1
|
Luo H, Chen R, Yang R, Liu Y, Chen Y, Shu Y, Chen H. Reprogramming of mice primary hepatocytes into insulin-producing cells by transfection with multicistronic vectors. J Diabetes Res 2014; 2014:716163. [PMID: 25006589 PMCID: PMC4070478 DOI: 10.1155/2014/716163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
The neogenesis of insulin-producing cells (IPCs) from non-beta-cells has emerged as a potential method for treating diabetes mellitus (DM). Many groups have documented that activation of pancreatic transcription factor(s) in hepatocytes can improve the hyperglycemia in diabetic mice. In the present study, we explored a novel protocol that reprogrammed primary hepatocytes into functional IPCs by using multicistronic vectors carrying pancreatic and duodenal homeobox-1 (Pdx1), neurogenin 3 (Ngn3), and v-musculoaponeurotic fibrosarcoma oncogene homolog A (MafA). These triple-transfected cells activated multiple beta-cell genes, synthesized and stored considerable amounts of insulin, and released the hormone in a glucose-regulated manner in vitro. Furthermore, when transplanted into streptozotocin-induced diabetic mice, the cells markedly ameliorated glucose tolerance. Our results indicated that ectopic expression of Pdx1, Ngn3, and MafA facilitated hepatocytes-to-IPCs reprogramming. This approach may offer opportunities for treatment of DM.
Collapse
Affiliation(s)
- Haizhao Luo
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, No. 253 Gong Ye Road, Guangzhou 510282, China
- Department of Endocrinology, Nanhai Hospital, Southern Medical University, No. 40 Foping Road, Foshan 528200, China
| | - Rongping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, No. 253 Gong Ye Road, Guangzhou 510282, China
| | - Rui Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, No. 253 Gong Ye Road, Guangzhou 510282, China
| | - Yan Liu
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, No. 253 Gong Ye Road, Guangzhou 510282, China
| | - Youping Chen
- Department of Endocrinology, Nanhai Hospital, Southern Medical University, No. 40 Foping Road, Foshan 528200, China
| | - Yi Shu
- Department of Endocrinology, Nanhai Hospital, Southern Medical University, No. 40 Foping Road, Foshan 528200, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, No. 253 Gong Ye Road, Guangzhou 510282, China
- *Hong Chen:
| |
Collapse
|
2
|
Tesfai J, Crane L, Baziard-Mouysset G, Edwards LP. Novel I 1-Imidazoline Agonist S43126 Augment Insulin Secretion in Min6 Cells. ACTA ACUST UNITED AC 2012; 3. [PMID: 27429837 PMCID: PMC4944854 DOI: 10.4172/2155-6156.1000183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The I1-imidazoline receptor is a novel drug target for hypertension and insulin resistance which are major disorders associated with Type II diabetes. In the present study, we examined the effects of a novel imidazoline agonist S43126 on calcium fluxes and insulin secretion from Min6 β-cells. We also examined the effects of S43126 on the induction of IRAS, and phosphorylation of components in the I1-imidazoline signaling pathways, namely ERK and PKB. Min6 β-cells were treated with varying doses of S43126 [10−8M to 10−5M] for various time (5–60mins). S43126 at higher dose [10−5M] stimulated insulin secretion under elevated glucose concentration compared to basal. In addition, insulin secretion and Ca2+ influx mediated by S43126 [10−5M] were decreased following co-treatment with efaroxan (I1-antagonist) and nifedipine (L-type voltage-gated Ca2+-channel blocker) at various times (5–60mins). Furthermore, S43126 at [10−5M] increased Ca2+ oscillation, [Ca2+] and 45Ca2+ uptake in a time and dose-dependent manner. Moreover, Western blot analysis of treated samples showed that S43126 caused an increased protein expression of IRAS as well as phosphorylation of both ERK1/2 and PKB in a concentration-dependent manner. We conclude that S43126 exerts its insulinotropic effect in a glucose dependent manner by a mechanism involving L-type calcium channels and imidazoline I1-receptors.
