1
|
Jing Y, Kobayashi M, Shoulkamy MI, Zhou M, Thi Vu H, Arakawa H, Sabit H, Iwabuchi S, Quang Vu C, Kasahara A, Ueno M, Tadokoro Y, Kurayoshi K, Chen X, Yan Y, Arai S, Hashimoto S, Soga T, Todo T, Nakada M, Hirao A. Lysine-arginine imbalance overcomes therapeutic tolerance governed by the transcription factor E3-lysosome axis in glioblastoma. Nat Commun 2025; 16:2876. [PMID: 40169552 PMCID: PMC11962137 DOI: 10.1038/s41467-025-56946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Recent advances in cancer therapy have underscored the importance of targeting specific metabolic pathways. In this study, we propose a precision nutrition approach aimed at lysosomal function in glioblastoma multiforme (GBM). Using patient-derived GBM cells, we identify lysosomal activity as a unique metabolic biomarker of tumorigenesis, controlling the efficacy of temozolomide (TMZ), a standard GBM therapy. Employing combined analyses of clinical patient samples and xenograft models, we further elucidate the pivotal role of Transcription Factor Binding To IGHM Enhancer 3 (TFE3), a master regulator of lysosomal biogenesis, in modulating malignant properties, particularly TMZ tolerance, by regulating peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α)-mediated mitochondrial activity. Notably, we find that lysine protects GBM cells from lysosomal stress by counteracting arginine's effects on nitric oxide production. The lysine restriction mimetic, homoarginine administration, significantly enhances the efficacy of anticancer therapies through lysosomal dysfunction. This study underscores the critical role of lysosomal function modulated by amino acid metabolism in GBM pathogenesis and treatment.
Collapse
Affiliation(s)
- Yongwei Jing
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mahmoud I Shoulkamy
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| | - Meiqi Zhou
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ha Thi Vu
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Medical Biology and Genetics, Hanoi Medical University, Ha Noi, Vietnam
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Cong Quang Vu
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsuko Kasahara
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaya Ueno
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Xi Chen
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuhang Yan
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
2
|
Liu T, Xu Y, Hu S, Feng S, Zhang H, Zhu X, Wang C. Alanine, a potential amino acid biomarker of pediatric sepsis: a pilot study in PICU. Amino Acids 2024; 56:48. [PMID: 39060743 PMCID: PMC11281965 DOI: 10.1007/s00726-024-03408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Sepsis is characterized by a metabolic disorder of amino acid occurs in the early stage; however, the profile of serum amino acids and their alterations associated with the onset of sepsis remain unclear. Thus, our objective is to identify the specific kinds of amino acids as diagnostic biomarkers in pediatric patients with sepsis. Serum samples were collected from patients with sepsis admitted to the pediatric intensive care unit (PICU) between January 2019 and December 2019 on the 1st, 3rd and 7th day following admission. Demographic and laboratory variables were also retrieved from the medical records specified times. Serum amino acid concentrations were detected by UPLC-MS/MS system. PLS-DA (VIP > 1.0) and Kruskal-Wallis test (p < 0.05) were employed to identify potential biomarkers. Spearman's rank correlation analysis was conducted to find the potential association between amino acid levels and clinical features. The diagnostic utility for pediatric sepsis was assessed using receiver operating characteristic (ROC) curve analysis. Most of amino acid contents in serum were significantly decreased in patients with sepsis, but approached normal levels by the seventh day post-diagnosis. Threonine (THR), lysine (LYS), valine (VAL) and alanine (ALA) emerged as potential biomarkers related for sepsis occurrence, though they were not associated with PELOD/PELOD-2 scores. Moreover, alterations in serum THR, LYS and ALA were linked to complications of brain injury, and serum ALA levels were also related to sepsis-associated acute kidney injury. Further analysis revealed that ALA was significantly correlated with the Glasgow score, serum lactate and glucose levels, C-reactive protein (CRP), and other indicators for liver or kidney dysfunction. Notably, the area under the ROC curve (AUC) for ALA in distinguishing sepsis from healthy controls was 0.977 (95% CI: 0.925-1.000). The serum amino acid profile of children with sepsis is significantly altered compared to that of healthy controls. Notably, ALA shows promise as a potential biomarker for the early diagnosis in septic children.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, No. 355 Luding Road, Putuo District, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Yaya Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shaohua Hu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, No. 355 Luding Road, Putuo District, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, No. 355 Luding Road, Putuo District, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
