1
|
Chen Q, Lin R, Wang W, Zuo Y, Zhuo Y, Yu Y, Chen S, Gu H. Efficient Electrochemical Microsensor for the Simultaneous Measurement of Hydrogen Peroxide and Ascorbic Acid in Living Brains. Anal Chem 2024; 96:6683-6691. [PMID: 38619493 DOI: 10.1021/acs.analchem.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hydrogen peroxide (H2O2) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2O2 and AA in linear ranges of 0.5-900 and 10-1000 μM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.
Collapse
Affiliation(s)
- Qiuyue Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Wenhui Wang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha 410006, Hunan, P. R. China
| | - Yanyan Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| |
Collapse
|
2
|
Brandley ET, Kirkland AE, Baron M, Baraniuk JN, Holton KF. The Effect of the Low Glutamate Diet on the Reduction of Psychiatric Symptoms in Veterans With Gulf War Illness: A Pilot Randomized-Controlled Trial. Front Psychiatry 2022; 13:926688. [PMID: 35795023 PMCID: PMC9251130 DOI: 10.3389/fpsyt.2022.926688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this pilot study was to examine the effects of the low glutamate diet on anxiety, post-traumatic stress disorder (PTSD), and depression in veterans with Gulf War Illness (GWI). The low glutamate diet removes dietary excitotoxins and increases consumption of micronutrients which are protective against glutamatergic excitotoxicity. This study was registered at ClinicalTrials.gov (NCT#03342482). Forty veterans with GWI completed psychiatric questionnaires at baseline and after 1-month following the low glutamate diet. Participants were then randomized into a double-blind, placebo-controlled crossover challenge with monosodium glutamate (MSG; a dietary excitotoxin) vs. placebo over three consecutive days per week, with assessments on day three. Data were analyzed across the full sample and with participants categorized by baseline symptom severity. Pre-post-dietary intervention change scores were analyzed with Wilcoxon signed-rank tests and paired sample t-tests across the full sample, and changes across symptom severity categories were analyzed using ANOVA. Crossover challenge results were analyzed with linear mixed modeling accounting for challenge material (MSG v. placebo), sequence (MSG/placebo v. placebo/MSG), period (challenge week 1 v. week 2), pre-diet baseline symptom severity category (minimal/mild, moderate, or severe), and the challenge material*symptom severity category interaction. A random effect of ID (sequence) was also included. All three measures showed significant improvement after 1 month on the diet, with significant differences between baseline severity categories. Individuals with severe psychological symptoms at baseline showed the most improvement after 1 month on the diet, while those with minimal/mild symptoms showed little to no change. Modeling results from the challenge period demonstrated a significant worsening of anxiety from MSG in only the most severe group, with no significant effects of MSG challenge on depression nor PTSD symptoms. These results suggest that the low glutamate diet may be an effective treatment for depression, anxiety, and PTSD, but that either (a) glutamate is only a direct cause of symptoms in anxiety, or (b) underlying nutrient intake may prevent negative psychiatric effects from glutamate exposure. Future, larger scale clinical trials are needed to confirm these findings and to further explore the potential influence of increased micronutrient intake on the improvements observed across anxiety, PTSD, and depression.
Collapse
Affiliation(s)
- Elizabeth T Brandley
- Department of Health Studies, American University, Washington, DC, United States
| | - Anna E Kirkland
- Medical University of South Carolina, Charleston, SC, United States
| | - Michael Baron
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC, United States.,Department of Neuroscience, American University, Washington, DC, United States.,Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
3
|
Qu ZB, Jiang Y, Zhang J, Chen S, Zeng R, Zhuo Y, Lu M, Shi G, Gu H. Tailoring Oxygen-Containing Groups on Graphene for Ratiometric Electrochemical Measurements of Ascorbic Acid in Living Subacute Parkinson's Disease Mouse Brains. Anal Chem 2021; 93:16598-16607. [PMID: 34844405 DOI: 10.1021/acs.analchem.1c03965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ascorbic acid (AA), a major antioxidant in the central nervous system (CNS), is involved in withstanding oxidative stress that plays a significant role in the pathogenesis of Parkinson's disease (PD). Exploring the AA disturbance in the process of PD is of great value in understanding the molecular mechanism of PD. Herein, by virtue of a carbon fiber electrode (CFE) as a matric electrode, a three-step electrochemical process for tailoring oxygen-containing groups on graphene was well designed: potentiostatic deposition was carried out to fabricate graphene oxide on CFE, electrochemical reduction that assisted in removing the epoxy groups accelerated the electron transfer kinetics of AA oxidation, and electrochemical oxidation that increased the content of the carbonyl group (C═O) generated an inner-reference signal. The mechanism was solidified by ab initio calculations by comparing AA absorption on defected models of graphene functionalized with different oxygen groups including carboxyl, hydroxyl, epoxy, and carbonyl. It was found that epoxy groups would hinder the physical absorption of AA onto graphene, while other functional groups would be beneficial to it. Biocompatible polyethylenedioxythiophene (PEDOT) was further rationally assembled to improve the antifouling property of graphene. As a result, a new platform for ratiometric electrochemical measurements of AA with high sensitivity, excellent selectivity, and reproducibility was established. In vivo determination of AA levels in different regions of living mouse brains by the proposed method demonstrated that AA decreased remarkably in the hippocampus and cortex of a subacute PD mouse than those of a normal mouse.