Collapse
Affiliation(s)
- Jerusalem Tesfai
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Louis Crane
- Laboratoire de Chimie Pharmaceutique, Universite Paul Sabatier, Faculté de Pharmacie, USA
| | | | - Lincoln P Edwards
- Center for Dental Research, School of Dentistry and School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
3
|
Li HT, Jiang FX, Shi P, Zhang T, Liu XY, Lin XW, Pang XN. In vitro reprogramming of rat bone marrow-derived mesenchymal stem cells into insulin-producing cells by genetically manipulating negative and positive regulators. Biochem Biophys Res Commun 2012; 420:793-8. [PMID: 22465129 DOI: 10.1016/j.bbrc.2012.03.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/14/2012] [Indexed: 01/09/2023]
Abstract
Islet cell replacement therapy represents the most promising approach for the cure of type 1 diabetes if autoimmunity to β cells is under control. However, this potential is limited by a shortage of pancreas donors. To address the donor shortage problem, we determined whether bone marrow-derived mesenchymal stem cells (bmMSCs) can be directly reprogrammed to islet lineages by simultaneously forced suppression and over-expression of key regulator genes that play critical roles during pancreas development. Here, we report that rat bmMSCs were converted in vitro into insulin-producing cells by suppressing two-repressor genes repressor element-1 silencing transcription factor/neuronal restrictive silencing factor (Rest/Nrsf) and sonic hedgehog (Shh) and by over-expressing pancreas and duodenal transcription factor 1 (Pdx1). The reprogrammed bmMSCs expressed both genes and proteins specific for islet cells. These converted cells were capable of releasing insulin in a glucose-responsive manner. Our study suggests that bmMSCs may ultimately be reprogrammed to functional insulin-secreting cells.
Collapse
Affiliation(s)
- Hong-Tu Li
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Report and recommendations of the workshop of the European Centre for the Validation of Alternative Methods for Drug-Induced Cardiotoxicity. Cardiovasc Toxicol 2009; 9:107-25. [PMID: 19572114 DOI: 10.1007/s12012-009-9045-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Cardiotoxicity is among the leading reasons for drug attrition and is therefore a core subject in non-clinical and clinical safety testing of new drugs. European Centre for the Validation of Alternative Methods held in March 2008 a workshop on "Alternative Methods for Drug-Induced Cardiotoxicity" in order to promote acceptance of alternative methods reducing, refining or replacing the use of laboratory animals in this field. This review reports the outcome of the workshop. The participants identified the major clinical manifestations, which are sensitive to conventional drugs, to be arrhythmias, contractility toxicity, ischaemia toxicity, secondary cardiotoxicity and valve toxicity. They gave an overview of the current use of alternative tests in cardiac safety assessments. Moreover, they elaborated on new cardiotoxicological endpoints for which alternative tests can have an impact and provided recommendations on how to cover them.
Collapse
|
5
|
Motoyama H, Ogawa S, Kubo A, Miwa S, Nakayama J, Tagawa YI, Miyagawa S. In vitro reprogramming of adult hepatocytes into insulin-producing cells without viral vectors. Biochem Biophys Res Commun 2009; 385:123-8. [PMID: 19422803 DOI: 10.1016/j.bbrc.2009.04.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 04/28/2009] [Indexed: 12/18/2022]
Abstract
The pancreas and the liver share the same endodermal origin. We have been studying whether mature hepatocytes can be induced to differentiate into pancreatic beta-cells by in vitro delivery of transcriptional factors using a non-viral approach. Here we showed that nucleofection allowed suitable transfection of primary hepatocytes employing various non-viral methods. We introduced either pancreatic and duodenal homeobox 1 (Pdx1) or neurogenin 3 (Ngn3), or both, into the mature cells using nucleofection. Co-expression of pdx1 and ngn3 using a bicistronic vector activated the transcription of various islet-related genes, and the transfected hepatocytes acquired the ability to synthesize and secrete insulin. Our results suggest that simultaneous expression of Pdx1 and Ngn3 is an excellent inducer of liver-to-pancreas reprogramming, and that reprogramming will occur even in mature somatic cells without the need for viral vectors. These findings are of considerable significance for further therapeutic development for various intractable diseases including diabetes.
