1
|
Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: A novel theory of vascular NO signaling. Redox Biol 2022; 53:102327. [PMID: 35605454 PMCID: PMC9126848 DOI: 10.1016/j.redox.2022.102327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023] Open
Abstract
S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as ‘nitrodilators’, defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.
Collapse
|
2
|
Weihrauch D, Keszler A, Lindemer B, Krolikowski J, Lohr NL. Red light stimulates vasodilation through extracellular vesicle trafficking. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112212. [PMID: 34049180 DOI: 10.1016/j.jphotobiol.2021.112212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Red light (670 nm) promotes ex vivo dilation of blood vessels in a nitric oxide (NO) dependent, but eNOS independent manner by secreting a quasi-stable and transferable vasoactive substance with the characteristics of S-nitrosothiols (RSNO) from the endothelium. In the present work we establish that 670 nm light mediated vasodilation occurs in vivo and is physiologically stable. Light exposure depletes intracellular S-nitroso protein while concomitantly increasing extracellular RNSO, suggesting vesicular pathways are involved. Furthermore, we demonstrate this RSNO vasodilator is embedded in extracellular vesicles (EV). The action of red light on vesicular trafficking appears to increase expression of endosome associated membrane protein CD63 in bovine aortic endothelial cells, enhance endosome localization in the endothelium, and induce exit of RSNO containing EVs from murine facialis arteries. We suggest a mechanism by which the concerted actions of 670 nm light initiate formation of RSNO containing EVs which exit the endothelium and trigger relaxation of smooth muscle cells.
Collapse
Affiliation(s)
| | - Agnes Keszler
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, USA.
| | - Brian Lindemer
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, USA.
| | - John Krolikowski
- Department of Anesthesiology, Medical College of Wisconsin, USA.
| | - Nicole L Lohr
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, USA; Cardiovascular Center, Medical College of Wisconsin, USA; Clement J Zablocki VA Medical Center, USA.
| |
Collapse
|
3
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
4
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020; 60:3625-3631. [DOI: 10.1002/anie.202010553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
5
|
Yim PD, Gallos G, Perez-Zoghbi JF, Zhang Y, Xu D, Wu A, Berkowitz DE, Emala CW. Airway smooth muscle photorelaxation via opsin receptor activation. Am J Physiol Lung Cell Mol Physiol 2019; 316:L82-L93. [PMID: 30284927 PMCID: PMC6383505 DOI: 10.1152/ajplung.00135.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Nonvisual opsin (OPN) receptors have recently been implicated in blue light-mediated photorelaxation of smooth muscle in various organs. Since photorelaxation has not yet been demonstrated in airway smooth muscle (ASM) or in human tissues, we questioned whether functional OPN receptors are expressed in mouse and human ASM. mRNA, encoding the OPN 3 receptor, was detected in both human and mouse ASM. To demonstrate the functionality of the OPN receptors, we performed wire myography of ex vivo ASM from mouse and human upper airways. Blue light-mediated relaxation of ACh-preconstricted airways was intensity and wavelength dependent (maximum relaxation at 430-nm blue light) and was inhibited by blockade of the large-conductance calcium-activated potassium channels with iberiotoxin. We further implicated OPN receptors as key mediators in functional photorelaxation by demonstrating increased relaxation in the presence of a G protein receptor kinase 2 inhibitor or an OPN chromophore (9- cis retinal). We corroborated these responses in peripheral airways of murine precision-cut lung slices. This is the first demonstration of photorelaxation in ASM via an OPN receptor-mediated pathway.