3
|
Sindhu R, Supreeth M, Prasad SK, Thanmaya M. Shuttle between arginine and lysine: influence on cancer immunonutrition. Amino Acids 2023; 55:1461-1473. [PMID: 37728630 DOI: 10.1007/s00726-023-03327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Amino acids which are essential nutrients for all cell types' survival are also recognised to serve as opportunistic/alternative fuels in cancers auxotrophic for specific amino acids. Accordingly, restriction of amino acids has been utilised as a therapeutic strategy in these cancers. Contrastingly, amino acid deficiencies in cancer are found to greatly impair immune functions, increasing mortality and morbidity rates. Dietary and supplemental amino acids in such conditions have revealed their importance as 'immunonutrients' by modulating cellular homeostasis processes and halting malignant progression. L-arginine specifically has attracted interest as an immunonutrient by acting as a nodal regulator of immune responses linked to carcinogenesis processes through its versatile signalling molecule, nitric oxide (NO). The quantum of NO generated directly influences the cytotoxic and cytostatic processes of cell cycle arrest, apoptosis, and senescence. However, L-lysine, a CAT transporter competitor for arginine effectively limits arginine input at high L-lysine concentrations by limiting arginine-mediated effects. The phenomenon of arginine-lysine antagonism can, therefore, be hypothesised to influence the immunonutritional effects exerted by arginine. The review highlights aspects of lysine's interference with arginine-mediated NO generation and its consequences on immunonutritional and anti-cancer effects, and discusses possible alternatives to manage the condition. However, further research that considers monitoring lysine levels in arginine immunonutritional therapy is essential to conclude the hypothesis.
Collapse
Affiliation(s)
- R Sindhu
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India.
| | - M Supreeth
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - M Thanmaya
- Department of Microbiology, JSS-Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| |
Collapse
|
4
|
Ebrahimi SM, Bathaie SZ, Faridi N, Taghikhani M, Nakhjavani M, Faghihzadeh S. L-lysine protects C2C12 myotubes and 3T3-L1 adipocytes against high glucose damages and stresses. PLoS One 2019; 14:e0225912. [PMID: 31856203 PMCID: PMC6922410 DOI: 10.1371/journal.pone.0225912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia is a hallmark of diabetes, which is associated with protein glycation and misfolding, impaired cell metabolism and altered signaling pathways result in endoplasmic reticulum stress (ERS). We previously showed that L-lysine (Lys) inhibits the nonenzymatic glycation of proteins, and protects diabetic rats and type 2 diabetic patients against diabetic complications. Here, we studied some molecular aspects of the Lys protective role in high glucose (HG)-induced toxicity in C2C12 myotubes and 3T3-L1 adipocytes. C2C12 and 3T3-L1 cell lines were differentiated into myotubes and adipocytes, respectively. Then, they were incubated with normal or high glucose (HG) concentrations in the absence/presence of Lys (1 mM). To investigate the role of HG and/or Lys on cell apoptosis, oxidative status, unfolded protein response (UPR) and autophagy, we used the MTT assay and flow cytometry, spectrophotometry and fluorometry, RT-PCR and Western blotting, respectively. In both cell lines, HG significantly reduced cell viability and induced apoptosis, accompanying with the significant increase in reactive oxygen species (ROS) and nitric oxide (NO). Furthermore, the spliced form of X-box binding protein 1 (XBP1), at both mRNA and protein levels, the phosphorylated eukaryotic translation initiation factor 2α (p-eIf2α), and the Light chain 3 (LC3)II/LC3I ratio was also significantly increased. Lys alone had no significant effects on most of these parameters; but, treatment with HG plus Lys returned them all to, or close to, the normal values. The results indicated the protective role of Lys against glucotoxicity induced by HG in C2C12 myotubes and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- S. Mehdi Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: ,