Collapse
Affiliation(s)
- Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Jiang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Jiaxin Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Rongjin Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Gu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
4
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
5
|
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019; 146:104321. [PMID: 31229562 DOI: 10.1016/j.phrs.2019.104321] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.
Collapse
Affiliation(s)
- Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador.
| | - George V Rebec
- Program in Neuroscience, Department Psychological & Brain Sciences, Indiana University, Bloomington, USA.
| |
Collapse
|
6
|
Oeckl P, Ferger B. Increased susceptibility of G-protein coupled receptor 6 deficient mice to MPTP neurotoxicity. Neuroscience 2016; 337:218-223. [PMID: 27651149 DOI: 10.1016/j.neuroscience.2016.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
Abstract
The G-protein coupled receptor 6 (GPR6) is a constitutive active orphan GPCR which is predominantly expressed in striatopallidal neurons. GPR6 deficiency in mice may alter the susceptibility of the nigrostriatal dopaminergic system relevant for Parkinson's disease (PD). Here, we investigated the effect of GPR6 deficiency in mice on neurotoxicity induced by the dopaminergic neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). GPR6-/-- and control mice were treated with MPTP (4×12.5mg/kg, i.p., 2h intervals) and analyzed after seven days. Striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 4-hydroxy-3-methoxyphenylacetic acid (HVA) concentrations were measured by HPLC. The number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) was analyzed by immunohistochemistry. In a separate group of mice, MPP+ (500μM for 20min) was administered via an intrastriatal microdialysis probe to measure the MPP+-induced DA release. MPTP produced a significant reduction in striatal DA, DOPAC, HVA and an increase in dopamine turnover in control and GPR6-/--mice. The MPTP-induced DA and HVA depletion was significantly more pronounced in GPR6-/--mice. Consistently, the MPTP-induced reduction of TH-positive neurons in the SPpc was significantly higher in GPR6-/--mice. Furthermore, the MPP+-induced dopamine release was significantly higher in GPR6-/--mice. In conclusion, we showed that MPTP induces an enhanced dopaminergic neurodegeneration in GPR6-/--mice indicated by alterations at the striatal and nigral level. We propose that GPR6 signaling is involved in the cascade of neurodegenerative events of the parkinsonian neurotoxin MPTP and suggest that pharmacological modulation of GPR6 might represent an entry point to further investigate GPR6 in PD.
Collapse
Affiliation(s)
- Patrick Oeckl
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach an der Riss, Germany
| | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach an der Riss, Germany.
| |
Collapse
|
7
|
Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia [corrected]. Neuropharmacology 2011; 61:574-82. [PMID: 21586298 DOI: 10.1016/j.neuropharm.2011.04.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/18/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
Abstract
Amantadine is commonly given to alleviate L-DOPA-induced dyskinesia of Parkinson's disease (PD) patients. Animal and human evidence showed that amantadine may also exert neuroprotection in several neurological disorders. Additionally, it is generally believed that this neuroprotection results from the ability of amantadine to inhibit glutamatergic NMDA receptor. However, several lines of evidence questioned the neuroprotective capacity of NMDA receptor antagonists in animal models of PD. Thus the cellular and molecular mechanism of neuroprotection of amantadine remains unclear. Using primary cultures with different composition of neurons, microglia, and astroglia we investigated the direct role of these glial cell types in the neuroprotective effect of amantadine. First, amantadine protected rat midbrain cultures from either MPP(+) or lipopolysaccharide (LPS), two toxins commonly used as PD models. Second, our studies revealed that amantadine reduced both LPS- and MPP(+)-induced toxicity of dopamine neurons through 1) the inhibition of the release of microglial pro-inflammatory factors, 2) an increase in expression of neurotrophic factors such as GDNF from astroglia. Lastly, differently from the general view on amantadine's action, we provided evidence suggesting that NMDA receptor inhibition was not crucial for the neuroprotective effect of amantadine. In conclusion, we report that amantadine protected dopamine neurons in two PD models through a novel dual mechanism, namely reducing the release of pro-inflammatory factors from activated microglia and increasing the expression of GNDF in astroglia.
