1
|
Wehn AC, Khalin I, Hu S, Harapan BN, Mao X, Cheng S, Plesnila N, Terpolilli NA. Bradykinin 2 Receptors Mediate Long-Term Neurocognitive Deficits After Experimental Traumatic Brain Injury. J Neurotrauma 2024; 41:2442-2454. [PMID: 38818807 DOI: 10.1089/neu.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The kallikrein-kinin system is one of the first inflammatory pathways to be activated following traumatic brain injury (TBI) and has been shown to exacerbate brain edema formation in the acute phase through activation of bradykinin 2 receptors (B2R). However, the influence of B2R on chronic post-traumatic damage and outcome is unclear. In the current study, we assessed long-term effects of B2R-knockout (KO) after experimental TBI. B2R KO mice (heterozygous, homozygous) and wild-type (WT) littermates (n = 10/group) were subjected to controlled cortical impact (CCI) TBI. Lesion size was evaluated by magnetic resonance imaging up to 90 days after CCI. Motor and memory function were regularly assessed by Neurological Severity Score, Beam Walk, and Barnes maze test. Ninety days after TBI, brains were harvested for immunohistochemical analysis. There was no difference in cortical lesion size between B2R-deficient and WT animals 3 months after injury; however, hippocampal damage was reduced in B2R KO mice (p = 0.03). Protection of hippocampal tissue was accompanied by a significant improvement of learning and memory function 3 months after TBI (p = 0.02 WT vs. KO), whereas motor function was not influenced. Scar formation and astrogliosis were unaffected, but B2R deficiency led to a gene-dose-dependent attenuation of microglial activation and a reduction of CD45+ cells 3 months after TBI in cortex (p = 0.0003) and hippocampus (p < 0.0001). These results suggest that chronic hippocampal neurodegeneration and subsequent cognitive impairment are mediated by prolonged neuroinflammation and B2R. Inhibition of B2R may therefore represent a novel strategy to reduce long-term neurocognitive deficits after TBI.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Rouen, France
| | - Senbin Hu
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shiqi Cheng
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The Second affiliated Hospital of Nanchang University, Nanchang, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Ratko M, Habek N, Radmilović MD, Škokić S, Justić H, Barić A, Dugandžić A. Role of uroguanylin's signaling pathway in the development of ischemic stroke. Eur J Neurosci 2022; 56:3720-3737. [PMID: 35445449 PMCID: PMC9542124 DOI: 10.1111/ejn.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Stroke is one of the leading causes of mortality and disability worldwide. By affecting bradykinin function, activation of guanylate cyclase (GC)‐A has been shown to have a neuroprotective effect after ischaemic stroke, whereas the same has not been confirmed for GC‐B; therefore, we aimed to determine the possible role of GC‐C and its agonist, uroguanylin (UGN), in the development of stroke. In this study, middle cerebral artery occlusion (MCAO) was performed on wild‐type (WT), GC‐C KO and UGN KO mice. MR images were acquired before and 24 h after MCAO. On brain slices 48 h after MCAO, the Ca2+ response to UGN stimulation was recorded. Our results showed that the absence of GC‐C in GC‐C KO mice resulted in the development of smaller ischaemic lesions compared with WT littermates, which is an opposite effect compared with the effects of GC‐A agonists on brain lesions. WT and UGN KO animals showed a stronger Ca2+ response upon UGN stimulation in astrocytes of the peri‐ischaemic cerebral cortex compared with the same cortical region of the unaffected contralateral hemisphere. This stronger activation was not observed in GC‐C KO animals, which may be the reason for smaller lesion development in GC‐C KO mice. The reason why GC‐C might affect Ca2+ signalling in peri‐ischaemic astrocytes is that GC‐C is expressed in these cells after MCAO, whereas under normoxic conditions, it is expressed mainly in cortical neurons. Stronger activation of the Ca2+‐dependent signalling pathway could lead to the stronger activation of the Na+/H+ exchanger, tissue acidification and neuronal death.