Collapse
Affiliation(s)
- Peter D Yim
- Department of Anesthesiology, Columbia University , New York, New York
| | - George Gallos
- Department of Anesthesiology, Columbia University , New York, New York
| | | | - Yi Zhang
- Department of Anesthesiology, Columbia University , New York, New York
| | - Dingbang Xu
- Department of Anesthesiology, Columbia University , New York, New York
| | - Amy Wu
- Department of Anesthesiology, Columbia University , New York, New York
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Charles W Emala
- Department of Anesthesiology, Columbia University , New York, New York
| |
Collapse
|
6
|
Bautista-Niño PK, van der Stel M, Batenburg WW, de Vries R, Roks AJ, Danser AJ. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H 2 O 2 versus S -nitrosothiols. Eur J Pharmacol 2018; 827:112-116. [DOI: 10.1016/j.ejphar.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/18/2023]
|
7
|
Giglio D, Wasén C, Mölne J, Suchy D, Swanpalmer J, Jabonero Valbuena J, Tobin G, Ny L. Downregulation of toll-like receptor 4 and IL-6 following irradiation of the rat urinary bladder. Clin Exp Pharmacol Physiol 2016; 43:698-705. [DOI: 10.1111/1440-1681.12583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/15/2016] [Accepted: 04/24/2016] [Indexed: 11/26/2022]
Affiliation(s)
- D Giglio
- Department of Pharmacology; University of Gothenburg; Gothenburg Sweden
- Department of Oncology; University of Gothenburg; Gothenburg Sweden
| | - C Wasén
- Department of Rheumatology and Inflammation Research; University of Gothenburg; Gothenburg Sweden
| | - J Mölne
- Department of Pathology; University of Gothenburg; Gothenburg Sweden
| | - D Suchy
- Department of Pharmacology; University of Gothenburg; Gothenburg Sweden
| | - J Swanpalmer
- Department of Radiation Physics; The Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | | | - G Tobin
- Department of Pharmacology; University of Gothenburg; Gothenburg Sweden
| | - L Ny
- Department of Oncology; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
8
|
Melanopsin mediates light-dependent relaxation in blood vessels. Proc Natl Acad Sci U S A 2014; 111:17977-82. [PMID: 25404319 DOI: 10.1073/pnas.1420258111] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4(-/-) mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430-460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. β-Adrenergic receptor kinase 1 (βARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor.
Collapse
|
9
|
Mallet RT, Olivencia-Yurvati AH. Invited Commentary. Ann Thorac Surg 2012; 93:1186-7. [DOI: 10.1016/j.athoracsur.2012.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
|
10
|
Manukhina EB, Jasti D, Vanin AF, Downey HF. Intermittent hypoxia conditioning prevents endothelial dysfunction and improves nitric oxide storage in spontaneously hypertensive rats. Exp Biol Med (Maywood) 2011; 236:867-73. [PMID: 21652603 DOI: 10.1258/ebm.2011.011023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although intermittent hypoxia is often associated with hypertension, experimental and clinical studies have demonstrated definite antihypertensive effects of some intermittent hypoxia conditioning (IHC) regimens. Mechanisms of this antihypertensive response are unknown. Endothelial dysfunction related to disturbed synthesis and/or reduced availability of nitric oxide (NO) has been linked to hypertension. Thus, experiments were conducted to determine if IHC can improve endothelium-dependent relaxation and formation of releasable vascular NO stores of young (4-8-week-old) spontaneously hypertensive rats (SHR). Rats were subjected to either IHC (9.5-10% O(2), 5-10 min, 5-8 times per day, 20 d) or to sham conditioning. Endothelium-dependent relaxation to acetylcholine was measured in norepinephrine-precontracted, isolated aortic rings, and the size of NO stores was evaluated by percent relaxation to N-acetylcysteine (NAC), which releases stored NO. The capacity of aortic rings for NO storage was evaluated by the relaxation to NAC after prior incubation with an NO donor. IHC significantly suppressed the development of hypertension in young SHR. Endothelial function decreased from 54.7 ± 4.6% to 28.1 ± 6.4% relaxation to acetylcholine after 20 d of sham IHC, whereas endothelial function was sustained (60.3 ± 6.0% relaxation) in IHC rats. IHC also induced formation of available NO stores and enhanced the capacity of aortic rings to store NO. Therefore, the antihypertensive effect of IHC in young SHR is associated with prevention of endothelial dysfunction and with increased accumulation of NO stores in vascular walls.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
11
|
Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:182-91. [DOI: 10.1016/j.jphotobiol.2010.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/03/2010] [Accepted: 12/01/2010] [Indexed: 12/14/2022]
|
12
|