Collapse
|
8
|
Dryhurst G. Are dopamine, norepinephrine, and serotonin precursors of biologically reactive intermediates involved in the pathogenesis of neurodegenerative brain disorders? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:373-96. [PMID: 11764972 DOI: 10.1007/978-1-4615-0667-6_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- G Dryhurst
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| |
Collapse
|
9
|
Santiago M, Machado A, Cano J. Validity of a quantitative technique to study striatal dopaminergic neurodegeneration by in vivo microdialysis. J Neurosci Methods 2001; 108:181-7. [PMID: 11478977 DOI: 10.1016/s0165-0270(01)00390-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of a technique that allows the direct quantitative study of the damage produced by a toxin on a specific neurotransmitter system is very important. For that, we have used the microdialysis technique to validate a method to study the specific drug's toxicity on dopaminergic (DAergic) striatal terminals. We perfused different MPP(+) and 6-hydroxydopamine (6-OHDA) concentrations, with different toxicity for DAergic terminals, 24 h after the implantation of the microdialysis probe (day 1). One day later (day 2), MPP(+) was perfused through the microdialysis probe and DA extracellular output measured. We hypothesize that the amount of extracellular dopamine (DA) obtained on day 2 is directly proportional to the neurotoxic damage produced on day 1. To corroborate this hypothesis tyrosine hydroxylase (TH) immunohistochemistry was also carried out on day 2. There was a clear correlation index between the amount of DA measured after MPP(+) perfusion and the lack of TH immunoreactivity measured as the radius of the area showing decrease in TH immunoreactivity around the cannula. These results show the possibility to measure DAergic remaining terminals after a toxic drug exposure by in vivo MPP(+) perfusion. The possibility to extend this neurotoxic study to another neurotransmitter systems is suggested.
Collapse
Affiliation(s)
- M Santiago
- Departamento de Bioquímica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | |
Collapse
|
10
|
Matarredona ER, Santiago M, Venero JL, Cano J, Machado A. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 2001; 76:351-60. [PMID: 11208898 DOI: 10.1046/j.1471-4159.2001.00056.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have studied the in vivo effect of the selective agonist for group II metabotropic glutamate receptors (2S, 2'R, 3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV) against MPP+-induced toxicity on rat striatal dopaminergic nerve terminals by using both microdialysis and immunohistochemical techniques. Perfusion of 1 mM DCG-IV during 1 h protected dopaminergic nerve terminals against the degeneration induced by a 15-minute perfusion of 1 mM MPP+. In addition, the microglial cell population was markedly activated 24 h after DCG-IV perfusion. The astroglial cell population was only markedly activated around the microdialysis probe. This protective effect seems to be dependent on protein synthesis since 1 mM cycloheximide, an inhibitor of protein synthesis, abolished the neuroprotective effect of 1 mM DCG-IV against MPP+ toxicity. Perfusion of DCG-IV induced an upregulation of striatal brain-derived neurotrophic factor (BDNF) mRNA expressing cells which were confined precisely around the microdialysis probe. Taken together, our results suggest that the induction and release of brain-derived neurotrophic factor (BDNF) by activated glial cells induced by DCG-IV perfusion may account for its protective action against MPP+-induced dopaminergic terminal degeneration.