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghikhani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghrat Faghihzadeh
- Department of Statistics, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
L–lysine ameliorates sepsis-induced acute lung injury in a lipopolysaccharide-induced mouse model. Biomed Pharmacother 2019; 118:109307. [DOI: 10.1016/j.biopha.2019.109307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/19/2023] Open
|
6
|
Zhang C, He Y, Shen Y. L-Lysine protects against sepsis-induced chronic lung injury in male albino rats. Biomed Pharmacother 2019; 117:109043. [PMID: 31238259 DOI: 10.1016/j.biopha.2019.109043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a severe, life-threatening condition primarily caused by the cellular response to infection. Sepsis leads to increased tissue damage and mortality in patients in the intensive care unit. L-Lysine is an essential amino acid required for protein biosynthesis and is abundant in lamb, pork, eggs, red meat, fish oil, cheese, beans, peas, and soy. Male albino rats were divided into sham, control, 10-mg/kg bwt L-lysine, and 20-mg/kg bwt L-lysine groups. At the end of treatment, we determined the levels of oxidative and inflammatory markers, myeloperoxidase (MPO) and catalase activities, total cell count, the wet/dry ratio of lung tissue, and total protein content. Furthermore, the effect of L-lysine on the cellular architecture of lung tissue was evaluated. L-Lysine significantly reduced the magnitude of lipid peroxidation; total protein content; wet/dry ratio of lung tissue; tumor necrosis factor-alpha, interleukin-8, and macrophage inhibitory factor levels; MPO activity; and total cell, neutrophil, and lymphocyte counts, and it increased the reduced glutathione levels and the glutathione peroxidase, superoxide dismutase, and catalase activities. A normal cellular architecture was noted in rats in the sham group, whereas proinflammatory changes, such as edema and neutrophilic infiltration, were detected in rats in the control group. L-lysine significantly ameliorated these proinflammatory changes. Thus, L-lysine has the potential for the treatment of sepsis-induced CLI.
Collapse
Affiliation(s)
- Chunyun Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China.
| | - Yaojun He
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Yifeng Shen
- Guangzhou Wondfo Biotech Co.Ltd, Guangzhou, Guangdong, 510700, China
| |
Collapse
|
7
|
Zafirovic S, Sudar-Milovanovic E, Obradovic M, Djordjevic J, Jasnic N, Borovic ML, Isenovic ER. Involvement of PI3K, Akt and RhoA in Oestradiol Regulation of Cardiac iNOS Expression. Curr Vasc Pharmacol 2018; 17:307-318. [PMID: 29437011 DOI: 10.2174/1570161116666180212142414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Oestradiol is an important regulatory factor with several positive effects on the cardiovascular (CV) system. We evaluated the molecular mechanism of the in vivo effects of oestradiol on the regulation of cardiac inducible nitric oxide (NO) synthase (iNOS) expression and activity. METHODS Male Wistar rats were treated with oestradiol (40 mg/kg, intraperitoneally) and after 24 h the animals were sacrificed. The concentrations of NO and L-Arginine (L-Arg) were determined spectrophotometrically. For protein expressions of iNOS, p65 subunit of nuclear factor-κB (NFκB-p65), Ras homolog gene family-member A (RhoA), angiotensin II receptor type 1 (AT1R), insulin receptor substrate 1 (IRS-1), p85, p110 and protein kinase B (Akt), Western blot method was used. Coimmunoprecipitation was used for measuring the association of IRS-1 with the p85 subunit of phosphatidylinositol- 3-kinase (PI3K). The expression of iNOS messenger ribonucleic acid (mRNA) was measured with the quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of the tissue was used to detect localization and expression of iNOS in heart tissue. RESULTS Oestradiol treatment reduced L-Arg concentration (p<0.01), iNOS mRNA (p<0.01) and protein (p<0.001) expression, level of RhoA (p<0.05) and AT1R (p<0.001) protein. In contrast, plasma NO (p<0.05), Akt phosphorylation at Thr308 (p<0.05) and protein level of p85 (p<0.001) increased after oestradiol treatment. CONCLUSION Our results suggest that oestradiol in vivo regulates cardiac iNOS expression via the PI3K/Akt signaling pathway, through attenuation of RhoA and AT1R.