Light-induced vs. bradykinin-induced relaxation of coronary arteries: do S-nitrosothiols act as endothelium-derived hyperpolarizing factors? J Hypertens 2009; 27:1631-40. [PMID: 19421072 DOI: 10.1097/hjh.0b013e32832bff54] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Light-induced relaxation depends on S-nitrosothiols. S-Nitrosothiols may also serve as endothelium-derived hyperpolarizing factors, mediating the relaxant response of porcine coronary arteries (PCAs) to bradykinin. Here we compared the mechanism of light-induced and bradykinin-induced PCA relaxation. METHODS PCAs were mounted in organ baths in the dark, preconstricted and exposed to polychromatic light (5 min) or 100 nmol/l bradykinin. RESULTS Light relaxed PCAs by maximally 71 +/- 1%. S-Nitrosothiol depletion abolished this relaxation. Relaxations diminished following repetitive light exposures, particularly if the dark periods between the light exposures were less than 10 min, and increased following endothelium removal or nitric oxide synthase blockade with N(omega)-nitro-L-arginine methyl ester (L-NAME), despite the prevention of guanosine-3',5'-cyclic monophosphate generation by the latter two procedures. Thus, reloading of the storage pools occurs in the dark, endothelial nitric oxide inhibits this process and photorelaxation does not depend on guanosine-3',5'-cyclic monophosphate. Bradykinin relaxed PCAs by 69 +/- 3%. The nitric oxide scavenger hydroxocobalamin and the Na+-K+ ATPase inhibitor ouabain abolished the responses to bradykinin and light. The guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one abolished the response to light, and, like L-NAME, blocked the response to bradykinin by more than 50%. On top of L-NAME, intermediate and small conductance Ca2+-dependent K+ channel (IKCa/SKCa) blockade further reduced the response to bradykinin and enhanced photorelaxation. CONCLUSION Photorelaxation depends on stored S-nitrosothiols and their release/synthesis is negatively affected by endothelial nitric oxide and IKCa/SKCa. S-Nitrosothiols activate endothelial IKCa/SKCa and, via guanylyl cyclase, smooth muscle Na+-K+ ATPase. Thus, they possess all properties of a bradykinin-induced endothelium-derived hyperpolarizing factor.
Collapse
|
13
|
Grbovic L, Djokic J, Radenkovic M, Pesic S. Analysis of the Vasorelaxant Action of Angiotensin II in the Isolated Rat Renal Artery. J Pharmacol Sci 2008; 106:376-84. [DOI: 10.1254/jphs.fp0071268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Ng ESM, Cheng ZJ, Ellis A, Ding H, Jiang Y, Li Y, Hollenberg MD, Triggle CR. Nitrosothiol stores in vascular tissue: modulation by ultraviolet light, acetylcholine and ionomycin. Eur J Pharmacol 2007; 560:183-92. [PMID: 17292350 DOI: 10.1016/j.ejphar.2007.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 11/21/2022]
Abstract
Our previous studies demonstrated that light-induced vascular relaxation (photorelaxation) was mediated by a tissue source of nitric oxide that was independent of endothelial nitric oxide synthase (eNOS), but sensitive to inhibitors of soluble guanylate cyclase, extracellular nitric oxide scavengers and possessed the properties of a nitrosothiol. In the present study we describe High Performance Liquid Chromatography and spectrofluorometric techniques that allowed us to measure tissue levels of the nitrosothiol, S-nitrosoglutathione and its modulation in mouse aortic tissues, smooth muscle cells and human umbilical vein endothelial cells (HUVECs) following exposure to exogenous S-nitrosoglutathione, light and chemical stimuli. Basal levels of S-nitrosoglutathione were similar in control mouse aortae and HUVECs and the store size could be enhanced by exposure of tissues/cells to nitric oxide solution. No basal S-nitrosoglutathione was detected in tissue from diabetic db/db mice; however, ultraviolet light was still able to elicit relaxation of aortic tissues. Ultraviolet light induced the release of nitric oxide from the S-nitrosoglutathione store with an associated increase in the concentration of nitrite. The release of nitric oxide from the store in HUVECs was modulated by extracellular oxidative stress induced by xanthine/xanthine oxidase and also, in an atropine-sensitive process, by acetylcholine, as well as by the calcium ionophore, ionomycin. These interventions resulted in a reduced S-nitrosoglutathione store and elevated levels of nitrite. These data suggest that endothelial and vascular smooth muscle cells possess stores of nitric oxide that, in part, exist in the form of S-nitrosoglutathione. Furthermore, these stores, albeit small, may provide an additional mechanism for the regulation of vascular tone, especially under conditions, such as diabetes, in which nitric oxide generation or bioavailability is compromised; however, additional studies are required to determine not only whether there are additional chemical storage forms of nitric oxide, but also the location of such stores.
