC Cyclotron Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
48
|
Peltonen K, Kiviharju TM, Järvinen PM, Ra R, Laiho M. Melanoma cell lines are susceptible to histone deacetylase inhibitor TSA provoked cell cycle arrest and apoptosis. ACTA ACUST UNITED AC 2005; 18:196-202. [PMID: 15892716 DOI: 10.1111/j.1600-0749.2005.00225.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanoma is the most aggressive of skin cancers because of its high resistance to currently available therapy. Although melanoma cells often retain wild-type p53 tumour suppressor protein and express it at high levels, the p53 mediated apoptosis pathway is suppressed. Histone deacetylase (HDAC) inhibitors are a promising group of compounds inducing differentiation, growth arrest and apoptosis in tumour cells in preclinical studies. We have studied the cellular effects of trichostatin A (TSA), a HDAC inhibitor, in a panel of melanoma cell lines and its mechanism of action in relation to p53. TSA stabilized wild-type p53, but p53 protein accumulation was overridden by simultaneous downregulation of p53 mRNA leading to a decrease in p53 protein. While growth arrest was induced in all cell lines studied and apoptosis in most (6/7), these cellular effects were independent of the p53 status of the cells. Inhibiting p53 function by a dominant negative p53 (p53(175His)) confirmed that the HDAC inhibitor induced apoptosis was independent of wild-type p53, even though TSA slightly activated p53 in a reporter assay. The results indicate that while the action of TSA is independent of p53, the activation of the apoptosis pathway by the HDAC inhibitors may provide therapeutic approaches for melanoma treatment.
Collapse
Affiliation(s)
- Karita Peltonen
- Haartman Institute and Molecular Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
49
|
Boyle GM, Martyn AC, Parsons PG. Histone deacetylase inhibitors and malignant melanoma. ACTA ACUST UNITED AC 2005; 18:160-6. [PMID: 15892712 DOI: 10.1111/j.1600-0749.2005.00228.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The search for antimelanoma agents acting by terminal differentiation via the pigmentation pathway has so far been unsuccessful, in part because of tumor heterogeneity and loss of function of pigmentation genes. Some differentiation agents, however, have emerged as inhibitors of histone deacetylases (HDAC), with consequences for chromosome remodeling, cell cycle arrest and selective toxicity in cultured melanoma cells compared with normal melanocytes. Few effects have been found on pigmentation, except paradoxically the down-regulation of TRP-1. Of the many genes regulated by HDAC inhibitors, induction of p21(WAF1/Cip1) is the most consistent finding and is associated with G(1) or G(2) phase blocks. Some melanoma cell lines appear to lack an HDAC inhibitor-specific G(2) checkpoint and viability is thus compromised by dividing with inappropriately-modified chromatin. Most cultured melanoma cells undergo apoptosis following treatment with HDAC inhibitors, via a mitochondrial and caspase-dependent pathway. However, the molecular mechanism may vary with cell line and HDAC inhibitor class. Tumor selectivity cannot yet be attributed to specific types or levels of HDACs, nor has the possibility of acetylation of non-histone targets been excluded. Elucidation of these complexities may be rewarding, in terms of directing the multiple consequences of inhibiting histone deacetylation towards overcoming the therapeutic problems of melanoma heterogeneity and emergence of resistance. Success in the clinic may require combination with agents that synergize with the cell cycle blocking and pro-apoptotic action of HDAC inhibitors.
Collapse
Affiliation(s)
- Glen M Boyle
- Melanoma Genomics Group, The Queensland Institute of Medical Research, Brisbane, Australia
| | | | | |
Collapse
|
50
|
Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 2005; 25:261-309. [PMID: 15717297 DOI: 10.1002/med.20024] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reversible histone acetylation and deacetylation are epigenetic phenomena that play critical roles in the modulation of chromatin topology and the regulation of gene expression. Aberrant transcription due to altered expression or mutation of genes that encode histone acetyltransferase (HAT) or histone deacetylase (HDAC) enzymes or their binding partners, has been clearly linked to carcinogenesis. The histone deacetylase inhibitors are a new promising class of anticancer agents (some of which in clinical trials), that inhibit the proliferation of tumor cells in culture and in vivo by inducing cell-cycle arrest, terminal differentiation, and/or apoptosis. This report reviews the chemistry and the biology of HDACs and HDAC inhibitors, laying particular emphasis on agents actually in clinical trials for cancer therapy and on new potential anticancer lead compounds more selective and less toxic.
Collapse
Affiliation(s)
- Antonello Mai
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Dipartimento di Studi Farmaceutici, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|