1
|
Schuster R, Steffen P, Dreyer B, Rohn S, Schlüter H, Riedner M. Identifying Circulating Urotensin II and Urotensin II-Related Peptide-Generating Enzymes in the Human Plasma Fraction Cohn IV-4. J Proteome Res 2021; 20:5368-5378. [PMID: 34734734 DOI: 10.1021/acs.jproteome.1c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urotensin II (UII) and UII-related peptide (URP) are vasoactive peptide hormones causing strong vasoconstriction or vasodilation, depending on the type of blood vessel. In humans, the active forms are resulting from proteolytic cleavage of their inactive precursor protein. In blood plasma, a defined protease converting the inactive UII and URP precursors into their active forms has not been identified yet. Using mass spectrometry-based enzyme screening for detecting UII- and URP-converting enzymes, the human plasma fraction Cohn IV-4 was chromatographed, and the resulting fractions were screened for UII- or URP-generating activity. Plasma kallikrein (PK) as a UII- and URP-generating protease was identified. URP generation was also found for the serine protease factor XIa, plasmin, thrombin, and, to a smaller extent, factor XIIa. It was demonstrated that in the Cohn IV-4 fraction, PK accounts for a significant amount of UII- and URP-generating activity.
Collapse
Affiliation(s)
- Raphael Schuster
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Pascal Steffen
- Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Benjamin Dreyer
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.,Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Riedner
- Institute of Organic Chemistry, Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Ozoux ML, Briand V, Pelat M, Barbe F, Schaeffer P, Beauverger P, Poirier B, Guillon JM, Petit F, Altenburger JM, Bidouard JP, Janiak P. Potential Therapeutic Value of Urotensin II Receptor Antagonist in Chronic Kidney Disease and Associated Comorbidities. J Pharmacol Exp Ther 2020; 374:24-37. [PMID: 32332113 DOI: 10.1124/jpet.120.265496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease (CKD) remains a common disorder, leading to growing health and economic burden without curative treatment. In diabetic patients, CKD may result from a combination of metabolic and nonmetabolic-related factors, with mortality mainly driven by cardiovascular events. The marked overactivity of the urotensinergic system in diabetic patients implicates this vasoactive peptide as a possible contributor to the pathogenesis of renal as well as heart failure. Previous preclinical studies with urotensin II (UII) antagonists in chronic kidney disease were based on simple end points that did not reflect the complex etiology of the disease. Given this, our studies revisited the therapeutic value of UII antagonism in CKD and extensively characterized 1-({[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-methylphenyl)pyridin-2-yl]carbonyl}amino) cyclohexanecarboxylic acid hydrochloride (SAR101099), a potent, selective, and orally long-acting UII receptor competitive antagonist, inhibiting not only UII but also urotensin-related peptide activities. SR101099 treatment more than halved proteinurea and albumin/creatinine ratio in spontaneously hypertensive stroke-prone (SHR-SP) rats fed with salt/fat diet and Dahl-salt-sensitive rats, respectively, and it halved albuminuria in streptozotocin-induced diabetes rats. Importantly, these effects were accompanied by a decrease in mortality of 50% in SHR-SP and of 35% in the Dahl salt-sensitive rats. SAR101099 was also active on CKD-related cardiovascular pathologies and partly preserved contractile reserve in models of heart failure induced by myocardial infarction or ischemia/reperfusion in rats and pigs, respectively. SAR101099 exhibited a good safety/tolerability profile at all tested doses in clinical phase-I studies. Together, these data suggest that CKD patient selection considering comorbidities together with new stratification modalities should unveil the urotensin antagonists' therapeutic potential. SIGNIFICANCE STATEMENT: Chronic kidney disease (CKD) is a pathology with growing health and economic burden, without curative treatment. For years, the impact of urotensin II receptor (UT) antagonism to treat CKD may have been compromised by available tools or models to deeper characterize the urotensinergic system. New potent, selective, orally long-acting cross-species UT antagonist such as SAR101099 exerting reno- and cardioprotective effects could offer novel therapeutic opportunities. Its preclinical and clinical results suggest that UT antagonism remains an attractive target in CKD on top of current standard of care.
Collapse
Affiliation(s)
- Marie-Laure Ozoux
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Véronique Briand
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Michel Pelat
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Fabrice Barbe
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Paul Schaeffer
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Philippe Beauverger
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Bruno Poirier
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Jean-Michel Guillon
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Frédéric Petit
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Jean-Michel Altenburger
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Jean-Pierre Bidouard
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| | - Philip Janiak
- Cardiovascular and Metabolism Therapeutic Area, Sanofi R&D, Chilly-Mazarin, France (M.L.O., V.B., M.P., F.B., P.S., P.B., B.P., P.J.); Preclinical Safety, Sanofi R&D, Chilly-Mazarin, France (J.M.G.);and Chemistry, Sanofi R&D, Chilly-Mazarin, France (F.P., J.M.A., J.P.B.)
| |
Collapse
|
3
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
4
|
Ugan RA, Cadirci E, Halici Z, Toktay E, Cinar I. The role of urotensin-II and its receptors in sepsis-induced lung injury under diabetic conditions. Eur J Pharmacol 2018; 818:457-469. [DOI: 10.1016/j.ejphar.2017.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
|
5
|
Lim K, Sata Y, Jackson KL, Burke SL, Head GA. Acute Effect of Central Administration of Urotensin II on Baroreflex and Blood Pressure in Conscious Normotensive Rabbits. Front Physiol 2017; 8:110. [PMID: 28280470 PMCID: PMC5322237 DOI: 10.3389/fphys.2017.00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/09/2017] [Indexed: 12/03/2022] Open
Abstract
In the present study, we examined the effects of central administration of Urotensin II on blood pressure, heart rate, and baroreceptor heart rate reflexes in conscious normotensive rabbits. Preliminary operations were undertaken to implant a balloon cuff on the inferior vena cava for baroreflex assessments and to implant cannula into the lateral and fourth ventricle. After 2 weeks of recovery cumulative dose response curves to Urotensin II (10, 100 ng, 1, 10, and 100 μg) given into the ventricles, or Ringer's solution as a vehicle were performed on separate days. Injections were given each hour and baroreflex assessments were made 30 min after each administration. Analysis of the dose response curves to Urotensin II compared to vehicle administered into the lateral or fourth ventricle, indicated little change to blood pressure or heart rate. Analysis of the time course to the highest dose over a 30 min period revealed a small (−5 mmHg) depressor response maximal at 10 min when injected into the fourth ventricle but no effect when injected into the lateral ventricle. Baroreflex assessments made at each dose showed that there was no change in baroreflex sensitivity but that an increase in the upper plateau was observed when Urotensin was injected into the lateral ventricle and a tendency for a reduced lower heart rate plateau was observed after fourth ventricle administration. Clonidine administration in the fourth ventricle decreased blood pressure and heart rate, thus confirming catheter patency. In conclusion, our findings suggest that Urotensin II in the forebrain and brainstem may play a role in modulating cardiac sympathetic and vagal baroreflexes but only during large acute changes in blood pressure.
Collapse
Affiliation(s)
- Kyungjoon Lim
- Department of Neuropharmacology, Baker IDI Heart and Diabetes Research InstituteMelbourne, VIC, Australia; Department of Physiology, Monash UniversityClayton, VIC, Australia
| | - Yusuke Sata
- Department of Neuropharmacology, Baker IDI Heart and Diabetes Research InstituteMelbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Science, Monash UniversityClayton, VIC, Australia
| | - Kristy L Jackson
- Department of Neuropharmacology, Baker IDI Heart and Diabetes Research Institute Melbourne, VIC, Australia
| | - Sandra L Burke
- Department of Neuropharmacology, Baker IDI Heart and Diabetes Research Institute Melbourne, VIC, Australia
| | - Geoffrey A Head
- Department of Neuropharmacology, Baker IDI Heart and Diabetes Research InstituteMelbourne, VIC, Australia; Department of Pharmacology, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
6
|
Castel H, Desrues L, Joubert JE, Tonon MC, Prézeau L, Chabbert M, Morin F, Gandolfo P. The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features. Front Endocrinol (Lausanne) 2017; 8:76. [PMID: 28487672 PMCID: PMC5403833 DOI: 10.3389/fendo.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
The urotensinergic system was previously considered as being linked to numerous physiopathological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Thus, it turns out that the actions of the urotensin II (UII)/G protein-coupled receptor UT system in animal models are currently not predictive enough in regard to their effects in human clinical trials and that UII analogs, established to target UT, were not as beneficial as expected in pathological situations. Thus, many questions remain regarding the overall signaling profiles of UT leading to complex involvement in cardiovascular and inflammatory responses as well as cancer. We address the potential UT chemotactic structural and functional definition under an evolutionary angle, by the existence of a common conserved structural feature among chemokine receptorsopioïdergic receptors and UT, i.e., a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible for a kink helical structure that would play a key role in chemokine functions. Even if the last decade was devoted to the elucidation of the cardiovascular control by the urotensinergic system, we also attempt here to discuss the role of UII on inflammation and migration, likely providing a peptide chemokine status for UII. Indeed, our recent work established that activation of UT by a gradient concentration of UII recruits Gαi/o and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading to chemotaxis. We think that this new vision of the urotensinergic system should help considering UT as a chemotactic therapeutic target in pathological situations involving cell chemoattraction.