Collapse
Affiliation(s)
- Sonja Zafirovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nebojsa Jasnic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology "Aleksandar D. Kostic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Institute of Nuclear Sciences "Vinca", Department of Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia.,Faculty of Stomatology, Pancevo, University Business Academy, Novi Sad, Serbia
| |
Collapse
|
8
|
Lydie B, Kipré LS, Jeanne AA, Joseph AD. Lysine and threonine plasma concentrations in Ivorian patients living with human immunodeficiency virus. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/jahr2017.0438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Yang QQ, Suen PK, Zhang CQ, Mak WS, Gu MH, Liu QQ, Sun SSM. Improved growth performance, food efficiency, and lysine availability in growing rats fed with lysine-biofortified rice. Sci Rep 2017; 7:1389. [PMID: 28465621 PMCID: PMC5430985 DOI: 10.1038/s41598-017-01555-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/30/2017] [Indexed: 11/24/2022] Open
Abstract
Rice is an excellent source of protein, and has an adequate balance of amino acids with the exception of the essential amino acid lysine. By using a combined enhancement of lysine synthesis and suppression of its catabolism, we had produced two transgenic rice lines HFL1 and HFL2 (High Free Lysine) containing high concentration of free lysine. In this study, a 70-day rat feeding study was conducted to assess the nutritional value of two transgenic lines as compared with either their wild type (WT) or the WT rice supplemented with different concentrations of L-lysine. The results revealed that animal performance, including body weight, food intake, and food efficiency, was greater in the HFL groups than in the WT group. Moreover, the HFL diets had increased protein apparent digestibility, protein efficiency ratio, and lysine availability than the WT diet. Based on the linear relationship between dietary L-lysine concentrations and animal performance, it indicated that the biological indexes of the HFL groups were similar or better than that of the WT20 group, which was supplemented with L-lysine concentrations similar to those present in the HFL diets. Therefore, lysine-biofortified rice contributed to improved growth performance, food efficiency, and lysine availability in growing rats.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pui Kit Suen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Wan Sheung Mak
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ming-Hong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
VASSAL O, BONNET JM, BARTHELEMY A, ALLAOUCHICHE B, GOY-THOLLOT I, LOUZIER V, PAQUET C, AYOUB JY, DAUWALDER O, JACQUET-LAGRÈZE M, JUNOT S. Renal haemodynamic response to amino acids infusion in an experimental porcine model of septic shock. Acta Anaesthesiol Scand 2015; 59:598-608. [PMID: 25782071 DOI: 10.1111/aas.12507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/03/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is common in sepsis. Treatments allowing maintenance of renal blood flow (RBF) could help to prevent AKI associated with renal hypoperfusion. Amino acids (AA) have been associated with an increase of RBF and glomerular filtration rate (GFR) in several species. The aim of this study was to evaluate the effects of an AA infusion on RBF and GFR in a porcine model of septic shock. METHODS A total of 17 piglets were randomly assigned into three groups: Sham (Sham, n = 5), sepsis without AA (S-NAA, n = 6), sepsis treated with AA (S-AA, n = 6). Piglets preparation included the placement of ultrasonic transit time flow probes around left renal artery for continuous RBF measurement; ureteral catheters for GFR and urine output evaluation; pulmonary artery catheter for cardiac output (CO) and pulmonary arterial pressure measurements. Mean arterial pressure (MAP) and renal vascular resistance (RVR) were also determined. Septic shock was induced with a live Pseudomonas aeruginosa infusion. Crystalloids, colloids and epinephrine infusion were used to maintain and restore MAP > 60 mmHg and CO > 80% from baseline. RESULTS Renal haemodynamic did not change significantly in the Sham group, whereas RBF increased slightly in the S-NAA group. Conversely, a significant increase in RVR and a decrease in RBF and GFR were observed in the S-AA group. AA infusion was associated with a higher requirement of epinephrine [340.0 (141.2; 542.5) mg vs. 32.5 (3.8; 65.0) mg in the S-NAA group P = 0.044]. CONCLUSION An infusion of amino acids impaired renal haemodynamics in this experimental model of septic shock.