Collapse
Affiliation(s)
- Hiroaki Motoyama
- Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Bahekar RH, Jain MR, Jadav PA, Prajapati VM, Patel DN, Gupta AA, Sharma A, Tom R, Bandyopadhya D, Modi H, Patel PR. Synthesis and antidiabetic activity of 2,5-disubstituted-3-imidazol-2-yl-pyrrolo[2,3-b]pyridines and thieno[2,3-b]pyridines. Bioorg Med Chem 2007; 15:6782-95. [PMID: 17723306 DOI: 10.1016/j.bmc.2007.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
In the present investigation, two series of 2,5-disubstituted-3-imidazol-2-yl-pyrrolo[2,3-b]pyridines (2a-l) and thieno[2,3-b]pyridines (3a-l) were designed as analogs of BL 11282 (1). The in vitro glucose dependent insulinotropic activity of all the test compounds was evaluated using RIN5F cell based assay and all the test compounds showed glucose and concentration dependent insulin secretion. The in vivo antidiabetic activities of most potent compounds from each series (2c and 3c) were assessed in C57BL/6J mice. Compounds 2c and 3c showed dose dependent insulin secretion and significant glucose reduction in vivo. In general, compounds 2c and 3c were found to be equipotent at all the three different doses selected and with respect to BL 11282, both the test compounds were found to be more potent, at all the time points.
Collapse
Affiliation(s)
- Rajesh H Bahekar
- Zydus Research Centre, Cadila Healthcare Ltd, Sarkhej-Bavala N H 8A, Moraiya, Ahmedabad, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bahekar RH, Jain MR, Goel A, Patel DN, Prajapati VM, Gupta AA, Jadav PA, Patel PR. Design, synthesis, and biological evaluation of substituted-N-(thieno[2,3-b]pyridin-3-yl)-guanidines, N-(1H-pyrrolo[2,3-b]pyridin-3-yl)-guanidines, and N-(1H-indol-3-yl)-guanidines. Bioorg Med Chem 2007; 15:3248-65. [PMID: 17339113 DOI: 10.1016/j.bmc.2007.02.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/19/2022]
Abstract
Sulfonylureas stimulate insulin secretion independent of the blood glucose concentration and therefore cause hypoglycemia in type 2 diabetic patients. Over the last years, a number of aryl-imidazoline derivatives have been identified that stimulate insulin secretion in a glucose-dependent manner. In the present study, we have developed three series of substituted N-(thieno[2,3-b]pyridin-3-yl)-guanidine (2a-l), N-(1H-pyrrolo[2,3-b]pyridin-3-yl)-guanidine (3a-l), and N-(1H-indol-3-yl)-guanidine (4a-l) as new class of antidiabetic agents. In vitro glucose-dependent insulinotropic activity of test compounds 2a-l, 3a-l, and 4a-l was evaluated using RIN5F (Rat Insulinoma cell) based assay. All the test compounds showed concentration-dependent insulin secretion, only in presence of glucose load (16.7mmol). Some of the test compounds (2c, 3c, and 4c) from each series were found to be equipotent to BL 11282 (standard aryl-imidazoline), which indicated that the guanidine group acts as a bioisostere of imidazoline ring system.
Collapse
Affiliation(s)
- Rajesh H Bahekar
- Zydus Research Centre, Cadila Healthcare Ltd., Sarkhej-Bavala N.H. 8A, Moraiya, Ahmedabad 382210, India
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zünkler BJ. Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther 2006; 112:12-37. [PMID: 16647758 DOI: 10.1016/j.pharmthera.2006.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 12/25/2022]
Abstract
Torsades de pointes (TdP) arrhythmia is a potentially fatal form of ventricular arrhythmia that occurs under conditions where cardiac repolarization is delayed (as indicated by prolonged QT intervals from electrocardiographic recordings). A likely mechanism for QT interval prolongation and TdP arrhythmias is blockade of the rapid component of the cardiac delayed rectifier K+ current (IKr), which is encoded by human ether-a-go-go-related gene (HERG). Over 100 non-cardiovascular drugs have the potential to induce QT interval prolongations in the electrocardiogram (ECG) or TdP arrhythmias. The binding site of most HERG channel blockers is located inside the central cavity of the channel. An evaluation of possible effects on HERG channels during the development of novel drugs is recommended by international guidelines. During cardiac ischaemia activation of ATP-sensitive K+ (KATP) channels contributes to action potential (AP) shortening which is either cardiotoxic by inducing re-entrant ventricular arrhythmias or cardioprotective by inducing energy-sparing effects or ischaemic preconditioning (IPC). KATP channels are formed by an inward-rectifier K+ channel (Kir6.0) and a sulfonylurea receptor (SUR) subunit: Kir6.2 and SUR2A in cardiac myocytes, Kir6.2 and SUR1 in pancreatic beta-cells. Sulfonylureas and glinides stimulate insulin secretion via blockade of the pancreatic beta-cell KATP channel. Clinical studies about cardiotoxic effects of sulfonylureas are contradictory. Sulfonylureas and glinides differ in their selectivity for pancreatic over cardiovascular KATP channels, being either selective (tolbutamide, glibenclamide) or non-selective (repaglinide). The possibility exists that non-selective KATP channel inhibitors might have cardiovascular side effects. Blockers of the pore-forming Kir6.2 subunit are insulin secretagogues and might have cardioprotective or cardiotoxic effects during cardiac ischaemia.