Collapse
Affiliation(s)
- Hélène Castel
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- *Correspondence: Hélène Castel,
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jane-Eileen Joubert
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marie-Christine Tonon
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Laurent Prézeau
- CNRS UMR 5203, INSERM U661, Institute of Functional Genomic (IGF), University of Montpellier 1 and 2, Montpellier, France
| | - Marie Chabbert
- UMR CNRS 6214, INSERM 1083, Faculté de Médecine 3, Angers, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
7
|
Renal Urotensin II System Plays Roles in the Regulation of Blood Pressure in Dahl Salt-Resistant Rat. Int J Hypertens 2016; 2016:9146870. [PMID: 28097020 PMCID: PMC5209633 DOI: 10.1155/2016/9146870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction. Dahl salt-resistant (SR) animal models are similar to peritoneal dialysis patients with fluid volumes overload with normal blood pressure in hemodynamic profiles. We will verify the roles of UII in the regulation of blood pressure in these animal models. Methodology. The Dahl salt-sensitive (SS) and SR rats and UII receptor gene knocked out (KO) mice were placed on a high-salt diet. Renal tissues were performed for the expression of UII in Dahl groups. Results. After high-salt diet for 6 weeks, the systolic blood pressure (SBP) in SR group was significantly lower, accompanied with higher urinary UII levels, higher 24-hour urinary sodium excretion, and higher urinary creatinine clearance in the SR rats in comparison to SS group. The expressions of UII and UT were both upregulated in the kidney tissues of SR group in comparison to SS group (P < 0.05). After high-salt diet for 8 weeks, the SBP of the KO group is significantly higher than that of the wild type group. Conclusion. We first demonstrate that renal UII system can play important roles in the regulation of blood pressure in Dahl SR rats which can be highly correlated to its effect on renal tubular sodium absorption.
Collapse
|
8
|
Elmadbouh I, Ali Soliman M, Abdallah Mostafa A, Ahmed Heneish H. The value of urotensin II in patients with left-sided rheumatic valvular regurgitation. Egypt Heart J 2016; 69:133-138. [PMID: 29622967 PMCID: PMC5839354 DOI: 10.1016/j.ehj.2016.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/24/2016] [Indexed: 11/26/2022] Open
Abstract
Aims Rheumatic valve diseases are most common etiological valve diseases in developing countries. Urotensin II is cardiovascular autacoid/hormone and may be associated with patients of heart valve diseases. The present study was to measure plasma urotensin II concentrations in patients with left-sided rheumatic valve diseases such as mitral regurgitation (MR) and aortic regurgitation (AR), and to examine its correlation with severity of valve impairment, function (New York Heart association, NYHA) class and pulmonary artery pressure (PAP). Methods and results Sixty patients with moderate to severe rheumatic left-sided valve regurgitation and 20 healthy controls were selected after performing the echocardiography. Plasma urotensin II level was measured in all subjects. The patients with MR and AR were significantly increased of left ventricular end diastolic dimension (LVEDD), left ventricular end systolic dimension (LVESD), left atrial diameter, PAP, but decreased of EF% versus the controls. Urotensin II level was highly significant in patients with MR (1.83 ± 0.92 ng/ml, P < 0.001) and AR (0.79 ± 0.3 ng/ml, P < 0.05) versus the controls (0.48 ± 0.13 ng/ml). Also, there was significant correlation between Urotensin II level and LVEDD (MR, r = 0.318, P = 0.03; AR, r = 0.805, P < 0.001), LVESD (MR, r = −0.271, P = 0.115; AR, r = 0.614, P = 0.001), and PAP (MR, r = 0.706, P < 0.001; AR, r = 0.129, P = 0.538). Conclusion Urotensin II was elevated in patients with rheumatic left-sided valvular regurgitation, and positively correlated with increased LVEDD (in both MR and AR), LVESD (only AR) and pulmonary artery pressure (only MR). Therefore, urotensin II level may be used as diagnostic biomarker in patients with rheumatic valvular diseases for assessment of the severity in parallel with echocardiography.
Collapse
Affiliation(s)
- Ibrahim Elmadbouh
- Biochemistry Department, Faculty of Medicine, Menoufia University, Egypt
| | | | | | | |
Collapse
|
9
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
10
|
Franco R, Zappavigna S, Gigantino V, Luce A, Cantile M, Cerrone M, Facchini G, Perdonà S, Pignata S, Di Lorenzo G, Chieffi S, Vitale G, De Sio M, Sgambato A, Botti G, Yousif AM, Novellino E, Grieco P, Caraglia M. Urotensin II receptor determines prognosis of bladder cancer regulating cell motility/invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:48. [PMID: 24893613 PMCID: PMC4061920 DOI: 10.1186/1756-9966-33-48] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/22/2022]
Abstract
Background Non Muscle Invasive Bladder Transitional Cancer (NMIBC) and Muscle Invasive Bladder Transitional Cancer (MIBC)/invasive have different gene profile and clinical course. NMIBC prognosis is not completely predictable, since the relapse rate is higher than 20%, even in the form of MIBC. The aim of this study is to evaluate if UTR expression can discriminate between NMIBC and MIBC and predict the risk of relapses in NMIBCs. Methods We have investigated upon urotensin-II (UII) receptor (UTR) expression in vivo in 159 patients affected by NMIBC. The biological role of UTR was also investigated in vitro. UTR expression was evaluated in a tissue-micro-array, consisting of normal, NMIBC and invasive bTCC samples. Results UTR discriminated between NMIBC and MIBC and showed a significant correlation between low UTR expression and shorter disease free survival in NMIBC. The superagonist UPG84 induced growth suppression at nM concentrations on 3/4 cell lines. Bladder cancer cell treatment with the antagonist urantide or the knock-down of UTR with a specific shRNA significantly blocked both the motility and invasion of bladder cancer cells. Conclusions The evaluation of UTR expression can discriminate between NMIBC at high and low risk of relapse. Moreover, our data suggest that UTR is involved in the regulation of motility, invasion and proliferation of bladder cancer cells. High UTR expression is an independent prognostic factor of good prognosis for NMIBC regulating motility and invasion of bladder cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| |
Collapse
|
11
|
Liang DY, Hou YQ, Lou XL, Ye CG. Progress in understanding role of urotensin Ⅱ in hepatic cirrhosis. Shijie Huaren Xiaohua Zazhi 2013; 21:2164-2168. [DOI: 10.11569/wcjd.v21.i22.2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Urotensin Ⅱ (UⅡ) is a potent vasoactive substance that can result in vasoactive response through interaction with its specific orphan G-protein-coupled receptor GPR-14. In addition to the role of vasoactivity, UⅡ can promote mitosis and fibrosis. The vascular role of UⅡ is to some degree both species- and disease-specific. Studies have found that plasma levels of UⅡ are elevated in patients with cirrhosis, but the relationship between plasma levels of UⅡ and the development of chronic liver disease and portal hypertension has yet to be fully elucidated. This review focuses on the potential relevance of UⅡ as vasoactive substance in chronic liver disease and the site where UⅡ is overproduced.
Collapse
|
12
|
Guo XH, Feng ZJ. Role of urotensin-Ⅱ in the pathogenesis of liver cirrhosis and portal hypertension and collateral circulation. Shijie Huaren Xiaohua Zazhi 2012; 20:3536-3541. [DOI: 10.11569/wcjd.v20.i35.3536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Urotensin-Ⅱ (U-Ⅱ) is a somatostatin-like cyclic peptide which has a potent vasoactive effect and can promote vascular reconstruction and hyperplasia. Research shows that UⅡ plays an important role in the development of liver cirrhosis and portal hypertension. UⅡ influences intrahepatic resistance and splanchnic hemodynamics through a variety of pathways, causing portal hypertension and participating in the formation of esophageal and gastric varices. UⅡ receptor antagonists can reduce portal pressure in cirrhotic rats, but this finding need to be confirmed clinically.