Collapse
Affiliation(s)
- Ella S M Ng
- Smooth Muscle Research Group, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ogülener N, Döndas NY, Secilmi A. The location of photodegradable nitric oxide store in the mouse stomach fundus. Eur J Pharmacol 2006; 548:137-43. [PMID: 16978603 DOI: 10.1016/j.ejphar.2006.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to investigate the location of photodegradable nitric oxide (NO) store using a pharmacological approach in mouse gastric fundus. The ultraviolet light irradiation (UV; 360 nm, 60 s), electrical field stimulation (EFS; 4 Hz, 25 V, 1 ms, 15s-train), exogenous nitric oxide (NO; 10 microM), nitroglycerin (100 microM) and isoproterenol (5 nM) induced relaxation in mouse gastric fundus preparations in the absence or presence of an intact mucosa. The NO scavenger, haemoglobin (20 microM), significantly inhibited the relaxation of intact and denuded mucosa stomach fundus to UV light irradiation, EFS and NO, but not to nitroglycerin and isoproterenol. The superoxide anion generator, pyrogallol (50 microM), inhibited relaxation of intact and denuded mucosa stomach fundus induced by UV light irradiation, EFS, NO, but not to nitroglycerin and isoproterenol. The inhibition observed with pyrogallol was prevented by exogenous Cu/Zn superoxide dismutase (SOD; 100 U/ml), a membrane impermeable antioxidant. The Cu/Zn SOD inhibitor, diethyldithiocarbamic acid (DETCA; 8 mM), inhibited the relaxation of intact and denuded mucosa stomach fundus to UV light irradiation, EFS, NO and nitroglycerin but not those to isoproterenol. Exogenous SOD (100 U/ml) partially prevented the inhibitory effect of DETCA on relaxation to UV light irradiation, EFS, NO but not to nitroglycerin. DETCA-induced inhibition of the nitroglycerin-induced relaxation was partially prevented by the cell-permeable polyethylene-glycol-superoxide dismutase (100 U/ml). These results indicate that photodegradable NO store is, at least in part, unlikely to be within smooth muscle cells, and furthermore, that UV light-induced relaxation is not dependent on gastric mucosal layer.
Collapse
Affiliation(s)
- Nuran Ogülener
- Department of Pharmacology, Faculty of Medicine, Cukurova University, 01330 Adana, Turkey.
| | | | | |
Collapse
|
16
|
Stankevičius E, Lopez-Valverde V, Rivera L, Hughes AD, Mulvany MJ, Simonsen U. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 2006; 149:560-72. [PMID: 16967048 PMCID: PMC2014669 DOI: 10.1038/sj.bjp.0706886] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The present study investigated whether calcium-activated K+ channels are involved in acetylcholine-evoked nitric oxide (NO) release and relaxation. EXPERIMENTAL APPROACH Simultaneous measurements of NO concentration and relaxation were performed in rat superior mesenteric artery and endothelial cell membrane potential and intracellular calcium ([Ca2+]i) were measured. KEY RESULTS A combination of apamin plus charybotoxin, which are, respectively, blockers of small-conductance and of intermediate- and large-conductance Ca2+ -activated K channels abolished acetylcholine (10 microM)-evoked hyperpolarization of endothelial cell membrane potential. Acetylcholine-evoked NO release was reduced by 68% in high K+ (80 mM) and by 85% in the presence of apamin plus charybdotoxin. In noradrenaline-contracted arteries, asymmetric dimethylarginine (ADMA), an inhibitor of NO synthase inhibited acetylcholine-evoked NO release and relaxation. However, only further addition of oxyhaemoglobin or apamin plus charybdotoxin eliminated the residual acetylcholine-evoked NO release and relaxation. Removal of extracellular calcium or an inhibitor of calcium influx channels, SKF96365, abolished acetylcholine-evoked increase in NO concentration and [Ca2+]i. Cyclopiazonic acid (CPA, 30 microM), an inhibitor of sarcoplasmic Ca2+ -ATPase, caused a sustained NO release in the presence, but only a transient increase in the absence, of extracellular calcium. Incubation with apamin and charybdotoxin did not change acetylcholine or CPA-induced increases in [Ca2+]i, but inhibited the sustained NO release induced by CPA. CONCLUSIONS AND IMPLICATIONS Acetylcholine increases endothelial cell [Ca2+]i by release of stored calcium and calcium influx resulting in activation of apamin and charybdotoxin-sensitive K channels, hyperpolarization and release of NO in the rat superior mesenteric artery.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Apamin/pharmacology