Collapse
Affiliation(s)
- O. VASSAL
- Service d'Anesthésie-Réanimation; Hospices Civils de Lyon; Hôpital Edouard-Herriot; Lyon France
- Université Claude-Bernard; Lyon France
| | - J.-M. BONNET
- Université de Lyon; EA 4174 Hémostase Inflammation Sepsis; VetAgro Sup - Campus Vétérinaire de Lyon; Marcy l'Etoile France
| | - A. BARTHELEMY
- Université de Lyon; EA 4174 Hémostase Inflammation Sepsis; VetAgro Sup - Campus Vétérinaire de Lyon; Marcy l'Etoile France
| | - B. ALLAOUCHICHE
- Service d'Anesthésie-Réanimation; Hospices Civils de Lyon; Hôpital Edouard-Herriot; Lyon France
- Université Claude-Bernard; Lyon France
| | - I. GOY-THOLLOT
- Université de Lyon; EA 4174 Hémostase Inflammation Sepsis; VetAgro Sup - Campus Vétérinaire de Lyon; Marcy l'Etoile France
| | - V. LOUZIER
- Université de Lyon; EA 4174 Hémostase Inflammation Sepsis; VetAgro Sup - Campus Vétérinaire de Lyon; Marcy l'Etoile France
| | - C. PAQUET
- Université de Lyon; EA 4174 Hémostase Inflammation Sepsis; VetAgro Sup - Campus Vétérinaire de Lyon; Marcy l'Etoile France
| | - J.-Y. AYOUB
- Université de Lyon; EA 4174 Hémostase Inflammation Sepsis; VetAgro Sup - Campus Vétérinaire de Lyon; Marcy l'Etoile France
| | - O. DAUWALDER
- Université de Lyon; Laboratory of Microbiology; Groupement Hospitalier Est; Lyon France
| | - M. JACQUET-LAGRÈZE
- Service d'Anesthésie-Réanimation; Hospices Civils de Lyon; Hôpital Edouard-Herriot; Lyon France
- Université Claude-Bernard; Lyon France
| | - S. JUNOT
- Université de Lyon; EA 4174 Hémostase Inflammation Sepsis; VetAgro Sup - Campus Vétérinaire de Lyon; Marcy l'Etoile France
| |
Collapse
|
11
|
Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. SPRINGERPLUS 2015; 4:147. [PMID: 25830085 PMCID: PMC4377136 DOI: 10.1186/s40064-015-0927-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/15/2015] [Indexed: 01/10/2023]
Abstract
Improving feed efficiency of pigs with dietary application of amino acids (AAs) is becoming increasingly important because this practice can not only secure the plasma AA supply for muscle growth but also protect the environment from nitrogen discharge with feces and urine. Lysine, the first limiting AA in typical swine diets, is a substrate for generating body proteins, peptides, and non-peptide molecules, while excess lysine is catabolized as an energy source. From a regulatory standpoint, lysine is at the top level in controlling AA metabolism, and lysine can also affect the metabolism of other nutrients. The effect of lysine on hormone production and activities is reflected by the change of plasma concentrations of insulin and insulin-like growth factor 1. Lysine residues in peptides are important sites for protein post-translational modification involved in epigenetic regulation of gene expression. An inborn error of a cationic AA transporter in humans can lead to a lysinuric protein intolerance condition. Dietary deficiency of lysine will impair animal immunity and elevate animal susceptibility to infectious diseases. Because lysine deficiency has negative impact on animal health and growth performance and it appears that dietary lysine is non-toxic even at a high dose of supplementation, nutritional emphasis should be put on lysine supplementation to avoid its deficiency rather than toxicity. Improvement of muscle growth of monogastric animals such as pigs via dietary lysine supply may be due to a greater increase in protein synthesis rather than a decrease in protein degradation. Nevertheless, the underlying metabolic and molecular mechanisms regarding lysine effect on muscle protein accretion merits further clarification. Future research undertaken to fully elucidate the metabolic and regulatory mechanisms of lysine nutrition could provide a sound scientific foundation necessary for developing novel nutritional strategies to enhance the muscle growth and development of meat animals.