Collapse
|
13
|
Barrette PO, Schwertani AG. A closer look at the role of urotensin II in the metabolic syndrome. Front Endocrinol (Lausanne) 2012; 3:165. [PMID: 23293629 PMCID: PMC3531708 DOI: 10.3389/fendo.2012.00165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022] Open
Abstract
Urotensin II (UII) is a vasoactive peptide that was first discovered in the teleost fish, and later in mammals and humans. UII binds to the G protein coupled receptor GPR14 (now known as UT). UII mediates important physiological and pathological actions by interacting with its receptor. The metabolic syndrome (MetS) is described as cluster of factors such as obesity, dyslipidemia, hypertension, and insulin resistance (IR), further leading to development of type 2 diabetes mellitus and cardiovascular diseases. UII levels are upregulated in patients with the MetS. Evidence directly implicating UII in every risk factor of the MetS has been accumulated. The mechanism that links the different aspects of the MetS relies primarily on IR and inflammation. By directly modulating both of these factors, UII is thought to play a central role in the pathogenesis of the MetS. Moreover, UII also plays an important role in hypertension and hyperlipidemia thereby contributing to cardiovascular complications associated with the MetS.
Collapse
Affiliation(s)
| | - Adel Giaid Schwertani
- *Correspondence: Adel Giaid Schwertani, Division of Cardiology, Department of Medicine, McGill University Health Center, 1650 Cedar Avenue, Room C9-166, Montreal, QC, Canada H3G 1A4. e-mail:
| |
Collapse
|
14
|
Grieco P, Franco R, Bozzuto G, Toccacieli L, Sgambato A, Marra M, Zappavigna S, Migaldi M, Rossi G, Striano S, Marra L, Gallo L, Cittadini A, Botti G, Novellino E, Molinari A, Budillon A, Caraglia M. Urotensin II receptor predicts the clinical outcome of prostate cancer patients and is involved in the regulation of motility of prostate adenocarcinoma cells. J Cell Biochem 2011; 112:341-53. [PMID: 21080343 DOI: 10.1002/jcb.22933] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Urotensin II (UT-II) is a potent vasoconstrictor peptide and its receptor (UTR) was correlated with human cortico-adrenal carcinoma proliferation. In this study, we have evaluated the correlation between UTR expression and prognosis of human prostate adenocarcinoma and the involvement of this receptor in the regulation of biological properties on both in vivo and in vitro models. UTR mRNA and protein, evaluated by real-time PCR and Western blotting, respectively, were expressed at high levels only in androgen-dependent LNCaP cells. In order to investigate UTR changes occurring in human prostate tumorigenesis, we have also evaluated the expression of UTR in vivo in 195 human prostate tissue samples. UTR was always expressed at low intensity in hyperplastic tissues and at high intensity in well-differentiated carcinomas (Gleason 2-3). Moreover, we have evaluated the effects of an antagonist of UTR, urantide on migration and invasion of LNCaP cells. Urantide induced a dose-dependent decrease of motility and invasion of LNCaP cells whose characteristic ameboid movement seems to be advantageous for their malignancy. These effects were paralleled by down-regulating the autophosphorylation of focal adhesion kinase and the integrin surface expression on LNCaP cells. The effects on cell motility and invasion were likely due to the inhibition of RhoA activity induced by both urantide and shRNA UTR. These data suggest that UTR can be considered a prognostic marker in human prostate adenocarcinoma patients.
Collapse
Affiliation(s)
- Paolo Grieco
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nitescu N, Grimberg E, Guron G. Urotensin-II receptor antagonism does not improve renal haemodynamics or function in rats with endotoxin-induced acute kidney injury. Clin Exp Pharmacol Physiol 2011; 37:1170-5. [PMID: 20880186 DOI: 10.1111/j.1440-1681.2010.05449.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Urotensin-II (U-II) is a vasoactive peptide that influences renal haemodynamics and kidney function. The aim of the present study was to examine the effects of the selective U-II receptor antagonist, urantide, on renal haemodynamics, oxygenation and function in endotoxaemic rats. 2. Endotoxaemia was induced in Sprague-Dawley rats by an intraperitoneal dose of lipopolysaccharide (LPS; Escherichia coli O127:B8, 7.5 mg/kg). At 16 h after endotoxin was given, renal clearance experiments were carried out in thiobutabarbital anaesthetized rats. Group 1, sham-saline; group 2, sham-urantide; group 3 LPS-saline; and group 4, LPS-urantide received isotonic saline or urantide (0.2 mg/kg bolus intravenously, followed by an infusion of 1.2 mg/kg/h throughout) after baseline measurements. Kidney function, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (Clark-type microelectrodes) were analysed during 2 h of drug administration. 3. At baseline, endotoxaemic rats showed approximately 50% reductions in glomerular filtration rate (GFR) and RBF (P < 0.05), a decline in cortical and outer medullary perfusion and pO(2) (P < 0.05), and a significant increase in mean arterial pressure (MAP; P < 0.05) compared with saline-injected controls. In sham animals, urantide in a dose that did not significantly influence MAP or RBF, increased GFR (P < 0.05 time × treatment interaction) and filtration fraction (P < 0.05 treatment effect). However, urantide had no statistically significant effects on any of the investigated variables in endotoxaemic rats. 4. These findings show that U-II, through the UT receptor, does not contribute to abnormalities in renal haemodynamics and function in endotoxaemic rats.
Collapse
Affiliation(s)
- Nicoletta Nitescu
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
16
|
Liu DG, Wang Y. Advances in understanding the role of the UII/UT system in the pathogenesis of portal hypertension. Shijie Huaren Xiaohua Zazhi 2010; 18:3332-3337. [DOI: 10.11569/wcjd.v18.i31.3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Urotensin II (UII), a vasoactive peptide with structural similarity to somatostatin, is the most potent vasoconstrictor known in systemic resistance vessels and has multiple biological effects related to a variety of human diseases. Numerous studies have found that UII and its receptor (UT) play an important role in the pathogenesis of portal hypertension. This paper reviews the recent advances in understanding the role of the UII/UT system in the pathogenesis of portal hypertension.
Collapse
|
17
|
Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A, Tonon MC, Pelletier G, Conlon JM, Leprince J. Urotensin II, from fish to human. Ann N Y Acad Sci 2010; 1200:53-66. [PMID: 20633133 DOI: 10.1111/j.1749-6632.2010.05514.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cyclic peptide urotensin II (UII) was originally isolated from the urophysis of teleost fish on the basis of its ability to contract intestinal smooth muscle. The UII peptide has subsequently been isolated from frog brain and, later on, the pre-proUII cDNA has been characterized in mammals, including humans. A UII paralog called urotensin II-related peptide (URP) has been identified in the rat brain. The UII and URP genes originate from the same ancestral gene as the somatostatin and cortistatin genes. In the central nervous system (CNS) of tetrapods, UII is expressed primarily in motoneurons of the brainstem and spinal cord. The biological actions of UII and URP are mediated through a G protein-coupled receptor, termed UT, that exhibits high sequence similarity with the somatostatin receptors. The UT gene is widely expressed in the CNS and in peripheral organs. Consistent with the broad distribution of UT, UII and URP exert a large array of behavioral effects and regulate endocrine, cardiovascular, renal, and immune functions.
Collapse
Affiliation(s)
- Hubert Vaudry
- Laboratory of Cellular Neuroendocrinology, INSERM U413, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Expression of urotensin II and its receptor in human liver cirrhosis and fulminant hepatic failure. Dig Dis Sci 2010; 55:1458-64. [PMID: 19582578 DOI: 10.1007/s10620-009-0875-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 06/08/2009] [Indexed: 12/09/2022]
Abstract
OBJECTIVES Urotensin II [U-II] plasma levels are increased in liver cirrhosis [LC] and are discussed as an important mediator of portal hypertension since the U-II antagonist palosuran has beneficial effects on portal hypertension by increasing splanchnic resistance. Nevertheless, no data are available on the intrahepatic expression of U-II and its receptor [UT] in humans. METHODS U-II and UT expression were analyzed in the livers of patients with LC, fulminant hepatic failure [FHF], and normal controls [NC] using immunohistochemistry. RESULTS Both U-II and UT were expressed in the liver on endothelial cells from arteries, veins, and bile ducts as well as on Kupffer cells. In LC, the total number of U-II-expressing cells was 20% lower compared to NC (P < 0.001), while expression of UT did not differ between LC and NC. In contrast, significant enhanced number of U-II and UT positive cells were found in FHF compared to LC and NC (P < 0.001). U-II and UT expression was also found in portal veins, without differences between LC and NC. CONCLUSIONS Our data demonstrate that U-II and UT are not elevated in human cirrhotic livers but are in livers of patients with FHF.
