1
|
McMahon DB, Carey RM, Kohanski MA, Adappa ND, Palmer JN, Lee RJ. PAR-2-activated secretion by airway gland serous cells: role for CFTR and inhibition by Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2021; 320:L845-L879. [PMID: 33655758 DOI: 10.1152/ajplung.00411.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway submucosal gland serous cells are important sites of fluid secretion in conducting airways. Serous cells also express the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor that activates secretion from intact airway glands. We tested if and how human nasal serous cells secrete fluid in response to PAR-2 stimulation using Ca2+ imaging and simultaneous differential interference contrast imaging to track isosmotic cell shrinking and swelling reflecting activation of solute efflux and influx pathways, respectively. During stimulation of PAR-2, serous cells exhibited dose-dependent increases in intracellular Ca2+. At stimulation levels >EC50 for Ca2+, serous cells simultaneously shrank ∼20% over ∼90 s due to KCl efflux reflecting Ca2+-activated Cl- channel (CaCC, likely TMEM16A)-dependent secretion. At lower levels of PAR-2 stimulation (<EC50 for Ca2+), shrinkage was not evident due to failure to activate CaCC. Low levels of cAMP-elevating VIP receptor (VIPR) stimulation, also insufficient to activate secretion alone, synergized with low-level PAR-2 stimulation to elicit fluid secretion dependent on both cAMP and Ca2+ to activate CFTR and K+ channels, respectively. Polarized cultures of primary serous cells also exhibited synergistic fluid secretion. Pre-exposure to Pseudomonas aeruginosa conditioned media inhibited PAR-2 activation by proteases but not peptide agonists in primary nasal serous cells, Calu-3 bronchial cells, and primary nasal ciliated cells. Disruption of synergistic CFTR-dependent PAR-2/VIPR secretion may contribute to reduced airway surface liquid in CF. Further disruption of the CFTR-independent component of PAR-2-activated secretion by P. aeruginosa may also be important to CF pathophysiology.
Collapse
Affiliation(s)
- Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Kohanski
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Sponchiado M, Liao YS, Atanasova KR, Collins EN, Schurmann V, Bravo L, Reznikov LR. Overexpression of Substance P in pig airways increases MUC5AC through an NF-kβ pathway. Physiol Rep 2021; 9:e14749. [PMID: 33580593 PMCID: PMC7881348 DOI: 10.14814/phy2.14749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Substance P (SP) is a tachykinin that regulates airway mucous secretion in both health and disease. Our study aimed to determine whether overexpression of SP without pre‐existing inflammation was sufficient to induce changes in mucin secretion and transport in small airways. Utilizing porcine precision‐cut lung slices, we measured the impact of AAV‐mediated overexpression of SP on airway physiology ex vivo. Immunofluorescence signal intensity for MUC5AC was significantly increased in SP‐overexpressed precision‐cut lung slices compared to GFP controls. No difference in MUC5B signal intensity between treatments was detected. SP‐overexpressed precision‐cut lung slices also exhibited decreased IL10 mRNA, an important inhibitor of mucous cell metaplasia. Overt deficits in mucociliary transport were not noted, though a trend for decreased mean transport speed was detected in methacholine‐challenged airways overexpressing SP compared to GFP controls. Pharmacologic inhibition of the NF‐kβ pathway abrogated the effects of overexpression of SP on both MUC5AC and IL10. Collectively, these data suggest that overexpression of SP in the absence of existing inflammation increases MUC5AC via activation of the NF‐kβ pathway. Thus, these data further highlight SP as a key driver of abnormal mucous secretion and underscore NF‐kβ signaling as a pathway of potential therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Yan-Shin Liao
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Emily N Collins
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Veronica Schurmann