Collapse
Affiliation(s)
- Martina Ratko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Habek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Siniša Škokić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Justić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Aleksandra Dugandžić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Freitas F, Tibiriçá E, Singh M, Fraser PA, Mann GE. Redox Regulation of Microvascular Permeability: IL-1β Potentiation of Bradykinin-Induced Permeability Is Prevented by Simvastatin. Antioxidants (Basel) 2020; 9:antiox9121269. [PMID: 33327440 PMCID: PMC7764912 DOI: 10.3390/antiox9121269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Antioxidant effects of statins have been implicated in the reduction in microvascular permeability and edema formation in experimental and clinical studies. Bradykinin (Bk)-induced increases in microvascular permeability are potentiated by IL-1β; however, no studies have examined the protection afforded by statins against microvascular hyperpermeability. We investigated the effects of simvastatin pretreatment on albumin–fluorescein isothiocyanate conjugate (FITC-albumin) permeability in post-capillary venules in rat cremaster muscle. Inhibition of nitric oxide synthase with L-NAME (10µM) increased basal permeability to FITC-albumin, which was abrogated by superoxide dismutase and catalase. Histamine-induced (1 µM) permeability was blocked by L-NAME but unaffected by scavenging reactive oxygen species with superoxide dismutase (SOD) and catalase. In contrast, bradykinin-induced (1–100 nM) permeability increases were unaffected by L-NAME but abrogated by SOD and catalase. Acute superfusion of the cremaster muscle with IL-1β (30 pM, 10 min) resulted in a leftward shift of the bradykinin concentration–response curve. Potentiation by IL-1β of bradykinin-induced microvascular permeability was prevented by the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) inhibitor apocynin (1 µM). Pretreatment of rats with simvastatin (5 mg·kg−1, i.p.) 24 h before permeability measurements prevented the potentiation of bradykinin permeability responses by IL-1β, which was not reversed by inhibition of heme oxygenase-1 with tin protoporphyrin IX (SnPP). This study highlights a novel mechanism by which simvastatin prevents the potentiation of bradykinin-induced permeability by IL-1β, possibly by targeting the assembly of NADPH oxidase subunits. Our findings highlight the therapeutic potential of statins in the prevention and treatment of patients predisposed to inflammatory diseases.
Collapse
Affiliation(s)
- Felipe Freitas
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
| | - Eduardo Tibiriçá
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro 22240-006, Brazil;
| | - Mita Singh
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
| | - Paul A. Fraser
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
- Correspondence: (P.A.F.); (G.E.M.); Tel.: +44-(0)20-78484306 (G.E.M.)
| | - Giovanni E. Mann
- Centre of Research Excellence, King’s College London British Heart Foundation, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK.; (F.F.); (M.S.)
- Correspondence: (P.A.F.); (G.E.M.); Tel.: +44-(0)20-78484306 (G.E.M.)
| |
Collapse
|
4
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
5
|
Jayaraman S, Al Shoyaib A, Kocot J, Villalba H, Alamri FF, Rashid M, Wangler NJ, Chowdhury EA, German N, Arumugam TV, Abbruscato TJ, Karamyan VT. Peptidase neurolysin functions to preserve the brain after ischemic stroke in male mice. J Neurochem 2019; 153:120-137. [PMID: 31486527 DOI: 10.1111/jnc.14864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Previous studies documented up-regulation of peptidase neurolysin (Nln) after brain ischemia, however, the significance of Nln function in the post-stroke brain remained unknown. The aim of this study was to assess the functional role of Nln in the brain after ischemic stroke. Administration of a specific Nln inhibitor Agaricoglyceride A (AgaA) to mice after stroke in a middle cerebral artery occlusion model, dose-dependently aggravated injury measured by increased infarct and edema volumes, blood-brain barrier disruption, increased levels of interleukin 6 and monocyte chemoattractant protein-1, neurological and motor deficit 24 h after stroke. In this setting, AgaA resulted in inhibition of Nln in the ischemic hemisphere leading to increased levels of Nln substrates bradykinin, neurotensin, and substance P. AgaA lacked effects on several physiological parameters and appeared non-toxic to mice. In a reverse approach, we developed an adeno-associated viral vector (AAV2/5-CAG-Nln) to overexpress Nln in the mouse brain. Applicability of AAV2/5-CAG-Nln to transduce catalytically active Nln was confirmed in primary neurons and in vivo. Over-expression of Nln in the mouse brain was also accompanied by decreased levels of its substrates. Two weeks after in vivo transduction of Nln using the AAV vector, mice were subjected to middle cerebral artery occlusion and the same outcome measures were evaluated 72 h later. These experiments revealed that abundance of Nln in the brain protects animals from stroke. This study is the first to document functional significance of Nln in pathophysiology of stroke and provide evidence that Nln is an endogenous mechanism functioning to preserve the brain from ischemic injury.