Collapse
|
19
|
Ross B, McKendy K, Giaid A. Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1156-72. [DOI: 10.1152/ajpregu.00706.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is an 11 amino acid cyclic peptide originally isolated from the goby fish. The amino acid sequence of UII is exceptionally conserved across most vertebrate taxa, sharing structural similarity to somatostatin. UII binds to a class of G protein-coupled receptor known as GPR14 or the urotensin receptor (UT). UII and its receptor, UT, are widely expressed throughout the cardiovascular, pulmonary, central nervous, renal, and metabolic systems. UII is generally agreed to be the most potent endogenous vasoconstrictor discovered to date. Its physiological mechanisms are similar in some ways to other potent mediators, such as endothelin-1. For example, both compounds elicit a strong vascular smooth muscle-dependent vasoconstriction via Ca2+ release. UII also exerts a wide range of actions in other systems, such as proliferation of vascular smooth muscle cells, fibroblasts, and cancer cells. It also 1) enhances foam cell formation, chemotaxis of inflammatory cells, and inotropic and hypertrophic effects on heart muscle; 2) inhibits insulin release, modulates glomerular filtration, and release of catecholamines; and 3) may help regulate food intake and the sleep cycle. Elevated plasma levels of UII and increased levels of UII and UT expression have been demonstrated in numerous diseased conditions, including hypertension, atherosclerosis, heart failure, pulmonary hypertension, diabetes, renal failure, and the metabolic syndrome. Indeed, some of these reports suggest that UII is a marker of disease activity. As such, the UT receptor is emerging as a promising target for therapeutic intervention. Here, a concise review is given on the vast physiologic and pathologic roles of UII.
Collapse
Affiliation(s)
- Bryan Ross
- McGill University Health Center, Montreal, Quebec, Canada
| | | | - Adel Giaid
- McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Kemp W, Kompa A, Phrommintikul A, Herath C, Zhiyuan J, Angus P, McLean C, Roberts S, Krum H. Urotensin II modulates hepatic fibrosis and portal hemodynamic alterations in rats. Am J Physiol Gastrointest Liver Physiol 2009; 297:G762-7. [PMID: 19797237 DOI: 10.1152/ajpgi.00127.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The influence of circulating urotensin II (UII) on liver disease and portal hypertension is unknown. We aimed to evaluate whether UII executes a pathogenetic role in the development of hepatic fibrosis and portal hypertension. UII was administered by continuous infusion over 4 wk in 20 healthy rats divided into three treatment groups, controls (saline, n = 7), low dose (UII, 1 nmol x kg(-1) x h(-1), n = 8), and high dose (UII, 3 nmol x kg(-1) x h(-1), n = 5). Hemodynamic parameters and morphometric quantification of fibrosis were assessed, and profibrotic cytokines and fibrosis markers were assayed in hepatic tissue. UII induced a significant dose-dependent increase in portal venous pressure (5.8 +/- 0.4, 6.4 +/- 0.3, and 7.6 +/- 0.7, respectively, P = 0.03). High-dose UII infusion was associated with an increase in hepatic transcript for transforming growth factor-beta (P < 0.05) and platelet-derived growth factor-beta (P = 0.06). Liver tissue hydroxyproline was elevated in the high-dose group (P < 0.05). No systemic hemodynamic alterations were noted. We concluded that UII infusion elevates portal pressure and induces hepatic fibrosis in normal rats. This response may be mediated via induction of fibrogenic cytokines. These findings have pathophysiological implications in human liver disease where increased plasma UII levels have been observed.
Collapse
Affiliation(s)
- William Kemp
- Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bousette N, D'Orleans-Juste P, Kiss RS, You Z, Genest J, Al-Ramli W, Qureshi ST, Gramolini A, Behm D, Ohlstein EH, Harrison SM, Douglas SA, Giaid A. Urotensin II Receptor Knockout Mice on an ApoE Knockout Background Fed a High-Fat Diet Exhibit an Enhanced Hyperlipidemic and Atherosclerotic Phenotype. Circ Res 2009; 105:686-95, 19 p following 695. [DOI: 10.1161/circresaha.107.168799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicolas Bousette
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Pedro D'Orleans-Juste
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Robert S. Kiss
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Zhipeng You
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Jacques Genest
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Wisam Al-Ramli
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Salman T. Qureshi
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Anthony Gramolini
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - David Behm
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Eliot H. Ohlstein
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Stephen M. Harrison
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Stephen A. Douglas
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Adel Giaid
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| |
Collapse
|
22
|
Lawson EC, Luci DK, Ghosh S, Kinney WA, Reynolds CH, Qi J, Smith CE, Wang Y, Minor LK, Haertlein BJ, Parry TJ, Damiano BP, Maryanoff BE. Nonpeptide Urotensin-II Receptor Antagonists: A New Ligand Class Based on Piperazino-Phthalimide and Piperazino-Isoindolinone Subunits. J Med Chem 2009; 52:7432-45. [PMID: 19731961 DOI: 10.1021/jm900683d] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Edward C. Lawson
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Diane K. Luci
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Shyamali Ghosh
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - William A. Kinney
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Charles H. Reynolds
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Jenson Qi
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Charles E. Smith
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Yuanping Wang
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Lisa K. Minor
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Barbara J. Haertlein
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Tom J. Parry
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Bruce P. Damiano
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Bruce E. Maryanoff
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| |
Collapse
|
23
|
Rossi M, Magagna A, Di Maria C, Franzoni F, Taddei S, Santoro G. Skin vasodilator effect of exogenous urotensin‐II in hypertensives not exposed to antihypertensive medication. Blood Press 2009; 17:18-25. [DOI: 10.1080/08037050701757994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Pakala R. Role of urotensin II in atherosclerotic cardiovascular diseases. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2008; 9:166-78. [DOI: 10.1016/j.carrev.2008.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/24/2008] [Accepted: 02/05/2008] [Indexed: 02/07/2023]
|
25
|
Abstract
Urotensin II was first identified over 30 years ago as a potent vasoconstrictor, and the identification of its receptor in the heart, lungs, blood vessels, and brain have made it a potential target for human pharmacotherapy. Current research would suggest that urotensin II plays a major role in the pathophysiology of various cardiovascular disease entities. This article discusses the biologic effects of urotensin under normal and pathophysiologic conditions, and reviews the research experiences with synthetic urotensin blockers in the treatment of various cardiovascular illnesses.
Collapse
|
26
|
Maguire JJ, Kuc RE, Kleinz MJ, Davenport AP. Immunocytochemical localization of the urotensin-II receptor, UT, to rat and human tissues: relevance to function. Peptides 2008; 29:735-42. [PMID: 17905478 DOI: 10.1016/j.peptides.2007.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 02/07/2023]
Abstract
We have examined whether differential expression of UT receptors in cardiovascular tissues from rats and humans may account for the diverse vascular actions reported for urotensin-II. We found UT immunoreactivity ubiquitously expressed in arterial and venous smooth muscle and cardiomyocytes in both species, however, compared to human, levels of UT immunoreactivity in rat vascular endothelial cells was below the level for detection. In rat skeletal muscle cells UT receptor localized to the sarcolemma, a pattern comparable to that for isoforms of nitric oxide synthase suggesting that urotensin-II mediated hindquarter vasodilatation may involve release of nitric oxide from skeletal muscle fibers.
Collapse
Affiliation(s)
- Janet J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Level 6 Centre for Clinical Investigation, Box 110 Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | | | | | |
Collapse
|
27
|
Proulx CD, Holleran BJ, Lavigne P, Escher E, Guillemette G, Leduc R. Biological properties and functional determinants of the urotensin II receptor. Peptides 2008; 29:691-9. [PMID: 18155322 DOI: 10.1016/j.peptides.2007.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/12/2007] [Accepted: 10/19/2007] [Indexed: 02/07/2023]
Abstract
The urotensin II receptor (UT) is a member of the G protein-coupled receptor (GPCR) family and binds the cyclic undecapeptide urotensin II (U-II) as well as the octapeptide urotensin II-related peptide (URP). The active UT mediates pleiotropic effects through various signal transduction pathways, including coupling to G proteins and activating the mitogen-activated protein kinase pathway. Several highly conserved residues and motifs of class A GPCRs that are important for activity are found in UT. This review highlights some of the putative roles of these motifs in the binding, activation and desensitization of UT.
Collapse
Affiliation(s)
- Christophe D Proulx
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4 Canada
| | | | | | | | | | | |
Collapse
|
28
|
Tölle M, van der Giet M. Cardiorenovascular effects of urotensin II and the relevance of the UT receptor. Peptides 2008; 29:743-63. [PMID: 17935830 DOI: 10.1016/j.peptides.2007.08.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/16/2007] [Accepted: 08/27/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II (U-II) is a vasoactive peptide with many potent effects in the cardiorenovascular system. U-II activates a G-protein-coupled receptor termed UT. UT and U-II are highly expressed in the cardiovascular and renal system. Patients with various cardiovascular diseases show high U-II plasma levels. It was demonstrated that elevated U-II plasma levels and increased UT expression seem to play a role in heart failure, end-stage renal disease and atherosclerosis. U-II induces potent changes in vascular tone regulation. In addition, U-II stimulates vascular smooth muscle cell proliferation and cardiomyocyte hypertrophy. Currently several pharmaceutical companies are developing compounds to control the U-II/UT system. There are preclinical and some clinical studies showing potential benefits of inhibiting U-II function in renal disease, heart failure, and diabetes. This article will review both pre- and clinical data concerning cardiorenovascular effects of U-II.