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Barium Compounds/pharmacology
- Benzimidazoles/pharmacology
- Calcium/metabolism
- Charybdotoxin/pharmacology
- Chlorides/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Imidazoles/pharmacology
- In Vitro Techniques
- Indoles/pharmacology
- Indomethacin/pharmacology
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiology
- Nitric Oxide/metabolism
- Oxyhemoglobins/pharmacology
- Penicillamine/analogs & derivatives
- Penicillamine/pharmacology
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/physiology
- Rats
- Rats, Wistar
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- E Stankevičius
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
- Department of Physiology, Kaunas University of Medicine Kaunas, Lithuania
| | - V Lopez-Valverde
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
| | - L Rivera
- Departamento de Fisiología, Facultad de Farmacía, Universidad Complutense Madrid, Spain
| | - A D Hughes
- Department of Clinical Pharmacology, Imperial College London, UK
| | - M J Mulvany
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
| | - Ulf Simonsen
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
- Author for correspondence:
| |
Collapse
|
17
|
La C, You Y, Zhabyeyev P, Pelzer DJ, McDonald TF. Ultraviolet photoalteration of late Na+ current in guinea-pig ventricular myocytes. J Membr Biol 2006; 210:43-50. [PMID: 16783617 DOI: 10.1007/s00232-005-0844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 01/10/2006] [Indexed: 10/24/2022]
Abstract
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca(2+) imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at -80 mV, dialyzed with K(+)-, Na(+)-free pipette solution, and bathed with K(+)-free Tyrode's solution at 22 degrees C. During experiments that lasted for approximately 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from -80 to -40 mV, but had little effect on background current or on L-type Ca(2+) current. Trials with depolarized holding potential, Ca(2+) channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na(+) current (I(Na)). The amplitude of the late inward current sensitive to 100 microM: TTX was increased by 3.5-fold after 20-30 min of irradiation. UVA modulation of late I(Na) may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac I(Na).
Collapse
Affiliation(s)
- C La
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7 Canada
| | | | | | | | | |
Collapse
|
18
|
Ergün Y, Oğülener N. Selective modifiers of glutathione prevent restoration of photorelaxations in mouse gastric fundus. Fundam Clin Pharmacol 2005; 19:503-9. [PMID: 16011739 DOI: 10.1111/j.1472-8206.2005.00360.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-nitrosoglutathione (GSNO) has previously been shown to have a role in ultraviolet (UV) light-elicited relaxations and proposed to account for the photosensitive store in the mouse gastric fundus. Furthermore, the depletion of this photosensitive store and its replenishment via long-term electrical field stimulation were demonstrated in the same tissue. In relation to these results, the aim of the present study was to investigate the putative role of S-nitrosothiols in the restorative effect of long-term electrical field stimulation on the reduced photosensitive store. Two series of UV light-elicited relaxations (photorelaxations) were obtained, and the magnitudes of the responses were 53 +/- 6 and 26 +/- 3%, respectively. The second series of photorelaxations attenuated statistically when compared with those in the first series. Ethacrynic acid (1 microm), diamide (1 microm) and glutathione (1 microm) had no effect on the photorelaxations occurred in the second series of responses. Electrical field stimulation (4 Hz, 25 V, 1 ms, 60 min), applied between two series of photorelaxations, revealed a complete recovery of the attenuated photorelaxations appeared in the second series. N(G)-monomethyl-L-arginine (100 microm), ethacrynic acid (1 microm) and diamide (1 microm) extensively prevented the restorative effect of electrical field stimulation on photorelaxations. In addition, glutathione (1 microm) reversed the prevention achieved by ethacrynic acid and diamide. The conclusion is that the restoration accomplished by electrical field stimulation is because of the activation of nitric oxide synthase, which in turn brings about the regeneration of GSNO proposed to be the photodegradable material store.