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Laura Bravo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Brodskaya TA, Nevzorova VA, Vasileva MS, Lavrenyuk VV. [Endothelium-related and neuro-mediated mechanisms of emphysema development in chronic obstructive pulmonary disease]. TERAPEVT ARKH 2020; 92:116-124. [PMID: 32598803 DOI: 10.26442/00403660.2020.03.000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Emphysema is one of the main manifestations of chronic obstructive pulmonary disease (COPD), and smoking is one of the most significant risk factors. The results of studies in humans and animals show the vascular endothelium initiates and modulates the main pathological processes in COPD and smoking is an important factor initiating, developing and persisting inflammation and remodeling of blood vessels and tissues, including the destruction of small respiratory tracts with the development of lung tissue destruction and emphysema. The latest studies describe mechanisms not just associated with the endothelium, but specific neuro-mediated mechanisms. There is reason to believe that neuro-mediated and neuro-similar mechanisms associated and not related to endothelial dysfunction may play the significant role in the pathogenesis of COPD and emphysema formation. Information about components and mechanisms of neurogenic inflammation in emphysema development is fragmentary and not systematized in the literature. It is described that long-term tobacco smoking can initiate processes not only of cells and tissues damage, but also become a trigger for excessive release of neurotransmitters, which entails whole cascades of adverse reactions that have an effect on emphysema formation. With prolonged and/or intensive stimulation of sensor fibers, excessive release of neuropeptides is accompanied by a number of plastic and destructive processes due to a cascade of pathological reactions of neurogenic inflammation, the main participants of which are classical neuropeptides and their receptors. The most important consequences can be the maintenance and stagnation of chronic inflammation, activation of the mechanisms of destruction and remodeling, inadequate repair processes in response to damage, resulting in irreversible loss of lung tissue. For future research, there is interest to evaluate the possibilities of therapeutic and prophylactic effects on neuro-mediated mechanisms of endothelial dysfunction and damage emphysema in COPD and smoking development.
Collapse
|
4
|
Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018; 19:149. [PMID: 30081920 PMCID: PMC6090699 DOI: 10.1186/s12931-018-0846-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
The nervous system mediates key airway protective behaviors, including cough, mucus secretion, and airway smooth muscle contraction. Thus, its involvement and potential involvement in several airway diseases has become increasingly recognized. In the current review, we focus on the contribution of select neuropeptides in three distinct airway diseases: asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. We present data on some well-studied neuropeptides, as well as call attention to a few that have not received much consideration. Because mucus hypersecretion and mucus obstruction are common features of many airway diseases, we place special emphasis on the contribution of neuropeptides to mucus secretion. Finally, we highlight evidence implicating involvement of neuropeptides in mucus phenotypes in asthma, COPD and cystic fibrosis, as well as bring to light knowledge that is still lacking in the field.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
5
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
6
|
Lee RJ, Foskett JK. Ca²⁺ signaling and fluid secretion by secretory cells of the airway epithelium. Cell Calcium 2014; 55:325-36. [PMID: 24703093 DOI: 10.1016/j.ceca.2014.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic Ca(2+) is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca(2+) in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca(2+). Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca(2+) as a second messenger. Changes in intracellular Ca(2+) concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca(2+)-activated K(+) channels and Cl(-) channels. We also review evidence of interactions of Ca(2+) signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca(2+) signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
7
|
Khansaheb M, Choi JY, Joo NS, Yang YM, Krouse M, Wine JJ. Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 2011; 300:L370-9. [DOI: 10.1152/ajplung.00372.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161–3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC50 = 19 μM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTRinh-172, but not by niflumic acid. Serosal SubP (EC50 = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a Vmax similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO3−, and 85% by bumetanide + removal of HCO3−; it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca2+-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca2+ concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca2+-activated Cl− channels.