Collapse
Affiliation(s)
- Markus Tölle
- Med. Klinik IV-Nephrology, Charite-Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | | |
Collapse
|
29
|
Kemp W, Roberts S, Krum H. Increased circulating urotensin II in cirrhosis: potential implications in liver disease. Peptides 2008; 29:868-72. [PMID: 17913301 DOI: 10.1016/j.peptides.2007.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is a potent vasoactive mediator which, through interaction with a specific G-protein coupled receptor, can result in either a vasoconstrictive or vasodilatory response. In addition to its effect upon vascular tone, UII possess mitogenic and fibrogenic potential. The influence of UII on vascular tone is to some degree both species-specific and disease-specific. Increased circulating UII levels have been documented in subjects with liver cirrhosis although the significance of this finding with regards to the development of chronic liver disease and portal hypertension has yet to be fully elucidated. In this review we focus on the potential relevance of UII as a vasoactive mediator in the chronic liver disease population and postulate as to the site of overproduction of UII.
Collapse
Affiliation(s)
- William Kemp
- NHMRC Centre of Clinical Research Excellence in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
30
|
Ong KL, Wong LYF, Cheung BMY. The role of urotensin II in the metabolic syndrome. Peptides 2008; 29:859-67. [PMID: 17610998 DOI: 10.1016/j.peptides.2007.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/27/2007] [Accepted: 06/01/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II is a potent vasoconstrictive peptide that mediates both endothelium-independent vasoconstriction and endothelium-dependent vasodilatation. Its plasma level correlates positively with body weight and is raised in diabetes, renal failure, hypertension, and other cardiovascular diseases including congestive heart failure and carotid atherosclerosis. It can inhibit glucose-induced insulin secretion, and genetic variants in urotensin II gene are associated with insulin resistance and type 2 diabetes. Urotensin II also affects lipid metabolism in fish and food intake in mice. Recent studies have also demonstrated a role of urotensin II in inflammation and endothelial dysfunction. These findings suggest a close relationship between urotensin II and at least some components of the metabolic syndrome, including hypertension, insulin resistance, hyperglycemia, and inflammation.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Department of Medicine & Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| | | | | |
Collapse
|
31
|
Chuquet J, Lecrux C, Chatenet D, Leprince J, Chazalviel L, Roussel S, MacKenzie ET, Vaudry H, Touzani O. Effects of urotensin-II on cerebral blood flow and ischemia in anesthetized rats. Exp Neurol 2008; 210:577-84. [DOI: 10.1016/j.expneurol.2007.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 02/07/2023]
|
32
|
Trebicka J, Leifeld L, Hennenberg M, Biecker E, Eckhardt A, Fischer N, Pröbsting AS, Clemens C, Lammert F, Sauerbruch T, Heller J. Hemodynamic effects of urotensin II and its specific receptor antagonist palosuran in cirrhotic rats. Hepatology 2008; 47:1264-76. [PMID: 18318439 DOI: 10.1002/hep.22170] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED In cirrhosis, splanchnic vasodilation contributes to portal hypertension, subsequent renal sodium retention, and formation of ascites. Urotensin II(U-II) is a constrictor of large conductive vessels. Conversely, it relaxes mesenteric vessels, decreases glomerular filtration, and increases renal sodium retention. In patients with cirrhosis, U-II plasma levels are increased. Thus, we investigated hemodynamic and renal effects of U-II and its receptor antagonist, palosuran, in cirrhotic bile duct-ligated rats (BDL). In BDL and sham-operated rats, we studied acute effects of U-II (3 nmol/kg; intravenously) and palosuran (10 mg/kg; intravenously) and effects of oral administration of palosuran (30 mg/kg/day; 3 days) on hemodynamics and renal function. We localized U-II and U-II-receptor (UTR) in livers and portal veins by immunostaining. We determined U-II-plasma levels by enzyme-linked immunosorbent assay (ELISA), and mesenteric nitrite/nitrate-levels by Griess-reaction. RhoA/Rho-kinase and endothelial nitric oxide synthase (eNOS) pathways were determined by western blot analysis and reverse transcription polymerase chain reaction (RT-PCR) in mesenteric arteries. U-II plasma levels, as well as U-II and UTR-receptor expression in livers and portal veins of cirrhotic rats were significantly increased. U-II administration further augmented the increased portal pressure (PP) and decreased mean arterial pressure (MAP), whereas palosuran decreased PP without affecting MAP. The decrease in PP was associated with an increase in splanchnic vascular resistance. In mesenteric vessels, palosuran treatment up-regulated expression of RhoA and Rho-kinase, increased Rho-kinase-activity, and diminished nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling. Moreover, palosuran increased renal blood flow, sodium, and water excretion in BDL rats. CONCLUSION In BDL rats, U-II is a mediator of splanchnic vasodilation, portal hypertension and renal sodium retention. The U-II-receptor antagonist palosuran might represent a new therapeutic option in liver cirrhosis with portal hypertension.
Collapse
Affiliation(s)
- Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Giachini FRC, Callera GE, Carneiro FS, Tostes RC, Webb RC. Therapeutic targets in hypertension: is there a place for antagonists of the most potent vasoconstrictors? Expert Opin Ther Targets 2008; 12:327-39. [DOI: 10.1517/14728222.12.3.327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Kemp W, Roberts S, Komesaroff PA, Zomer E, Krum H. Urotensin II in chronic liver disease: in vivo effect on vascular tone. Scand J Gastroenterol 2008; 43:103-9. [PMID: 18938752 DOI: 10.1080/00365520701580009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Urotensin II (UII) is now recognized as the most potent human vasoconstrictor. Although its role in human pathophysiology is unknown, vasoactive mediators are known to be important in the pathogenesis of portal hypertension complicating chronic liver disease. The objective of this study was to investigate the role of UII in liver cirrhosis via examination of the in vivo effect of UII in this patient group. MATERIAL AND METHODS The vasoactive effects of UII were measured using Laser Doppler velocimetry on cirrhotic patients (n = 14) and age-matched healthy controls (n = 14) after UII administration by iontophoresis to the cutaneous microcirculation of the forearm. RESULTS In vivo administration of UII produced vasoconstriction of the cutaneous microcirculation in the cirrhotic group and vasodilatation in the controls, with values differing significantly at the two highest doses of UII: 10(-9) mol (p = 0.01) and 10(-7) mol (p = 0.004). CONCLUSIONS UII mediates vasoconstriction of the microcirculation of cirrhotics but not of controls. This suggests that UII has pathophysiological relevance in the portal hypertensive population through its vasoactive properties. Further studies of UII and UII-antagonists are warranted in this patient population.
Collapse
Affiliation(s)
- William Kemp
- Department of Gastroenterology, Alfred Hospital, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
35
|
Kemp W, Krum H, Colman J, Bailey M, Yandle T, Richards M, Roberts S. Urotensin II: a novel vasoactive mediator linked to chronic liver disease and portal hypertension. Liver Int 2007; 27:1232-9. [PMID: 17919235 DOI: 10.1111/j.1478-3231.2007.01539.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Urotensin II (UII) is recognised as the most potent human vasoconstrictor; however, its role in chronic liver disease (CLD) is unknown. AIM We sought to determine serum UII levels in CLD and explore its relationship with clinical features and outcomes of patients with CLD and portal hypertension. METHODS UII was analysed by radio-immunoassay on cirrhotic patients undergoing hepatic venous pressure gradient (HVPG) determination and age- and sex-matched controls. Follow-up data were prospectively recorded. RESULTS From 1997 to 2004, 80 patients (male/female: 74/6) underwent a total of 94 HVPG assessments. UII was higher in cirrhotic patients compared with controls (2.05+/-0.06 and 1.55+/-0.09 pmol/L, P<0.001) and was correlated with HVPG (r=+0.35, P=0.001) and severity of CLD (r=+0.6, P<0.001). UII was higher in patients who developed refractory ascites (2.45+/-0.13 vs. 1.7+/-0.12 pmol/L, P<0.001) and in those who died during the follow-up period (2.27+/-0.15 pmol/L vs. 1.95+/-0.08 pmol/L, P<0.05). CONCLUSION Serum UII is elevated in patients with CLD, and is associated with the severity of the underlying liver disease and the degree of portal hypertension. Baseline levels can predict future complications such as refractory ascites and patient survival.
Collapse
Affiliation(s)
- William Kemp
- Department Gastroenterology, Alfred Hospital, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Krum H, Kemp W. Therapeutic potential of blockade of the urotensin II system in systemic hypertension. Curr Hypertens Rep 2007; 9:53-8. [PMID: 17362672 DOI: 10.1007/s11906-007-0010-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II, an 11-amino acid peptide, has been found to be the most potent vasoconstrictor yet described, in certain vascular beds. Discovery of its endogenous receptor (UII-R) has ignited considerable interest in this system's role in disease states associated with increased vascular tone (eg, systemic hypertension). Urotensin II was shown to have direct effects on the heart in addition to effects on vascular tone. In human systemic hypertension, increased plasma levels of urotensin II were noted, with a weak but significant correlation to absolute blood pressure levels. Furthermore, hypertensive patients demonstrate net vasoconstrictor responsiveness in skin microcirculation compared to normal controls. Highly selective UII-R antagonists have been developed based on the known structure of UII-R. Early preclinical and clinical studies report potential beneficial effects in renal disease, heart failure, and diabetes, although effects on blood pressure have been equivocal.