Collapse
|
12
|
|
13
|
Carter BW, Chicoine LG, Nelin LD. L-lysine decreases nitric oxide production and increases vascular resistance in lungs isolated from lipopolysaccharide-treated neonatal pigs. Pediatr Res 2004; 55:979-87. [PMID: 15155866 DOI: 10.1203/01.pdr.0000127722.55965.b3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) production may depend on the uptake of L-arginine (L-arg), the substrate for NO synthase in inflammatory lung diseases. The cellular transport of L-arg occurs via the cationic amino acid transporters (CAT), and L-lysine (L-lys) competitively inhibits CAT. Neonatal pigs were treated with lipopolysaccharide (LPS) or vehicle for 4 h. LPS increased exhaled NO (exNO; 0.026 +/- 0.003 to 0.046 +/- 0.003 nmol. kg(-1). min(-1); p < 0.005) and decreased mean systemic arterial blood pressure (89 +/- 4 to 67 +/- 4 mm Hg; p < 0.05), whereas vehicle did not affect exNO or mean systemic arterial blood pressure. The lungs were then isolated and perfused; exNO was greater in lungs from LPS-treated animals (0.08 +/- 0.01 nmol/kg/min) than in lungs from vehicle-treated animals (0.05 +/- 0.01 nmol. kg(-1). min(-1); p < 0.05). The addition of L-arg (0.3 mM) significantly (p < 0.05) increased exNO production in both groups of lungs (mean increase 0.04 +/- 0.01 nmol. kg(-1). min(-1) LPS-treated lungs, p < 0.05; mean increase 0.02 +/- 0.01 nmol. kg(-1). min(-1) vehicle-treated lungs); however, L-arg decreased pulmonary vascular resistance (PVR) only in LPS-treated lungs (mean decrease 0.03 +/- 0.01 mm Hg. ml(-1). kg(-1). min(-1), p < 0.05). L-lys caused a dose-dependent decrease in exNO production and a dose-dependent increase in PVR in LPS-treated lungs. L-lys decreased exNO only at 30 mM and had no effect on PVR in vehicle-treated lungs. In four lungs each from vehicle- and LPS-treated animals, reverse transcriptase-PCR demonstrated CAT-2 mRNA only in LPS-treated animals. These results suggest that the increased NO production in the lungs from LPS-treated animals depends on the uptake of vascular L-arg.