Collapse
Affiliation(s)
- Monal Khansaheb
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jae Young Choi
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
- Department of Otorhinolaryngology, Yonsei University, and
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Yu-Mi Yang
- Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Mauri Krouse
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
8
|
Corboz MR, Rivelli MA, Eckel SP. Bronchoconstrictor effect of the tachykinin NK3-receptor agonists [MePhe7]-neurokinin B and senktide in the isolated guinea pig lung. Exp Lung Res 2010; 36:509-21. [DOI: 10.3109/01902141003777582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Abstract
PURPOSE To investigate gene and protein expression profiles of neural receptors found in the mouse meibomian gland. RNA and protein levels were determined for neuropeptide Y (NPY) receptor, vasoactive intestinal peptide (VIP) receptor, substance P (SP) receptor, and muscarinic cholinergic receptor (mAChR) subtypes M1-M5 in the mouse meibomian gland. METHODS Frozen sections of Balb/c mouse eyelids were subjected to laser capture microdissection to isolate pure samples of meibomian gland ductal and acinar cells. Real-time polymerase chain reaction, immunolabeling, and Western blot analysis for SP receptor, VIP receptor, NPY receptor, and mAChR subtypes M1-M5 were performed on meibomian gland ductal and acinar cells. RESULTS Expression of NPY1 receptor, VIP receptor 1, SP receptor, and all 5 mAChR subtypes was found in all meibomian gland ductal and acinar cells analyzed by real-time polymerase chain reaction. Immunolabeling and Western blot analysis confirmed the presence of NPY1 receptor, VIP receptor 1, SP receptor, and all 5 mAChR subtypes in the meibomian gland. The levels were variable with the duct showing greater levels of NPY1 receptor, SP receptor, and mAChRs 1, 2, 4, and 5 than with the gland. CONCLUSIONS VIP receptor 1, SP receptor, NPY1 receptor, and mAChR subtypes may be involved in the regulation of meibomian gland secretion. Laser capture microdissection in conjunction with gene expression analysis provides an excellent approach for studying meibomian gland cells about which relatively little is known at the molecular level.
Collapse
|
10
|
Choi JY, Khansaheb M, Joo NS, Krouse ME, Robbins RC, Weill D, Wine JJ. Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process. J Clin Invest 2009; 119:1189-200. [PMID: 19381016 DOI: 10.1172/jci37284] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/25/2009] [Indexed: 11/17/2022] Open
Abstract
Chronic bacterial airway infections are the major cause of mortality in cystic fibrosis (CF). Normal airway defenses include reflex stimulation of submucosal gland mucus secretion by sensory neurons that release substance P (SubP). CFTR is an anion channel involved in fluid secretion and mutated in CF; the role of CFTR in secretions stimulated by SubP is unknown. We used optical methods to measure SubP-mediated secretion from human submucosal glands in lung transplant tissue. Glands from control but not CF subjects responded to mucosal chili oil. Similarly, serosal SubP stimulated secretion in more than 60% of control glands but only 4% of CF glands. Secretion triggered by SubP was synergistic with vasoactive intestinal peptide and/or forskolin but not with carbachol; synergy was absent in CF glands. Pig glands demonstrated a nearly 10-fold greater response to SubP. In 10 of 11 control glands isolated by fine dissection, SubP caused cell volume loss, lumen expansion, and mucus flow, but in 3 of 4 CF glands, it induced lumen narrowing. Thus, in CF, the reduced ability of mucosal irritants to stimulate airway gland secretion via SubP may be another factor that predisposes the airways to infections.
Collapse
|
11
|
Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. Substance P stimulates CFTR-dependent fluid secretion by mouse tracheal submucosal glands. Pflugers Arch 2008; 457:529-37. [DOI: 10.1007/s00424-008-0527-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 05/07/2008] [Indexed: 11/24/2022]
|
12
|
Tsuchida H, Takahashi S, Nosaka E, Mukaiyama O, Yamashita M, Morimoto K. Novel triple neurokinin receptor antagonist CS-003 strongly inhibits neurokinin related responses. Eur J Pharmacol 2008; 586:306-12. [DOI: 10.1016/j.ejphar.2008.02.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
13
|
Ballard ST, Spadafora D. Fluid secretion by submucosal glands of the tracheobronchial airways. Respir Physiol Neurobiol 2007; 159:271-7. [PMID: 17707699 PMCID: PMC2753881 DOI: 10.1016/j.resp.2007.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 06/27/2007] [Accepted: 06/29/2007] [Indexed: 11/21/2022]
Abstract
Submucosal glands of the tracheobronchial airways provide the important functions of secreting mucins, antimicrobial substances, and fluid. This review focuses on the ionic mechanism and regulation of gland fluid secretion and examines the possible role of gland dysfunction in the lethal disease cystic fibrosis (CF). The fluid component of gland secretion is driven by the active transepithelial secretion of both Cl(-) and HCO(3)(-) by serous cells. Gland fluid secretion is neurally regulated with acetylcholine, substance P, and vasoactive intestinal peptide (VIP) playing prominent roles. The cystic fibrosis transmembrane conductance regulator (CFTR) is present in the apical membrane of gland serous cells and mediates the VIP-induced component of liquid secretion whereas the muscarinic component of liquid secretion appears to be at least partially CFTR-independent. Loss of CFTR function, which occurs in CF disease, reduces the capacity of glands to secrete fluid but not mucins. The possible links between the loss of fluid secretion capability and the complex airway pathology of CF are discussed.