Collapse
Affiliation(s)
- Henry Krum
- Department of Epidemiology and Preventive Medicine, Monash University/Alfred Hospital, 89 Commercial Road, Melbourne, VIC 3004, Australia.
| | | |
Collapse
|
37
|
Fontes-Sousa AP, Brás-Silva C, Pires AL, Monteiro-Sousa D, Leite-Moreira AF. Urotensin II acutely increases myocardial length and distensibility: potential implications for diastolic function and ventricular remodeling. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:107-15. [PMID: 17701026 DOI: 10.1007/s00210-007-0180-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 07/12/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II (U-II) is a cyclic peptide that may be involved in cardiovascular dysfunction. In the present study, the acute effects of U-II on diastolic properties of the myocardium were investigated. Increasing concentrations of U-II (10(-8) to 10(-6) M) were added to rabbit papillary muscles in the absence (n = 15) or presence of: (1) damaged endocardial endothelium (EE; n = 9); (2) U-II receptor antagonist, urantide (10(-5) M; n = 7); (3) nitric oxide (NO) synthase inhibitor, N(G)-Nitro-L-Arginine (10(-5) M; n = 9); (4) cyclooxygenase inhibitor, indomethacin (10(-5) M; n = 8); (5) NO synthase and cyclooxygenase inhibitors, N(G)-Nitro-L-Arginine (10(-5) M) and indomethacin (10(-5) M), respectively, (n = 8); or (6) protein kinase C (PKC) inhibitor, chelerythrine (10(-5) M; n = 9). Passive length-tension relations were constructed before and after a single concentration of U-II (10(-6) M; n = 3). U-II concentration dependently decreased inotropy and increased resting muscle length (RL). At 10(-6) M, active tension decreased 13.8 +/- 5.4%, and RL increased to 1.007 +/- 0.001 L/L (max). Correcting RL to its initial value resulted in an 18.1 +/- 3.0% decrease in resting tension, indicating decreased muscle stiffness, which was also suggested by the down and rightward shift of the passive length-tension relation. This effect remained unaffected by EE damage and PKC inhibition. In contrast, the presence of urantide and NO inhibition abolished the effects of U-II on myocardial stiffness, while cyclooxygenase inhibition significantly attenuated them. U-II decreases myocardial stiffness, an effect that is mediated by the urotensin-II receptor, NO, and prostaglandins. This represents a novel mechanism of acute neurohumoral modulation of diastolic function, suggesting that U-II is an important regulator of cardiac filling.
Collapse
|
38
|
McDonald J, Batuwangala M, Lambert DG. Role of urotensin II and its receptor in health and disease. J Anesth 2007; 21:378-89. [PMID: 17680191 DOI: 10.1007/s00540-007-0524-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/15/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II (U-II) is currently the most potent vasoconstrictor identified. This action is brought about via activation of a G(q/11)-protein coupled receptor (UT receptor). U-II activation of the UT receptor increases inositol phosphate turnover and intracellular Ca(2+). In addition to producing vasoconstriction, dilation and ionotropic effects have also been described. There is considerable variation in the responsiveness of particular vascular beds from the same and different species, including humans. Receptors for U-II are located peripherally on vascular smooth muscle (contractile responses) and endothelial cells (dilatory responses via nitric oxide). In humans, plasma U-II is elevated in heart failure, renal failure, liver disease, and diabetes. Iontophoresis of U-II in healthy volunteers produces vasodilation (of the forearm) while in patients with heart failure or hypertension a constriction is observed. To date there is only one clinical study using a UT receptor antagonist (palosuran) in diabetic patients with macroalbuminuria. This antagonist reduced albumin excretion, probably by increasing renal blood flow. Studies in other disease conditions are eagerly awaited. In summary, the U-II / UT receptor system has clinical potential, and for the anesthesiologist, this novel peptide-receptor system may be of use in the intensive care unit.
Collapse
Affiliation(s)
- John McDonald
- Department of Cardiovascular Sciences, Pharmacology and Therapeutics Group, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, LRI, Leicester, LE1 5WW, UK
| | | | | |
Collapse
|
39
|
Wu YM, Xue HM, Xiao L, He RR. Urotensin II inhibits carotid sinus baroreflex in anesthetized male rats. Acta Pharmacol Sin 2007; 28:216-20. [PMID: 17241524 DOI: 10.1111/j.1745-7254.2007.00499.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To study the effects of urotensin II (UII) on the carotid sinus baroreflex (CSB). METHODS The functional curve of carotid sinus baroreflex was measured by recording changes in arterial pressure in anesthetized male rats with perfused isolated carotid sinus. RESULTS UII at the concentration of 3 nmol/L had no effect on the CSB, while at the concentration of 30, 300 and 3000 nmol/L inhibited the CSB, shifting the functional curve of the baroreflex upward and to the right. There was a marked decrease in peak slope and reflex decrease in blood pressure. These effects of UII were concentration-dependent. Pretreatment with verapamil (an antagonist of the L-type calcium channel, 10 micromol/L) partially eliminated the above effects of UII (300 nmol/L) on the CSB. Pretreatment with BIM-23127 (3 micromol/L), an antagonist of human and rat UII receptors, abolished the actions of UII on the CSB. Pretreatment with NG-nitro-L-arginine methyl ester (L-NAME) 100 micromol/L did not affect the inhibitory effects of UII (300 nmol/L) on the CSB. CONCLUSION These data suggest that UII exerts an inhibitory action on the isolated CSB. Such an action of UII is predominantly mediated by the UII receptors in vascular smooth muscles, resulting in the opening of L-type calcium channels.
Collapse
Affiliation(s)
- Yu-ming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China.
| | | | | | | |
Collapse
|
40
|
Qi JS, Schulingkamp R, Parry TJ, Colburn R, Stone D, Haertlein B, Minor LK, Andrade-Gordon P, Damiano BP. Urotensin-II induces ear flushing in rats. Br J Pharmacol 2007; 150:415-23. [PMID: 17211454 PMCID: PMC2189721 DOI: 10.1038/sj.bjp.0707006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE While investigating the effects of systemic urotensin II (U-II), a potent vasoactive peptide acting at the UT receptor, we observed ear pinna flushing after systemic administration to conscious rats. In the present study, U-II-induced ear flushing was quantified in terms of ear pinna temperature change and potential mechanisms were explored. EXPERIMENTAL APPROACH U-II-induced ear flushing was quantified by measuring lateral ear pinna temperature changes and compared to that of calcitonin gene-related peptide (CGRP), a known cutaneous vasodilator. Further, the effects of a variety of pharmacological agents on U-II-induced ear flushing were explored. KEY RESULTS Subcutaneous injection of U-II (9 microg kg(-1))produced localized ear pinna flushing with an onset of approximately 15 min, a duration of approximately 30 min and a maximal temperature change of 9 degrees C. In contrast, CGRP caused cutaneous flushing within multiple cutaneous beds including the ear pinna with a shorter onset and greater duration than U-II. A potent UT receptor antagonist, urantide, blocked U-II-induced ear flushing but did not affect CGRP-induced ear flushing. Pretreatment with indomethacin or L-Nomega-nitroarginine methylester (L-NAME) abolished U-II-induced ear flushing. Mecamylamine or propranolol did not affect this response to U-II. Direct intracerebroventricular injection studies suggested that the ear flushing response to U-II was not mediated directly by the CNS. CONCLUSION AND IMPLICATIONS Our results suggest that U-II-induced ear flushing and temperature increase is mediated by peripheral activation of the UT receptor and involves prostaglandin- and nitric oxide-mediated vasodilation of small capillary beds in the rat ear pinna.