Collapse
Affiliation(s)
- Yusuf Ergün
- Department of Pharmacology, School of Medicine, University of Cukurova, 01330 Balcali, Adana, Turkey
| | | |
Collapse
|
19
|
Frost MC, Meyerhoff ME. Synthesis, characterization, and controlled nitric oxide release from S-nitrosothiol-derivatized fumed silica polymer filler particles. J Biomed Mater Res A 2005; 72:409-19. [PMID: 15682428 DOI: 10.1002/jbm.a.30275] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new type of nitric oxide (NO)-releasing material is described that utilizes S-nitrosothiols anchored to tiny fumed silica (FS) particles as the NO donor system. The synthetic procedures suitable for tethering three different thiol species (cysteine, N-acetylcysteine, and N-acetylpenicillamine) to the surface of FS polymer filler particles are detailed. The thiol-derivatized particles are converted to their corresponding S-nitrosothiols by reaction with t-butylnitrite. The total NO loading on the resulting particles range from 21-138 nmol/mg for the three different thiol-derivatized materials [S-nitrosocysteine-(NO-Cys)-FS, S-nitroso-N-acetylcysteine (SNAC)-FS, and S-nitroso-N-acetylpenicillamine (SNAP)-FS], with SNAP-FS yielding the highest NO loading. NO can be generated from these particles when suspended in solution via the addition of copper(II) ions, ascorbate, or irradiation with visible light. The SNAC-FS and SNAP-FS particles can be blended in polyurethane and silicone rubber matrixes to create films that release NO at controlled rates. Polyurethane films containing SNAC-FS submerged in phosphate-buffered saline (pH 7.4) generate NO surface fluxes approximately 0.1-0.7x10(-10) mol cm-2 min-1 and SNAP-FS films generate NO fluxes of approximately 0-7.5x10(-10) mol cm-2 min-1 upon addition of increasing amounts of copper ions. Silicone rubber films containing SNAC-FS or SNAP-FS do not liberate NO upon exposure to copper ions or ascorbate in phosphate-buffered saline solution. However, such films are shown to release NO at rates proportional to increasing intensities of visible light impinging on the films. Such photoinitiated NO release from these composite materials offers the first NO-releasing hydrophobic polymers with an external on/off trigger to control NO generation.
Collapse
Affiliation(s)
- Megan C Frost
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
20
|
Batenburg WW, de Vries R, Saxena PR, Danser AHJ. L-S-nitrosothiols: endothelium-derived hyperpolarizing factors in porcine coronary arteries? J Hypertens 2005; 22:1927-36. [PMID: 15361764 DOI: 10.1097/00004872-200410000-00015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Bradykinin-induced, endothelium-derived hyperpolarizing factor (EDHF)-mediated responses depend on Ca-dependent K-channels (KCa) of small (SKCa) and intermediate (IKCa) conductance, inwardly rectifying K (KIR) channels and/or Na-K-ATPase. Here we investigated in porcine coronary arteries (PCAs) whether S-nitrosothiols can act as EDHF. METHODS Preconstricted PCAs were exposed to bradykinin, the NO donor S-nitroso-N-penicillamine (SNAP), or the S-nitrosothiols L-S-nitrosocysteine (L-SNC), D-SNC and L-S-nitrosoglutathione (L-SNG), with or without KCl, the NO scavenger hydroxocobalamin, the S-nitrosothiol-depleting agent p-hydroxymercurobenzoic acid (PHMBA) and/or inhibitors of NO synthase (L-NAME), guanylyl cyclase (ODQ), SKCa channels (apamin), KCa channels of large conductance (BKCa) (iberiotoxin), IKCa + BKCa channels (charybdotoxin), KIR channels (BaCl2) or Na-K-ATPase (ouabain). RESULTS All agonists concentration-dependently relaxed PCAs. L-NAME, charybdotoxin + apamin, KCl, and ouabain shifted the bradykinin concentration-response curve (CRC) approximately 10-fold to the right. BaCl2 did not exert additional effects on top of ouabain. Full blockade of bradykinin was obtained when combining L-NAME with charybdotoxin + apamin, KCl or ouabain + BaCl2. PHMBA reduced the maximum effect of bradykinin. Iberiotoxin + apamin, alone or on top of L-NAME, did not affect bradykinin, SNAP or L-SNC. ODQ and hydroxocobalamin shifted the SNAP, L-SNC, D-SNC, and L-SNG CRCs approximately 10-fold to the right, and, in combination, fully blocked SNAP-induced effects. Charybdotoxin + apamin shifted the L-SNC and L-SNG CRCs, but not the D-SNC or SNAP CRCs, approximately 5-fold to the right. KCl and ouabain (but not BaCl2) shifted the SNAP, L-SNC and L-SNG CRCs 5-10 fold to the right. CONCLUSIONS L-S-nitrosothiols activate SKCa + IKCa channels in a stereoselective manner, whereas NO activates Na-K-ATPase. Since S-nitrosothiols decompose to NO, stored L-S-nitrosothiols may mediate bradykinin-induced, EDHF-dependent relaxation.