Collapse
Affiliation(s)
- Stephen T Ballard
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | | |
Collapse
|
14
|
Wine JJ. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci 2007; 133:35-54. [PMID: 17350348 PMCID: PMC1989147 DOI: 10.1016/j.autneu.2007.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/20/2007] [Accepted: 01/22/2007] [Indexed: 11/20/2022]
Abstract
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences.
Collapse
Affiliation(s)
- Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, Room 450, Bldg. 420, Main Quad, Stanford University, Stanford, CA 94305-2130, USA.
| |
Collapse
|
15
|
Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice. J Physiol 2007; 580:301-14. [PMID: 17204498 PMCID: PMC2075436 DOI: 10.1113/jphysiol.2006.123653] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Submucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas. Thus, they offer the possibility of studying whether, and if so how, abnormal submucosal gland function contributes to CF airway disease. We used optical methods to study fluid secretion by individual glands in tracheas from normal, wild-type (WT) mice and from cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice (Cftr(m1UNC)/Cftr(m1UNC); CF mice). Glands from WT mice qualitatively resembled those in humans by responding to carbachol and vasoactive intestinal peptide (VIP), although the relative rates of VIP- and forskolin-stimulated secretion were much lower in mice than in large mammals. The pharmacology of mouse gland secretion was also similar to that in humans; adding bumetanide or replacement of HCO(3)(-) by Hepes reduced the carbachol response by approximately 50%, and this inhibition increased to 80% when both manoeuvres were performed simultaneously. It is important to note that glands from CFTR knockout mice responded to carbachol but did not secrete when exposed to VIP or forskolin, as has been shown previously for glands from CF patients. Tracheal glands from WT and CF mice both had robust secretory responses to electrical field stimulation that were blocked by tetrodotoxin. It is interesting that local irritation of the mucosa using chili pepper oil elicited secretion from WT glands but did not stimulate glands from CF mice. These results clarify the mechanisms of murine submucosal gland secretion and reveal a novel defect in local regulation of glands lacking CFTR which may also compromise airway defence in CF patients.
Collapse
Affiliation(s)
- Juan P Ianowski
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6.
| | | | | | | |
Collapse
|
16
|
Canning BJ. Neurokinin3 receptor regulation of the airways. Vascul Pharmacol 2006; 45:227-34. [PMID: 16945590 DOI: 10.1016/j.vph.2005.08.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/22/2022]
Abstract
Neurokinin(3) (NK(3)) receptors may regulate the airways primarily through actions on the nerves. In the periphery, airway parasympathetic ganglia neurons are depolarized following NK(3) receptor activation resulting subsequently in the facilitation of synaptic transmission. Such an effect may account for the excessive parasympathetic reflex effects (e.g. airway smooth muscle contraction, vascular engorgement, mucus secretion) associated with asthma and chronic obstructive pulmonary disease (COPD). In the central nervous system (CNS), NK(3) receptor activation may regulate airway vagal afferent relay neurons, rendering them hyperresponsive to parallel inputs from glutamate containing afferent nerves. This process is analogous to the process of central sensitization regulating hyperalgesia and pain in somatic tissues. In both the CNS and in the airways, NK(3) receptors are likely activated by either substance P and/or neurokinin A (NKA), both of which are full agonists at NK(3) receptors, as there is little evidence that airway nerves express neurokinin B (NKB). Evidence for other potential sites of regulation by NK(3) receptors in the airways (e.g. vasculature, airway smooth muscle, epithelium, mucus glands) is either inconclusive or conflicting.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, Maryland 21224, United States.