Collapse
Affiliation(s)
- Bernd J Zünkler
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.
| |
Collapse
|
9
|
Høy M, Olsen HL, Andersen HS, Bokvist K, Buschard K, Hansen J, Jacobsen P, Petersen JS, Rorsman P, Gromada J. Imidazoline NNC77-0074 stimulates insulin secretion and inhibits glucagon release by control of Ca(2+)-dependent exocytosis in pancreatic alpha- and beta-cells. Eur J Pharmacol 2003; 466:213-21. [PMID: 12679159 DOI: 10.1016/s0014-2999(03)01537-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the effects of the novel imidazoline compound (+)-2-(2-(4,5-dihydro-1H-imidazol-2-yl)-thiopene-2-yl-ethyl)-pyridine (NNC77-0074) on stimulus-secretion coupling in isolated pancreatic alpha- and beta-cells. NNC77-0074 stimulated glucose-dependent insulin secretion in intact mouse pancreatic islets. No effect was observed at </=2.5 mM glucose and maximal stimulation occurred at 10-15 mM glucose. NNC77-0074 produced a concentration-dependent stimulation of insulin secretion. Half-maximal (EC(50)) stimulation was observed at 24 microM and at maximally stimulatory concentrations insulin release was doubled. The stimulatory action of NNC77-0074 on insulin secretion was not associated with membrane depolarisation or a change in the activity of ATP-sensitive K(+) channels. Using capacitance measurements, we found that NNC77-0074 stimulated depolarisation-induced exocytosis 2.6-fold without affecting the whole-cell Ca(2+) current when applied via the extracellular medium. The concentration dependence of the stimulatory action was determined by intracellular application of NNC77-0074 through the recording pipette. NNC77-0074 stimulated exocytosis half-maximal at 44 nM and at maximally stimulatory concentrations the rate of exocytosis was increased twofold. NNC77-0074 stimulated depolarised-induced insulin secretion from islets exposed to diazoxide and high external KCl (EC(50)=0.45 microM). The stimulatory action of NNC77-0074 was dependent on protein kinase C activity. NNC77-0074 potently inhibited glucagon secretion from rat islets (EC(50)=11 nM). This was not associated with a change in spontaneous electrical activity and ATP-sensitive K(+) channel activity but resulted from a reduction of the rate of Ca(2+)-dependent exocytosis in single rat alpha-cells (EC(50)=9 nM). Inhibition of exocytosis by NNC77-0074 was pertussis toxin-sensitive and mediated by activation of the protein phosphatase calcineurin. In rat somatotrophs, PC12 cells and mouse cortical neurons NNC77-0074 did not stimulate Ca(2+)-evoked exocytosis, whereas the other imidazoline compounds phentolamine and efaroxan produced 2.5-fold stimulation of exocytosis. Our data suggest that the imidazoline compound NNC77-0074 constitutes a novel class of antidiabetic compounds that stimulates glucose-dependent insulin release while inhibiting glucagon secretion. These actions are exclusively exerted by modulation of exocytosis of the insulin- and glucagon-containing granules.