Collapse
Affiliation(s)
- Barney W Carter
- Vascular Physiology Group, Department of Pediatrics, University of New Mexico HSC, Albuquerque 87131, USA
| | | | | |
Collapse
|
14
|
Stehr A, Ploner F, Tugtekin I, Matejovic M, Theisen M, Zülke C, Georgieff M, Radermacher P, Jauch KW. Effect of combining nicotinamide as a PARS-inhibitor with selective iNOS blockade during porcine endotoxemia. Intensive Care Med 2003; 29:995-1002. [PMID: 12739012 DOI: 10.1007/s00134-003-1739-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Accepted: 03/03/2003] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the effects of combined selective inducible nitric oxide synthase (iNOS) inhibition using 1400 W with nicotinamide (NAD) as a PARS-inhibitor on hepato-splanchnic hemodynamics, O(2) kinetics, and energy metabolism during hyperdynamic porcine endotoxemia. DESIGN Prospective, randomized, controlled, interventional experiment. SETTING Animal research laboratory. SUBJECTS Seventeen domestic pigs. INTERVENTIONS After 12 h of continuous i.v. endotoxin (LPS) infusion 17 pigs received either no drug (CON, n=9) or 1400 W, titrated to maintain mean arterial pressure (MAP) at pre-endotoxin level, plus 10 mg.kg.h NAD ( n=8;). Measurements were obtained before, 12 h, 18 h, and 24 h after starting LPS infusion. MEASUREMENTS AND RESULTS In addition to systemic and pulmonary hemodynamics and gas exchange, we measured hepatic arterial and portal venous blood flow, liver and portal venous drained viscera O(2) exchange, ileal mucosal-arterial PCO(2) gap, and portal as well as hepatic venous lactate/pyruvate ratios. Expired NO and plasma nitrate levels were assessed as a parameter of NO production. Without affecting cardiac output, therapy maintained MAP and blunted the LPS-induced rise in expired NO levels, attenuated the progressive fall in liver lactate clearance, and blunted the impairment of hepato-splanchnic redox state. The rise of ileal mucosal-arterial PCO(2) gap was not influenced. CONCLUSIONS Combining selective iNOS inhibition with NAD as a PARS blocker may prevent circulatory failure and attenuate the detrimental consequences of LPS in intestinal and hepatocellular energy metabolism. Given the potential hepatotoxicity of high-dose NAD treatment, more potent PARS blockers with higher selectivity might further enhance the benefit of this therapeutic approach.
Collapse
Affiliation(s)
- A Stehr
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum, 93053, Regensburg, Germany.
| | - F Ploner
- Abteilung für Anästhesie, Landeskrankenhaus, 39049, Sterzing/Südtirol, Italy
| | - I Tugtekin
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik für Anästhesiologie, 89073, Ulm, Germany
| | - M Matejovic
- Interni Kliniky, Karlova Univerzita, 30460, Plzen, Czech Republic
| | - M Theisen
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik für Anästhesiologie, 89073, Ulm, Germany
| | - C Zülke
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum, 93053, Regensburg, Germany
| | - M Georgieff
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik für Anästhesiologie, 89073, Ulm, Germany
| | - P Radermacher
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik für Anästhesiologie, 89073, Ulm, Germany
| | - K-W Jauch
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum, 93053, Regensburg, Germany
| |
Collapse
|
15
|
Abstract
The precursor for nitric oxide (NO) synthesis is the amino acid arginine. Reduced arginine availability may limit NO production. Arginine availability for NO synthesis may be regulated by de novo arginine production from citrulline, arginine transport across the cell membrane, and arginine breakdown by arginase.
Collapse
Affiliation(s)
- M M Hallemeesch
- Department of Clinical Chemistry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
16
|
Feihl F, Waeber B, Liaudet L. Is nitric oxide overproduction the target of choice for the management of septic shock? Pharmacol Ther 2001; 91:179-213. [PMID: 11744067 DOI: 10.1016/s0163-7258(01)00155-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sepsis is a heterogeneous class of syndromes caused by a systemic inflammatory response to infection. Septic shock, a severe form of sepsis, is associated with the development of progressive damage in multiple organs, and is a leading cause of patient mortality in intensive care units. Despite important advances in understanding its pathophysiology, therapy remains largely symptomatic and supportive. A decade ago, the overproduction of nitric oxide (NO) had been discovered as a potentially important event in this condition. As a result, great hopes arose that the pharmacological inhibition of NO synthesis could be developed into an efficient, mechanism-based therapeutic approach. Since then, an extraordinary effort by the scientific community has brought a deeper insight regarding the feasibility of this goal. Here we present in summary form the present state of knowledge of the biological chemistry and physiology of NO. We then proceed to a systematic review of experimental and clinical data, indicating an up-regulation of NO production in septic shock; information on the role of NO in septic shock, as provided by experiments in transgenic mice that lack the ability to up-regulate NO production; effects of pharmacological inhibitors of NO production in various experimental models of septic shock; and relevant clinical experience. The accrued evidence suggests that the contribution of NO to the pathophysiology of septic shock is highly heterogeneous and, therefore, difficult to target therapeutically without appropriate monitoring tools, which do not exist at present.