Collapse
Affiliation(s)
- J-S Qi
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - R Schulingkamp
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - T J Parry
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - R Colburn
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - D Stone
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - B Haertlein
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - L K Minor
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - P Andrade-Gordon
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
| | - B P Damiano
- Johnson and Johnson Pharmaceutical Research and Development Spring House, PA, USA
- Author for correspondence:
| |
Collapse
|
41
|
Gardiner SM, March JE, Kemp PA, Maguire JJ, Kuc RE, Davenport AP, Bennett T. Regional heterogeneity in the haemodynamic responses to urotensin II infusion in relation to UT receptor localisation. Br J Pharmacol 2006; 147:612-21. [PMID: 16314853 PMCID: PMC1751348 DOI: 10.1038/sj.bjp.0706503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of the study was to measure regional haemodynamic responses to 6 h infusions of human urotensin II (hUII), to identify possible mediators of the effects observed, and to relate the findings to the distribution of urotensin II receptors (UT receptors). Male, Sprague-Dawley rats had pulsed Doppler flow probes and intravascular catheters implanted for measurement of regional haemodynamics in the conscious, freely moving state. Infusions of saline (0.4 ml h(-1)) or hUII (30, 300 and 3,000 pmol kg(-1) h(-1)) were given i.v. for 6 h, and the effects of pretreatment with indomethacin (5 mg kg(-1) h(-1)), N(G)-nitro-L-arginine methyl ester (L-NAME, 3 mg kg(-1) h(-1)) or propranolol (1 mg kg(-1); 0.5 mg kg(-1) h(-1)) on responses to hUII (300 pmol kg(-1) h(-1) for 6 h) were assessed. Cellular localisation of UT receptor-like immunoreactivity was determined in relevant tissues. hUII caused dose-dependent tachycardia and hindquarters vasodilatation, accompanied by a slowly developing rise in blood pressure. Haemodynamic effects of hUII were attenuated by propranolol or L-NAME and abolished by indomethacin. UT receptor-like immunoreactivity was detected in skeletal and vascular smooth muscle. The findings indicate that in conscious rats, infusions of hUII cause vasodilatation, which, of the vascular beds monitored, is selective for the hindquarters and dependent on cyclooxygenase products and nitric oxide. The pressor effect of hUII under these conditions is likely to be due to an increase in cardiac output, possibly due to a positive inotropic effect. UT receptor-like immunoreactivity present in skeletal muscle is consistent with the haemodynamic pattern.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Blood Pressure
- Cyclooxygenase Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Heart Rate
- Hemodynamics/drug effects
- Hindlimb
- Indomethacin/pharmacology
- Infusions, Intravenous
- Male
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Propranolol/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Regional Blood Flow
- Urotensins/administration & dosage
- Urotensins/pharmacology
- Vasodilation
Collapse
Affiliation(s)
- Sheila M Gardiner
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, University of Nottingham, Nottingham NG7 2UH.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lacza Z, W Busija D. Urotensin-II is a nitric oxide-dependent vasodilator in the pial arteries of the newborn pig. Life Sci 2006; 78:2763-6. [PMID: 16337243 DOI: 10.1016/j.lfs.2005.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 11/01/2005] [Indexed: 11/25/2022]
Abstract
Urotensin-II (UT-II) is a small circular peptide and is described as the most potent endogenous vasoconstrictor in various vascular beds. However, the in vivo effects of UT-II can be either vasoconstriction or vasodilation depending on the species and the tissue investigated. The present study sought to characterize the vasoactive effect of UT-II in the piglet cerebral circulation in vivo. Pial arteries of 99 +/- 6 microm were visualized with intravital microscopy through a closed cranial window in anesthetized newborn piglets. Topical application of UT-II elicited a weak dose-dependent vasodilation of the arteries (0.001 microM: 3 +/- 3 microm, 0.1 microM: 10 +/- 5 microm, 10 microM: 14 +/- 7 microm). Smaller arteries with an initial diameter below 100 microm showed minimal or no vasodilation, while larger arteries between 100 and 120 microm had a pronounced dose-dependent effect. Systemic application of 15 mg/kg Nomega-nitro-L-arginine-methyl ester (L-NAME) completely inhibited the vasodilation. We conclude that UT-II, in contrast to most other vascular beds, is a weak NO-dependent vasodilator in the piglet pial vasculature.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Physiology/Pharmacology, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
43
|
Song W, McDonald J, Camarda V, Calo G, Guerrini R, Marzola E, Thompson JP, Rowbotham DJ, Lambert DG. Cell and tissue responses of a range of Urotensin II analogs at cloned and native urotensin II receptors. Evidence for coupling promiscuity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2006; 373:148-57. [PMID: 16596397 DOI: 10.1007/s00210-006-0057-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Urotensin II (U-II) is the peptide ligand for the G-protein-coupled U-II receptor (UT). U-II has been dubbed "the most potent vasoconstrictor identified to date". However, in vivo studies with this system are hampered by the paucity of available ligands. Here, we characterise Chinese hamster ovary (CHO) cells expressing the human UT receptor in the following assays; (1) [(125)I]U-II binding, (2) GTPgamma[(35)S] binding, (3) cAMP formation, and (4) intracellular Ca(2+). We assess activity of 9 U-II analogues using these paradigms and examine their ability to contract isolated rat aorta. CHO(hUT) cells bound [(125)I]U-II with a B (max) and K (d) of 1,110+/-70 fmol/mg protein and 742 pM, respectively. hU-II stimulated GTPgamma[(35)S] binding (pEC(50) 8.38), optimal at low (0.1 muM) GDP concentrations. The hU-II GTPgamma[(35)S] response was partially PTx sensitive and there was a potent (pEC(50) 9.23) low efficacy ( approximately 20% inhibition) coupling to adenylyl cyclase. In CHO(hUT) cells hU-II stimulates calcium release from intracellular stores (pEC(50) 8.80) and calcium influx in a PTx-insensitive manner. In our structure-activity relationship study most ligands acted as full agonists. However, urantide behaved as a partial agonist (pEC(50) 7.67/pK(B) 7.55) in GTPgamma[(35)S] binding, a full agonist (pEC(50) 8.11) for increases in intracellular Ca(2+) and a competitive antagonist in the rat aorta bioassay (pK(B) 8.59). Collectively, these data show promiscuity at high expression and indicate the need for careful multi-assay evaluation of novel U-II analogues. Further modification of urantide, in order to eliminate residual agonist activity and to identify novel ligands for in vivo cardiovascular studies are clearly warranted.
Collapse
Affiliation(s)
- Wei Song
- University Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Song W, Abdel-Razik AES, Lu W, Ao Z, Johns DG, Douglas SA, Balment RJ, Ashton N. Urotensin II and renal function in the rat. Kidney Int 2006; 69:1360-8. [PMID: 16531985 DOI: 10.1038/sj.ki.5000290] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is a potent vasoactive hormone in mammals. However, despite its well-known effects on epithelial sodium transport in fish, little is known about its actions on the mammalian kidney. The aim of this study was to determine the effects of UII on renal function in the rat. Using standard clearance methods, the effects of rUII and the rat UII receptor (UT) antagonist, urantide, were studied. UII was measured in plasma and urine by radioimmunoassay. UII and UT were localized in the kidney by immunohistochemistry and mRNA expression quantified. Rat urinary [UII] was 1,650-fold higher than that in plasma. Immunoreactive-UII was localized to the proximal tubules, outer and inner medullary collecting ducts (IMCD); UT receptor was identified in glomerular arterioles, thin ascending limbs, and IMCD. UII and UT mRNA expression was greater in the medulla; expression was higher still in spontaneously hypertensive rats (SHRs) associated with raised plasma (UII). Injection of rUII induced reductions in glomerular filtration rate (GFR), urine flow, and sodium excretion. Urantide infusion resulted in increases in these variables. Endogenous UII appears to contribute to the regulation of GFR and renal sodium and water handling in the rat. While hemodynamic changes predominate, we cannot rule out the possibility of a direct tubular action of UII. Increased expression of UII and UT in the SHR suggests that UII plays a role in the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- W Song
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zoccali C, Mallamaci F, Tripepi G, Cutrupi S, Pizzini P, Malatino L. Urotensin II is an inverse predictor of incident cardiovascular events in end-stage renal disease. Kidney Int 2006; 69:1253-8. [PMID: 16508659 DOI: 10.1038/sj.ki.5000114] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UTN) is a vasoactive substance that may induce vasoconstriction or vasodilatation. Although this peptide is seen as a vasculotoxic substance, to date there is no prospective study examining the relationship between UTN and hard end points like cardiovascular (CV) events. UTN is much increased in end-stage renal disease (ESRD) and this disease may represent a useful natural model to explore the relationship between UTN and CV outcomes. In this study, we analysed the relationship between plasma UTN and incident CV events (fatal and non-fatal) in a cohort of 191 haemodialysis patients followed up for an average time of 3.6 years (range 0.07-5.8 years). Plasma UTN in haemodialysis patients (median: 6.5 ng/ml) was twice higher than in healthy subjects (median: 3.3 ng/ml). During the follow-up period, 94 patients died and 88 had incident fatal and non-fatal CV events. UTN was significantly lower in patients with incident CV events (median: 5.3 ng/ml) than in events-free patients (median: 7.1 ng/ml), and in a Kaplan-Meier analysis, high UTN was strongly and inversely associated with incident CV events (P<0.001). Multivariate Cox's regression analysis fully confirmed plasma UTN as an inverse predictor of adverse CV outcomes, and in this analysis, UTN resulted to be the third factor in rank, after age and diabetes, explaining the incidence of CV events. UTN is an inverse predictor of CV outcomes in ESRD. Our data suggest that UTN should not be necessarily seen as a vasculotoxic peptide in haemodialysis patients.