Collapse
Affiliation(s)
- Marianne Høy
- Novo Nordisk A/S, Novo Alle, DK-2880, Bagsvaerd, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mayer G, Taberner PV. Effects of the imidazoline ligands efaroxan and KU14R on blood glucose homeostasis in the mouse. Eur J Pharmacol 2002; 454:95-102. [PMID: 12409010 DOI: 10.1016/s0014-2999(02)02473-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The putative imidazoline I(3) receptor antagonist 2-(2-ethyl-2,3-dihydrobenzo[b]furan-2-yl)-1H-imidazole (KU14R) has been shown to block the effects of the atypical I(3) agonist efaroxan at the level of the ATP-sensitive K(+) (K(ATP)) channel in isolated pancreatic islet beta cells, but its effects in vivo are not known. We have therefore investigated the effects of KU14R on blood glucose and insulin level in vivo. When KU14R was administered before or after a hypoglycaemic dose of efaroxan, the fall in blood glucose was at least additive. When the antihyperglycaemic imidazoline ligand S22068 was administered after a dose of KU14R, it did not alter the hypoglycaemic response. In the mouse isolated vas deferens preparation, neither rauwolscine (at concentrations which competitively antagonised the inhibitory response to 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK14304)) nor KU14R affected inhibition produced by S22068. At 10(-4) M, KU14R had weak alpha(2)-adrenoceptor antagonist activity. We conclude that KU14R does not act as an antagonist of either efaroxan or S22068 at an imidazoline site in vivo.
Collapse
Affiliation(s)
- Gaëll Mayer
- Department of Pharmacology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
11
|
Proks P, Treinies I, Mest HJ, Trapp S. Inhibition of recombinant K(ATP) channels by the antidiabetic agents midaglizole, LY397364 and LY389382. Eur J Pharmacol 2002; 452:11-9. [PMID: 12323381 DOI: 10.1016/s0014-2999(02)02234-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most imidazolines inhibit ATP-sensitive K(+) (K(ATP)) channels. Since these drugs are potentially clinically relevant insulin secretagogues, it is important to know whether extrapancreatic K(ATP) channels are targeted. We examined the effects of three imidazoline-derived antidiabetic drugs on the cloned K(ATP) channel, expressed in Xenopus laevis oocytes, and their specificity for interaction with the pore-forming Kir6.2 or the sulphonylurea receptor (SUR) 1 subunit. Midaglizole, LY397364 and LY389382 blocked Kir6.2deltaC currents with IC(50) of 3.8, 6.1 and 0.7 microM, respectively. The block of Kir6.2/SUR1 currents by LY397364 and LY389382 was best fit by a two-site model, suggesting that these drugs also interact with SUR1. However, since all three drugs interact with the Kir6.2 subunit, and Kir6.2 forms the pore of extrapancreatic K(ATP) channels, these drugs are unlikely to be specific for the beta-cell.
Collapse
Affiliation(s)
- Peter Proks
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | |
Collapse
|
12
|
Nielsen FE, Bodvarsdottir TB, Worsaae A, MacKay P, Stidsen CE, Boonen HCM, Pridal L, Arkhammar POG, Wahl P, Ynddal L, Junager F, Dragsted N, Tagmose TM, Mogensen JP, Koch A, Treppendahl SP, Hansen JB. 6-Chloro-3-alkylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide derivatives potently and selectively activate ATP sensitive potassium channels of pancreatic beta-cells. J Med Chem 2002; 45:4171-87. [PMID: 12213059 DOI: 10.1021/jm0208121] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6-Chloro-3-alkylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide derivatives were synthesized and characterized as activators of adenosine 5'-triphosphate (ATP) sensitive potassium (K(ATP)) channels in the beta-cells by measuring effects on membrane potential and insulin release in vitro. The effects on vascular tissue in vitro were measured on rat aorta and small mesenteric vessels. Selected compounds were characterized as competitive inhibitors of [(3)H]glibenclamide binding to membranes of HEK293 cells expressing human SUR1/Kir6.2 and as potent inhibitors of insulin release in isolated rat islets. 6-Chloro-3-(1-methylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (54) was found to bind and activate the SUR1/Kir6.2 K(ATP) channels in the low nanomolar range and to be at least 1000 times more potent than the reference compound diazoxide with respect to inhibition of insulin release from rat islets. Several compounds, e.g., 3-propylamino- (30), 3-isopropylamino- (34), 3-(S)-sec-butylamino- (37), and 3-(1-methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (53), which were found to be potent and beta-cell selective activators of K(ATP) channels in vitro, were found to inhibit insulin secretion in rats with minimal effects on blood pressure and to exhibit good oral pharmacokinetic properties.