| |
Collapse
|
17
|
De Swert KO, Joos GF. Extending the understanding of sensory neuropeptides. Eur J Pharmacol 2006; 533:171-81. [PMID: 16464447 DOI: 10.1016/j.ejphar.2005.12.066] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 12/13/2005] [Indexed: 11/22/2022]
Abstract
The tachykinins substance P and neurokinin A are present in human airways, in sensory nerves and immune cells. Tachykinins can be recovered from the airways after inhalation of ozone, cigarette smoke or allergen. They interact in the airways with tachykinin NK1, NK2 and NK3 receptors to cause bronchoconstriction, plasma protein extravasation, and mucus secretion and to attract and activate immune cells. In preclinical studies they have been implicated in the pathophysiology of asthma and chronic obstructive pulmonary disease, including allergen- and cigarette smoke induced airway inflammation and bronchial hyperresponsiveness and mucus secretion. Dual NK1/NK2 or triple NK1/NK2/NK3 tachykinin receptor antagonists offer therapeutic potential in airway diseases such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Katelijne O De Swert
- Department of Respiratory Diseases, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | | |
Collapse
|
18
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a major and increasing global health problem that is now a leading cause of death. COPD is associated with a chronic inflammatory response, predominantly in small airways and lung parenchyma, which is characterized by increased numbers of macrophages, neutrophils, and T lymphocytes. The inflammatory mediators involved in COPD have not been clearly defined, in contrast to asthma, but it is now apparent that many lipid mediators, inflammatory peptides, reactive oxygen and nitrogen species, chemokines, cytokines, and growth factors are involved in orchestrating the complex inflammatory process that results in small airway fibrosis and alveolar destruction. Many proteases are also involved in the inflammatory process and are responsible for the destruction of elastin fibers in the lung parenchyma, which is the hallmark of emphysema. The identification of inflammatory mediators and understanding their interactions is important for the development of anti-inflammatory treatments for this important disease.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse St, London SW3 6LY, United Kingdom.
| |
Collapse
|
19
|
Duffy RA. Potential therapeutic targets for neurokinin-1 receptor antagonists. Expert Opin Emerg Drugs 2005. [DOI: 10.1517/14728214.9.1.9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Riechelmann H. Cellular and molecular mechanisms in environmental and occupational inhalation toxicology. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2004; 3:Doc02. [PMID: 22073044 PMCID: PMC3199796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The central issue of this review are inflammatory changes that take place in the mucous membranes of the respiratory tract as a result of inhaled pollutants. Of particular relevance are dusts, SO(2), ozone, aldehydes und volatile organic compounds. Bioorganic pollutants, especially fragments of bacteria and fungi, occur predominantly in indoor dusts. They activate the toll-like/IL-1 receptor and lead to the activation of the transcription factor NF-κB for the release of numerous proinflammatory cytokines. Metals are predominant in ambient air dust particles. They induce the release of reactive oxygen species that cause damage to lipids, proteins and the DNA of the cell. As well as NF-κB, transcription factors that foster proliferation are activated via stress activated protein kinases. Organic compounds such as polycyclic aromatic hydrocarbons and nitroso-compounds of incomplete combustion processes activate additional via the cytosolic arylhydrocarbon receptor for detoxification enzymes. Sulphur dioxide leads to acid stress, and ozone to oxidative stress of the cell. This is accompanied by the release of proinflammatory cytokines via stress activated protein kinases. Aldehydes and volatile organic compounds activate the vanilloid receptor of trigeminal nerve fibres and induce a hyperreactivity of the mucous membrane via the release of nerve growth factors. The mechanisms described work synergistically and lead to a chronic inflammatory reaction of the mucous membranes of the upper respiratory tract that is regularly demonstrable in inhabitants of western industrial nations. It is unclear whether we are dealing here with a physiological inflammation or with an at least partially avoidable result of chronic pollutant exposure.