Collapse
Affiliation(s)
- C Zoccali
- CNR-IBIM, Institute of Biomedicine, Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension & Division of Nephrology, Dialysis and Transplantation, Reggio Calabria, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Balment RJ, Song W, Ashton N. Urotensin II: Ancient Hormone with New Functions in Vertebrate Body Fluid Regulation. Ann N Y Acad Sci 2006; 1040:66-73. [PMID: 15891007 DOI: 10.1196/annals.1327.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Urotensin II (UII), described in many fish species, is secreted by the caudal neurosecretory system, a unique fish neuroendocrine structure. We have examined UII secretion and its control in euryhaline fish, supporting a proposed role in osmoregulation. However, it is now apparent that UII is present in other vertebrates, including mammals. The 12-amino-acid peptide has been highly conserved and the key cyclic region is common from fish to humans. Our UII radioimmunoassay for flounder, directed to this cyclic region, has shown circulating UII levels in humans and rats comparable with those in fish. In mammals, UII cardiovascular effects vary between species, with vasoconstriction only evident in specific vascular beds. The kidney expresses UII receptors and responds to UII administration by a reduction in glomerular filtration rate, urine flow, and excretion of the major ions. Interestingly, plasma levels of UII are chronically elevated in rat models of hypertension. These observations imply an unforeseen role for this ancient fish hormone in the physiological and perhaps pathophysiological regulation of body fluids in higher vertebrates, including humans.
Collapse
Affiliation(s)
- R J Balment
- Faculty of Life Sciences, University of Manchester, UK.
| | | | | |
Collapse
|
47
|
Ovcharenko E, Abassi Z, Rubinstein I, Kaballa A, Hoffman A, Winaver J. Renal effects of human urotensin-II in rats with experimental congestive heart failure. Nephrol Dial Transplant 2006; 21:1205-11. [PMID: 16396970 DOI: 10.1093/ndt/gfk049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Urotensin II (U-II) and its receptor GPR-14 are expressed in the kidney and the cardiovascular system of various mammalian species. Recent studies suggested that the U-II/GPR-14 system is upregulated in patients with congestive heart failure (CHF). However, the involvement of the peptide in the alterations of renal function in CHF remains unknown. METHODS The effects of incremental doses (1.0-100.0 nmol/kg) of human U-II (hU-II) on renal haemodynamic and clearance parameters were assessed in rats with an aorto-caval fistula, an experimental model of CHF, and sham controls. Additionally, the effects of pre-treatment with the nitric oxide (NO) synthase blocker, nitro-L-arginine methyl ester (L-NAME), and the cyclooxygenase inhibitor, indomethacin, on the renal haemodynamic response to hU-II were studied in CHF rats. RESULTS hU-II caused a decrease in mean arterial pressure in control and CHF rats. In controls, hU-II did not alter renal blood flow (RBF), and caused a minimal decrease (-12.5%) in renal vascular resistance (RVR). However, in CHF rats, the peptide induced a marked increase in RBF (+28%) and a decrease in RVR (-21.5%). These effects were attenuated by L-NAME, but not by indomethacin. Furthermore, hU-II caused a significant increase (+29%) in glomerular filtration rate (GFR) in CHF rats, whereas GFR tended to decrease in controls. Sodium excretion was not altered in control or in CHF rats in response to hU-II. CONCLUSIONS hU-II exerts an NO-dependent renal vasodilatation that is more pronounced in rats with CHF. The data further suggest that the U-II/GPR-14 system may be involved in the regulation of renal haemodynamics in CHF.
Collapse
Affiliation(s)
- Elena Ovcharenko
- Department of Physiology and Biophysics, Faculty of Medicine, Technion, IIT, PO Box 9649, Haifa, 31096, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Egginger JG, Calas A. A novel hypothalamic neuroendocrine peptide: URP (urotensin-II-related peptide)? C R Biol 2005; 328:724-31. [PMID: 16125650 DOI: 10.1016/j.crvi.2005.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Urotensin-II-related peptide (URP) is an eight-amino-acid peptide recently isolated from rat brain and considered as the endogenous ligand for the urotensin-II receptor. Immunohistochemical treatment of mouse brain sections with anti-URP antibodies revealed numerous immunopositive fibres in the median eminence and vascular organ of the lamina terminalis as well as labelled cell bodies, mainly in the preoptic area. In consecutive serial sections, in situ hybridization demonstrated URP-mRNA in neuronal perikarya. Double-immunofluorescence labelling showed a co-localization of URP and GnRH in fibres and cell bodies. These results suggest the existence of URP as a novel hypothalamic neuroendocrine peptide co-localized and possible co-released with GnRH.
Collapse
Affiliation(s)
- Johann-Günther Egginger
- CNRS UMR 7101, université Pierre-et-Marie-Curie, Paris-6, 7, quai Saint-Bernard, 75252 Paris cedex 05, France.
| | | |
Collapse
|
49
|
Ishihata A, Ogaki T, Aita T, Katano Y. Role of prostaglandins in urotensin II-induced vasodilatation in the coronary arteries of aged rats. Eur J Pharmacol 2005; 523:119-26. [PMID: 16226251 DOI: 10.1016/j.ejphar.2005.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/08/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Endothelial function is modulated by aging. The objective of this study was to elucidate whether aging influences urotensin II-induced coronary vasodilatation, and whether aging influences the production of endothelial factors in response to urotensin II. We examined the effects of urotensin II on coronary flow in Langendorff-perfused rat hearts. The production of nitric oxide (NO), prostacyclin and prostaglandin (PG)E2 were determined in the coronary effluent of both young and aged rats. Urotensin II increased coronary flow in Langendorff-perfused hearts in both young and aged rats and vasodilation did not differ between young and aged rats. Pretreatment with a NO synthase inhibitor, NG-nitro-L-arginine (L-NNA), significantly inhibited urotensin II-induced vasodilatation in young rats, but not in aged rats. In addition, urotensin II increased the production of NO only in young rats. On the other hand, the cyclooxygenase inhibitor diclofenac significantly attenuated the urotensin II-induced coronary vasodilatation in both young and aged rats. Urotensin II markedly increased the release of the vasodilating prostacyclin and PGE2 into the coronary effluent. Production of these prostanoids was maintained even in the aged coronary arteries. These results indicate that the production of NO in the endothelium of coronary arteries is impaired in aged rats, and that prostacyclin and PGE2 may play an important role in regulating urotensin II-induced coronary vasodilatation.
Collapse
Affiliation(s)
- Akira Ishihata
- Department of Physiology I, Yamagata University School of Medicine, 2-2-2, Iida-Nishi, Yamagata, 990-9585, Japan.
| | | | | | | |
Collapse
|
50
|
Giebing G, Tölle M, Jürgensen J, Eichhorst J, Furkert J, Beyermann M, Neuschäfer-Rube F, Rosenthal W, Zidek W, van der Giet M, Oksche A. Arrestin-Independent Internalization and Recycling of the Urotensin Receptor Contribute to Long-Lasting Urotensin II–Mediated Vasoconstriction. Circ Res 2005; 97:707-15. [PMID: 16141412 DOI: 10.1161/01.res.0000184670.58688.9f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Urotensin II (UII), which acts on the G protein-coupled urotensin (UT) receptor, elicits long-lasting vasoconstriction. The role of UT receptor internalization and intracellular trafficking in vasoconstriction has yet not been analyzed. Therefore, UII-mediated contractile responses of aortic ring preparations in wire myography and rat UT (rUT) receptor internalization and intracellular trafficking in binding and imaging analyses were compared. UII elicited a concentration-dependent vasoconstriction of rat aorta (-log EC50, mol/L:9.0+/-0.1). A second application of UII after 30 minutes elicited a reduced contraction (36+/-4% of the initial response), but when applied after 60 minutes elicited a full contraction. In internalization experiments with radioactive labeled VII ((125)I-UII), approximately 70% of rUT receptors expressed on the cell surface of human embryonic kidney 293 cells were sequestered within 30 minutes (half life [t(h)]: 5.6+/-0.2 minutes), but recycled quantitatively within 60 minutes (t(h) 31.9+/-2.6 minutes). UII-bound rUT receptors were sorted to early and recycling endosomes, as evidenced by colocalization of rUT receptors with the early endosomal antigen and the transferrin receptor. Real-time imaging with a newly developed fluorescent UII (Cy3-UII) revealed that rUT receptors recruited arrestin3 green fluorescent protein to the plasma membrane. Arrestin3 was not required for the endocytosis of the rUT receptor, however, as internalization of Cy3-UII was not altered in mouse embryonic fibroblasts lacking endogenous arrestin2/arrestin3 expression. The data demonstrate that the rUT receptor internalizes arrestin independently and recycles quantitatively. The continuous externalization of rUT receptors provides the basis for repetitive and lasting UII-mediated vasoconstriction.
Collapse
Affiliation(s)
- Günter Giebing
- Med. Klinik IV-Nephrologie, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|