Collapse
|
21
|
Batenburg WW, Popp R, Fleming I, Vries RD, Garrelds IM, Saxena PR, Danser AHJ. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF? Br J Pharmacol 2004; 142:125-35. [PMID: 15066907 PMCID: PMC1574930 DOI: 10.1038/sj.bjp.0705747] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
1. To investigate whether S-nitrosothiols, in addition to NO, mediate bradykinin-induced vasorelaxation, porcine coronary microarteries (PCMAs) were mounted in myographs. 2. Following preconstriction, concentration-response curves (CRCs) were constructed to bradykinin, the NO donors S-nitroso-N-penicillamine (SNAP) and diethylamine NONOate (DEA-NONOate) and the S-nitrosothiols L-S-nitrosocysteine (L-SNC) and D-SNC. All agonists relaxed PCMAs. L-SNC was approximately 5-fold more potent than D-SNC. 3. The guanylyl cyclase inhibitor ODQ and the NO scavenger hydroxocobalamin induced a larger shift of the bradykinin CRC than the NO synthase inhibitor L-NAME, although all three inhibitors equally suppressed bradykinin-induced cGMP responses. 4. Complete blockade of bradykinin-induced relaxation was obtained with L-NAME in the presence of the large- and intermediate-conductance Ca(2+)-activated K(+)-channel (BK(Ca), IK(Ca)) blocker charybdotoxin and the small-conductance Ca(2+)-activated K(+)-channel (SK(Ca)) channel blocker apamin, but not in the presence of L-NAME, apamin and the BK(Ca) channel blocker iberiotoxin. 5. Inhibitors of cytochrome P450 epoxygenase, cyclooxygenase, voltage-dependent K(+) channels and ATP-sensitive K(+) channels did not affect bradykinin-induced relaxation. 6. SNAP-, DEA-NONOate- and D-SNC-induced relaxations were mediated entirely by the NO-guanylyl cyclase pathway. L-SNC-induced relaxations were partially blocked by charybdotoxin+apamin, but not by iberiotoxin+apamin, and this blockade was abolished following endothelium removal. ODQ, but not hydroxocobalamin, prevented L-SNC-induced increases in cGMP, and both drugs shifted the L-SNC CRC 5-10-fold to the right. 7. L-SNC hyperpolarized intact and endothelium-denuded coronary arteries. 8. Our results support the concept that bradykinin-induced relaxation is mediated via de novo synthesized NO and a non-NO, endothelium-derived hyperpolarizing factor (EDHF). S-nitrosothiols, via stereoselective activation of endothelial IK(Ca) and SK(Ca) channels, and through direct effects on smooth muscle cells, may function as an EDHF in porcine coronary microarteries.
Collapse
Affiliation(s)
| | - Rüdiger Popp
- Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Frankfurt am Main, Germany
| | - René de Vries
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Pramod R Saxena
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
- Author for correspondence:
| |
Collapse
|
22
|
Frost MC, Meyerhoff ME. Controlled Photoinitiated Release of Nitric Oxide from Polymer Films ContainingS-Nitroso-N-acetyl-dl-penicillamine Derivatized Fumed Silica Filler. J Am Chem Soc 2004; 126:1348-9. [PMID: 14759186 DOI: 10.1021/ja039466i] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes the first hydrophobic nitric oxide (NO)-releasing material that utilizes light as an external on/off trigger to control the flux of NO generated from cured polymer films. Fumed silica polymer filler particles were derivatized with S-nitroso-N-acetyl-dl-penicillamine and blended into the center layer of trilayer silicone rubber films. Nitric oxide is generated upon irradiation with light, and fluxes increase with increasing power of incident light. The ability to precisely control NO generation from this material has the potential to answer fundamental questions about the levels of NO needed to achieve desired therapeutic affects in different biomedical applications.