Collapse
|
21
|
Alessandri AL, Pinho V, Souza DG, Castro MSDA, Klein A, Teixeira MM. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice. Br J Pharmacol 2004; 140:847-54. [PMID: 14585802 PMCID: PMC1574105 DOI: 10.1038/sj.bjp.0705515] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10-50 nmol per pleural cavity) or systemic (100-300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4.
Collapse
Affiliation(s)
- Ana Letícia Alessandri
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle G Souza
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Salete de A Castro
- Farmacologia, Instituto Ciências Biólogicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Klein
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento Morfofisiologia, Centro de Ciências Biológicas, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Mauro M Teixeira
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departmento Imunologia, Centro Pesquisa René Rachou, FIOCRUZ, Belo Horizonte, Brazil
- Author for correspondence:
| |
Collapse
|
22
|
Ballard ST, Inglis SK. Liquid secretion properties of airway submucosal glands. J Physiol 2004; 556:1-10. [PMID: 14660706 PMCID: PMC1664882 DOI: 10.1113/jphysiol.2003.052779] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 12/04/2003] [Indexed: 02/04/2023] Open
Abstract
The tracheobronchial submucosal glands secrete liquid that is important for hydrating airway surfaces, supporting mucociliary transport, and serving as a fluid matrix for numerous secreted macromolecules including the gel-forming mucins. This review details the essential structural elements of airway glands and summarizes what is currently known regarding the ion transport processes responsible for producing the liquid component of gland secretion. Liquid secretion most likely arises from serous cells and is principally under neural control with muscarinic agonists, substance P, and vasoactive intestinal peptide (VIP) functioning as effective secretogogues. Liquid secretion is driven by the active transepithelial secretion of both Cl(-) and HCO(3)(-) and at least a portion of this process is mediated by the cystic fibrosis transmembrane conductance regulator (CFTR), which is highly expressed in glands. The potential role of submucosal glands in cystic fibrosis lung disease is discussed.
Collapse
Affiliation(s)
- Stephen T Ballard
- Department of Physiology, MSB 3074, University of South Alabama, Mobile, AL 36688, USA.
| | | |
Collapse
|
23
|
Lecci A, Maggi CA. Peripheral tachykinin receptors as potential therapeutic targets in visceral diseases. Expert Opin Ther Targets 2003; 7:343-62. [PMID: 12783571 DOI: 10.1517/14728222.7.3.343] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
More than 10 years of intensive preclinical investigation of selective tachykinin (TK) receptor antagonists has provided a rationale to the speculation that peripheral neurokinin (NK)-1, -2 and -3 receptors may be involved in the pathophysiology of various human diseases at the visceral level. In the airways, despite promising effects in animal models of asthma, pilot clinical trials with selective NK-1 or -2 receptor antagonists in asthmatics have been ambiguous, whereas the potential antitussive effects of NK-1, -2 or -3 antagonists have not yet been verified in humans. In the gastrointestinal (GI) tract, irritable bowel syndrome (IBS) and pancreatitis are appealing targets for peripherally-acting NK-1 and -2 antagonists, respectively. In the genito-urinary tract, NK-1 receptor antagonists could offer some protection against nephrotoxicity and cytotoxicity induced by chemotherapeutic agents, whereas NK-2 receptor antagonists appear to be promising new agents for the treatment of neurogenic bladder hyperreflexia. Finally, there is preclinical evidence for hypothesising an effect of NK-3 receptor antagonists on the cardiovascular disturbance that characterises pre-eclampsia. Other more speculative applications are also mentioned.
Collapse
Affiliation(s)
- Alessandro Lecci
- Pharmacology Department of Menarini Ricerche, via Rismondo 12/A, 50131 Florence, Italy.
| | | |
Collapse
|