Collapse
Affiliation(s)
- E R Matarredona
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | | | | | |
Collapse
|
11
|
Gu L, Miller KE, Dryhurst G. Nigrostriatal dopaminergic neurotoxicity of L-cysteine after stereotaxic administration into the substantia nigra of rats: Potential implications for MPTP-induced neurotoxicity and parkinson’s disease. Neurotox Res 2000. [DOI: 10.1007/bf03033344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Wilson JX, Peters CE, Sitar SM, Daoust P, Gelb AW. Glutamate stimulates ascorbate transport by astrocytes. Brain Res 2000; 858:61-6. [PMID: 10700597 DOI: 10.1016/s0006-8993(99)02433-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The concentrations of glutamate and ascorbate in brain extracellular fluid increase following seizure activity, trauma and ischemia. Extracellular ascorbate concentration also rises following intracerebral glutamate injection. We hypothesized that glutamate triggers the release of ascorbate from astrocytes. We observed in primary cultures of rat cerebral astrocytes that glutamate increased ascorbate efflux significantly within 30 min. The half-maximal effective concentration of glutamate was 180+/-30 microM. Glutamate-stimulated efflux of ascorbate was attenuated by hypertonic media. 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid inhibited both Na(+)-dependent glutamate uptake and ascorbate efflux. Two other inhibitors of volume-sensitive organic anion channels (1, 9-dideoxyforskolin and 5-nitro-2-(3-phenylpropylamino) benzoic acid) did not slow glutamate uptake but prevented stimulation of ascorbate efflux. Glutamate also stimulated the uptake of ascorbate by ascorbate-depleted astrocytes. In contrast, glutamate uptake was not affected by intracellular ascorbate, thus ruling out a putative glutamate-ascorbate heteroexchange mechanism. These results are consistent with activation by glutamate of ascorbate-permeant channels in astrocytes.
Collapse
Affiliation(s)
- J X Wilson
- Department of Physiology, Faculty of Medicine, The University of Western Ontario, Medical Science Bldg, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Quinones represent a class of toxicological intermediates which can create a variety of hazardous effects in vivo, including acute cytotoxicity, immunotoxicity, and carcinogenesis. The mechanisms by which quinones cause these effects can be quite complex. Quinones are Michael acceptors, and cellular damage can occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can cause severe oxidative stress within cells through the formation of oxidized cellular macromolecules, including lipids, proteins, and DNA. Formation of oxidatively damaged bases such as 8-oxodeoxyguanosine has been associated with aging and carcinogenesis. Furthermore, ROS can activate a number of signaling pathways, including protein kinase C and RAS. This review explores the varied cytotoxic effects of quinones using specific examples, including quinones produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines. The evidence strongly suggests that the numerous mechanisms of quinone toxicity (i.e., alkylation vs oxidative stress) can be correlated with the known pathology of the parent compound(s).
Collapse
Affiliation(s)
- J L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA.
| | | | | | | | | |
Collapse
|
14
|
Han J, Cheng FC, Yang Z, Dryhurst G. Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson's disease. J Neurochem 1999; 73:1683-95. [PMID: 10501216 DOI: 10.1046/j.1471-4159.1999.731683.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this investigation, microdialysis has been used to study the effects of 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I and alpha-ketoglutarate dehydrogenase and the active metabolite of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on extracellular concentrations of glutathione (GSH) and cysteine (CySH) in the rat striatum and substantia nigra (SN). During perfusion of a neurotoxic concentration of MPP+ (2.5 mM) into the rat striatum or SN, extracellular concentrations of GSH and CySH remain at basal levels (both approximately 2 microM). However, when the perfusion is discontinued, a massive but transient release of GSH occurs, peaking at 5,000% of basal levels in the striatum and 2,000% of basal levels in the SN. The release of GSH is followed by a slightly delayed and smaller elevation of extracellular concentrations of CySH that can be blocked by the gamma-glutamyl transpeptidase (gamma-GT) inhibitor acivicin. Low-molecular-weight iron and extracellular hydroxyl radical (OH*) have been implicated as participants in the mechanism underlying the dopaminergic neurotoxicity of MPTP/MPP+. During perfusion of Fe2+ (OH*) into the rat striatum and SN, extracellular levels of GSH also remain at basal levels. When perfusions of Fe2+ are discontinued, a massive transient release of GSH occurs followed by a delayed, small, but progressive elevation of extracellular CySH level that again can be blocked by acivicin. Previous investigators have noted that extracellular concentrations of the excitatory/excitotoxic amino acid glutamate increase dramatically when perfusions of neurotoxic concentrations of MPP+ are discontinued. This observation and the fact that MPTP/MPP+ causes the loss of nigrostriatal GSH without corresponding increases of glutathione disulfide (GSSG) and the results of the present investigation suggest that the release and gamma-GT/dipeptidase-mediated hydrolysis of GSH to glutamate, glycine, and CySH may be important factors involved with the degeneration of dopamine neurons. It is interesting that a very early event in the pathogenesis of Parkinson's disease is a massive loss of GSH in the SN pars compacta that is not accompanied by corresponding increases of GSSG levels. Based on the results of this and prior investigations, a new hypothesis is proposed that might contribute to an understanding of the mechanisms that underlie the degeneration of dopamine neurons evoked by MPTP/MPP+, other agents that impair neuronal energy metabolism, and Parkinson's disease.