Collapse
Affiliation(s)
- Megan C Frost
- University of Michigan, Department of Chemistry, 930 North University, Ann Arbor, Michigan, 48109-1055, USA
| | | |
Collapse
|
23
|
Batenburg WW, Garrelds IM, van Kats JP, Saxena PR, Danser AHJ. Mediators of bradykinin-induced vasorelaxation in human coronary microarteries. Hypertension 2003; 43:488-92. [PMID: 14691197 DOI: 10.1161/01.hyp.0000110904.95771.26] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the mediators of bradykinin-induced vasorelaxation in human coronary microarteries (HCMAs), HCMAs (diameter approximately 300 microm) obtained from 42 heart valve donors (20 men and 22 women; age range, 3 to 65 years; mean age, 46 years) were mounted in Mulvany myographs. In the presence of the cyclooxygenase inhibitor indomethacin, bradykinin relaxed preconstricted HCMAs in a concentration-dependent manner. N(G)-nitro-L-arginine methyl ester and ODQ (inhibitors of nitric oxide [NO] synthase and guanylyl cyclase, respectively) and the NO scavenger hydroxocobalamin, either alone or in combination, shifted the bradykinin concentration-response curve to the right. Removal of H2O2 (with catalase), inhibition of cytochrome P450 epoxygenase (with sulfaphenazole or clotrimazole) or gap junctions (with 18alpha-glycyrrhetinic acid or carbenoxolone), and blockade of large- (BK(Ca)) and small- (SK(Ca)) conductance Ca2+-dependent K+ channels (with iberiotoxin and apamin), either alone or in addition to hydroxocobalamin, did not affect bradykinin. In contrast, complete blockade of bradykinin-induced relaxation was obtained when we combined the nonselective BK(Ca) and intermediate-conductance (IK(Ca)) Ca2+-dependent K+ channel blocker charybdotoxin and apamin with hydroxocobalamin. Charybdotoxin plus apamin alone were without effect. Inhibition of inwardly rectifying K+ channels (K(IR)) and Na+/K+-ATPase (with BaCl2 and ouabain, respectively) shifted the bradykinin concentration-response curve 10-fold to the right but did not exert an additional effect in the presence of hydroxocobalamin. In conclusion, bradykinin-induced relaxation in HCMAs depends on (1) the activation of guanylyl cyclase, K(IR), and Na(+)/K(+)-ATPase by NO and (2) IK(Ca) and SK(Ca) channels. The latter are activated by a factor other than NO. This factor is not a cytochrome P450 epoxygenase product or H2O2, nor does it depend on gap junctions or BK(Ca) channels.
Collapse
Affiliation(s)
- Wendy W Batenburg
- Department of Pharmacology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Triggle CR, Hollenberg M, Anderson TJ, Ding H, Jiang Y, Ceroni L, Wiehler WB, Ng ESM, Ellis A, Andrews K, McGuire JJ, Pannirselvam M. The Endothelium in Health and Disease-A Target for Therapeutic Intervention. J Smooth Muscle Res 2003; 39:249-67. [PMID: 15048017 DOI: 10.1540/jsmr.39.249] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this review we discuss the contribution of NO, prostacyclin and endothelium-derived relaxing factor--endothelium-derived hyperpolarizing factor, or EDHF, to vascular function. We also explore the hypotheses (1): that tissues can store NO as nitrosothiols (RSNOs) and (2) that such RSNO stores can be modulated by physiological and pathophysiological processes. Notably in the microcirculation, EDHF appears to play an important role in the regulation of vascular tone. Leading candidates for EDHF include extracellular potassium (K+), an epoxygenase product, hydrogen peroxide and/or a contribution from myoendothelial gap junctions. Data from our laboratory indicate that in mouse vessels, different endothelium-dependent vasodilators, such as acetylcholine and protease-activated receptor (PAR) agonists, release different endothelium-derived relaxing factors. The combination of two K-channel toxins, apamin and charybdotoxin, inhibits EDHF activity in most protocols. Endothelial dysfunction is considered as the major risk factor and a very early indicator of cardiovascular disease including the cardiovascular complications of type I & types II diabetes. Impaired endothelium-dependent vasodilatation results primarily from a decreased synthesis of endothelium-derived nitric oxide (NO) and/or an increase in the production of reactive oxygen species such as superoxide. We have shown that the administration of tetrahydrobiopterin, an important co-factor for nitric oxide synthase (NOS) partially restores endothelial function (1) in leptin-deficient mice (db/db) with spontaneous type II diabetes, as well as (2) in human vascular tissue harvested for coronary artery bypass grafting (CABG). These data suggest that a deficiency in the availability of tetrahydrobiopterin plays an important role in vascular dysfunction associated with Type II diabetes. In addition, changes in the contribution of EDHF occur in vascular tissue from the db/db mice suggesting a compensatory increase in EDHF production; whether this alteration in EDHF production is physiological or pathophysiological remains controversial.
Collapse
Affiliation(s)
- Chris R Triggle
- Smooth Muscle Research Group, Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|