Collapse
Affiliation(s)
- F Feihl
- Division of Pathophysiology and Medical Teaching, Department of Internal Medicine, University Hospital, PPA, BH19-317, CHUV, CH 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
17
|
Stoclet JC, Muller B, György K, Andriantsiothaina R, Kleschyov AL. The inducible nitric oxide synthase in vascular and cardiac tissue. Eur J Pharmacol 1999; 375:139-55. [PMID: 10443572 DOI: 10.1016/s0014-2999(99)00221-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Expression of the inducible form of nitric oxide synthase (iNOS) has been reported in a variety of cardiovascular diseases. The resulting high output nitric oxide (NO) formation, besides the level of iNOS expression, depends also on the expression of the metabolic pathways providing the enzyme with substrate and cofactor. NO may trigger short and long term effects which are either beneficial or deleterious, depending on the molecular targets with which it interacts. These interactions are governed by local factors (like the redox state). In the cardiovascular system, the major targets involve not only guanylyl cyclase, but also other haem proteins, protein thiols, iron-non-haem complexes, and superoxide anion (forming peroxynitrite). The latter has several intracellular targets and may be cytotoxic, despite the existence of endogenous defence mechanisms. These interactions may either trigger NO effects or represent releasable NO stores, able to buffer NO and prolong its effects in blood vessels and in the heart. Besides selectively inhibiting iNOS, a number of other therapeutic strategies are conceivable to alleviate deleterious effects of excessive NO formation, including peroxynitrite (ONOO-) scavenging and inhibition of metabolic pathways triggered by ONOO-. When available, these approaches might have the advantage to preserve beneficial effects of iNOS induction. Counteracting vascular hyper-responsiveness to endogenous vasoconstrictor agonists in septic shock, or inducing cardiac protection against ischaemia-reperfusion injury are examples of such beneficial effects of iNOS induction.
Collapse
Affiliation(s)
- J C Stoclet
- Laboratoire de Pharmacologie et Physico-chimie des Interactions Cellulaires et Moléculaires (UMR CNRS), Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | | | | | | |
Collapse
|
18
|
Komarov AM, Reddy MN. Effect of septic shock on nitrate, free amino acids, and urea in murine plasma and urine. Clin Biochem 1998; 31:107-11. [PMID: 9622774 DOI: 10.1016/s0009-9120(97)00168-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Concentration changes of free amino acids, urea and nitrate in plasma and urine were studied for the murine model of septic shock. METHODS After administration of a bolus dose of bacterial lipopolysaccharide (LPS), concentrations of amino acids and urea in plasma, and urea and nitrate in urine were determined. RESULTS For individual amino acids four different trends were observed: (1) no change ( e.g., taurine, histidine, phenylalanine, hydroxproline); (2) continuous increase (e.g., aspartate and glutamate); (3) continuous decrease (e.g., threonine, serine, asparagine, proline, methionine, tyrosine); and (4) decrease during the first 4 hours, but return to normal at 8 hours after the LPS treatment (e.g., all the other amino acids). The ratio of phenylalanine to tyrosine was increased to about 2x. In plasma, urea concentration was increased about 3x, but in urine it decreased about 4x. Nitrate levels were increased 3x in urine. CONCLUSION These early changes in the concentrations of amino acids as well as in the urea and nitrate may be useful as sensitive markers for the early and rapid diagnosis of septic shock.
Collapse
Affiliation(s)
- A M Komarov
- Department of Medicine, George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|