Collapse
Affiliation(s)
- Flemming E Nielsen
- Novo Nordisk Research and Development, Novo Nordisk Park, DK 2760 Måløv, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Virsolvy A, Smith P, Bertrand G, Gros L, Héron L, Salazar G, Puech R, Bataille D. Block of Ca(2+)-channels by alpha-endosulphine inhibits insulin release. Br J Pharmacol 2002; 135:1810-8. [PMID: 11934823 PMCID: PMC1573300 DOI: 10.1038/sj.bjp.0704635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. alpha-Endosulphine, isolated as an endogenous equivalent for sulphonylureas, is a 121-amino acids protein of 19 kDa apparent molecular mass, member of a cyclic AMP-regulated phosphoprotein family. We have previously shown that alpha-endosulphine inhibits sulphonylurea binding and K(ATP) channel activity, thereby stimulating basal insulin secretion. 2. We now describe that in the perfused rat pancreas, no stimulation was detected and that alpha-endosulphine inhibited glucose stimulated insulin release. This inhibition was dose-dependent and affected both phases of insulin secretion. 3. This inhibitory effect of alpha-endosulphine also occurred on MIN6 beta-cells when insulin release was stimulated either by glucose, sulphonylureas or a high K(+) depolarization. Inhibition was concentration-dependent with a half-maximal inhibition at 0.5 microM and was mirrored by inhibition of calcium influx. 4. Electrophysiological experiments demonstrated, in comparison to the effects of the sulphonylurea tolbutamide, that these inhibitory effects were linked to a direct inhibition of L-type Ca(2+)-channels and were independent from a regulation of K(ATP) channels. 5. Although alpha-endosulphine is able to stimulate insulin release under specific conditions acting via modulation of K(ATP) channel activity, the present study suggests that, under physiological conditions, the peptide mainly acts to block voltage-gated Ca(2+)-channels. This block leads to the inhibition of calcium influx and triggers inhibition of insulin release. 6. We conclude that alpha-endosulphine is not exclusively an endogenous equivalent for sulphonylureas and not solely a K(ATP) channel regulator.
Collapse
Affiliation(s)
- Anne Virsolvy
- Institut National de la Santé et de la Recherche Médicale U376, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cédex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tabuchi Y, Yashiro H, Hoshina S, Asano S, Takeguchi N. Cibenzoline, an ATP-sensitive K(+) channel blocker, binds to the K(+)-binding site from the cytoplasmic side of gastric H(+),K(+)-ATPase. Br J Pharmacol 2001; 134:1655-62. [PMID: 11739241 PMCID: PMC1572902 DOI: 10.1038/sj.bjp.0704422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Cibenzoline, (+/-)-2-(2,2-diphenylcyclopropyl-2-imidazoline succinate, has been clinically used as one of the Class I type antiarrhythmic agents and also reported to block ATP-sensitive K(+) channels in excised membranes from heart and pancreatic beta cells. In the present study, we investigated if this drug inhibited gastric H(+),K(+)-ATPase activity in vitro. 2. Cibenzoline inhibited H(+),K(+)-ATPase activity of permeabilized leaky hog gastric vesicles in a concentration-dependent manner (IC(50): 201 microM), whereas no effect was shown on Na(+),K(+)-ATPase activity of dog kidney (IC(50): >1000 microM). Similarly, cibenzoline inhibited H(+),K(+)-ATPase activity of HEK-293 cells (human embryonic kidney cell line) co-transfected with rabbit gastric H(+),K(+)-ATPase alpha- and beta-subunit cDNAs (IC(50): 183 microM). 3. In leaky gastric vesicles, inhibition of H(+),K(+)-ATPase activity by cibenzoline was attenuated by the addition of K(+) (0.5 - 5 mM) in a concentration-dependent manner. The Lineweaver-Burk plot of the H(+),K(+)-ATPase activity shows that cibenzoline increases K(m) value for K(+) without affecting V(max), indicating that this drug inhibits H(+),K(+)-ATPase activity competitively with respect to K(+). 4. The inhibitory effect of H(+),K(+)-ATPase activity by cibenzoline with normal tight gastric vesicles did not significantly differ from that with permeabilized leaky gastric vesicles, indicating that this drug reacted to the ATPase from the cytoplasmic side of the membrane. 5. These findings suggest that cibenzoline is an inhibitor of gastric H(+),K(+)-ATPase with a novel inhibition mechanism, which inhibits gastric H(+),K(+)-ATPase by binding its K(+)-recognition site from the cytoplasmic side.
Collapse
Affiliation(s)
- Y Tabuchi
- Molecular Genetics Research Center, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama City, Toyama 930-0194, Japan.
| | | | | | | | | |
Collapse
|