Collapse
Affiliation(s)
- J Han
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | | | |
Collapse
|
15
|
Del Arco A, Mora F. Effects of endogenous glutamate on extracellular concentrations of GABA, dopamine, and dopamine metabolites in the prefrontal cortex of the freely moving rat: involvement of NMDA and AMPA/KA receptors. Neurochem Res 1999; 24:1027-35. [PMID: 10478942 DOI: 10.1023/a:1021056826829] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using microdialysis, interactions between endogenous glutamate, dopamine, and GABA were investigated in the medial prefrontal cortex of the freely moving rat. Interactions between glutamate and other neurotransmitters in the prefrontal cortex had already been studied using pharmacological agonists or antagonists of glutamate receptors. This research investigated whether glutamate itself, through the increase of its endogenous extracellular concentration, is able to modulate the extracellular concentrations of GABA and dopamine in the prefrontal cortex. Intracortical infusions of the selective glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) were used to increase the endogenous extracellular glutamate. PDC (0.5, 2, 8, 16 and 32 mM) produced a dose-related increase in dialysate glutamate in a range of 1-36 microM. At the dose of 16 mM, PDC increased dialysate glutamate from 1.25 to 28 microM. PDC also increased extracellular GABA and taurine, but not dopamine; and decreased extracellular concentrations of the dopamine metabolites DOPAC and HVA. NMDA and AMPA/KA receptor antagonists were used to investigate whether the increases of extracellular glutamate were responsible for the changes in the release of GABA, and dopamine metabolites. The NMDA antagonist had no effect on the increase of extracellular GABA, but blocked the decreases of extracellular DOPAC and HVA, produced by PDC. In contrast, the AMPA/KA antagonist blocked the increases of extracellular GABA without affecting the decreases of extracellular DOPAC and HVA produced by PDC. These results suggest that endogenous glutamate acts preferentially through NMDA receptors to decrease dopamine metabolism, and through AMPA/KA receptors to increase GABAergic activity in the medial prefrontal cortex of the awake rat.
Collapse
Affiliation(s)
- A Del Arco
- Department of Physiology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | |
Collapse
|
16
|
Jiang XR, Wrona MZ, Dryhurst G. Tryptamine-4,5-dione, a putative endotoxic metabolite of the superoxide-mediated oxidation of serotonin, is a mitochondrial toxin: possible implications in neurodegenerative brain disorders. Chem Res Toxicol 1999; 12:429-36. [PMID: 10328753 DOI: 10.1021/tx9801615] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The release and subsequent reuptake of 5-hydroxytryptamine (5-HT) and cytoplasmic superoxide (O2-*) generation have both been implicated as important factors associated with the degeneration of serotonergic neurons evoked by methamphetamine (MA) and cerebral ischemia-reperfusion (I-R). Such observations raise the possibility that tryptamine-4,5-dione (T-4,5-D), the major in vitro product of the O2-*-mediated oxidation of 5-HT, might be an endotoxicant that contributes to serotonergic neurodegeneration. When incubated with intact rat brain mitochondria, T-4,5-D (< or = 100 microM) uncouples respiration and inhibits state 3. Experiments with rat brain mitochondrial membrane preparations confirm that T-4,5-D evokes irreversible inhibition of NADH-coenzyme Q1 (CoQ1) reductase and cytochrome c oxidase (COX) apparently by covalently modifying key sulfhydryl (SH) residues at or close to the active sites of these respiratory enzyme complexes. Ascorbic acid blocks the inhibition of NADH-CoQ1 reductase by maintaining T-4,5-D predominantly as 4, 5-dihydroxytryptamine (4,5-DHT), thus preventing its reaction with SH residues. In contrast, ascorbic acid potentiates the irreversible inhibition of COX by T-4,5-D. This may be because the T-4,5-D-4, 5-DHT couple redox cycles in the presence of excess ascorbate and molecular oxygen to cogenerate O2-* and H2O2 that together react with trace levels of iron to form an oxo-iron complex that selectively damages COX. Thus, T-4,5-D might be an endotoxicant that, dependent on intraneuronal conditions, mediates irreversible damage to mitochondrial respiratory enzyme complexes and contributes to the serotonergic neurodegeneration evoked by MA and I-R.
Collapse
Affiliation(s)
- X R Jiang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|