Collapse
Affiliation(s)
- Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Joanna Kocot
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Mamoon Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Naomi J Wangler
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Ekram A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Nadezhda German
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| |
Collapse
|
6
|
Karamyan VT. Peptidase neurolysin is an endogenous cerebroprotective mechanism in acute neurodegenerative disorders. Med Hypotheses 2019; 131:109309. [PMID: 31443781 DOI: 10.1016/j.mehy.2019.109309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
Abstract
Stroke and traumatic brain injury (TBI) are significant clinical problems characterized by high rate of mortality and long-lasting disabilities, and an unmet need for new treatments. Current experimental stroke and TBI research are evolving to focus more on understanding the brain's self-protective mechanisms to meet the critical need of developing new therapies for these disorders. In this hypothesis-based manuscript, I provide several lines of evidence that peptidase neurolysin (Nln) is one of the brain's potent, self-protective mechanisms promoting preservation and recovery of the brain after acute injury. Based on published experimental observations and ongoing studies in our laboratory, I posit that Nln is a compensatory and cerebroprotective mechanism in the post-stroke/TBI brain that functions to process a diverse group of extracellular neuropeptides and by that to reduce excitotoxicity, oxidative stress, edema formation, blood brain barrier hyper-permeability, and neuroinflammation. If this hypothesis is correct, Nln could potentially serve as a single therapeutic target to modulate the function of multiple targets, the involved neuropeptide systems, critically involved in various mechanisms of brain injury and cerebroprotection/restoration. Such multi-pathway target would be highly desired for pharmacotherapy of stroke and TBI, because targeting one pathophysiological pathway has proven to be ineffective for such complex disorders.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, United States.
| |
Collapse
|
7
|
Gauberti M, Potzeha F, Vivien D, Martinez de Lizarrondo S. Impact of Bradykinin Generation During Thrombolysis in Ischemic Stroke. Front Med (Lausanne) 2018; 5:195. [PMID: 30018956 PMCID: PMC6037726 DOI: 10.3389/fmed.2018.00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Current medical management in the acute phase is based on the activation of the fibrinolytic cascade by intravenous injection of a plasminogen activator (such as tissue-type plasminogen activator, tPA) that promotes restauration of the cerebral blood flow and improves stroke outcome. Unfortunately, the use of tPA is associated with deleterious effects such as hemorrhagic transformation, symptomatic brain edema, and angioedema, which limit the efficacy of this therapeutic strategy. Preclinical and clinical evidence suggests that intravenous thrombolysis generates large amounts of bradykinin, a peptide with potent pro-inflammatory, and pro-edematous effects. This tPA-triggered generation of bradykinin could participate in the deleterious effects of thrombolysis and is a potential target to improve neurological outcome in tPA-treated patients. The present review aims at summarizing current evidence linking thrombolysis, bradykinin generation, and neurovascular damage.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Diagnostic Imaging and Interventional Radiology, Centre Hospitalier Universitaire Caen Côte de Nacre, Caen, France
| | - Fanny Potzeha
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Clinical Research, Centre Hospitalier Universitaire Caen, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| |
Collapse
|
8
|
Urodilatin reverses the detrimental influence of bradykinin in acute ischemic stroke. Exp Neurol 2016; 284:1-10. [DOI: 10.1016/j.expneurol.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/15/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023]
|
9
|
Schmedt auf der Günne W, Zhao Y, Hedderich J, Gohlke P, Culman J. Omapatrilat: penetration across the blood–brain barrier and effects on ischaemic stroke in rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:939-51. [DOI: 10.1007/s00210-015-1126-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/08/2015] [Indexed: 12/27/2022]
|
10
|
Danielisova V, Gottlieb M, Bonova P, Nemethova M, Burda J. Bradykinin postconditioning ameliorates focal cerebral ischemia in the rat. Neurochem Int 2014; 72:22-9. [DOI: 10.1016/j.neuint.2014.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 01/10/2023]
|
11
|
Dobrivojević M, Špiranec K, Sinđić A. Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 2014; 467:201-12. [DOI: 10.1007/s00424-014-1519-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023]
|
12
|
|
13
|
Dobrivojević M, Sinđić A, Edemir B, Kalweit S, Forssmann WG, Hirsch JR. Interaction between bradykinin and natriuretic peptides via RGS protein activation in HEK-293 cells. Am J Physiol Cell Physiol 2012; 303:C1260-8. [PMID: 23054060 DOI: 10.1152/ajpcell.00033.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the interaction of natriuretic peptides (NP) and bradykinin (BK) signaling pathways was identified by measuring membrane potential (V(m)) and intracellular Ca(2+) using the patch-clamp technique and flow cytometry in HEK-293 cells. BK and NP receptor mRNA was identified using RT-PCR. BK (100 nM) depolarized cells activating bradykinin receptor type 2 (B(2)R) and Ca(2+)-dependent Cl(-) channels inhibitable by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10 μM). The BK-induced Ca(2+) signal was blocked by the B(2)R inhibitor HOE 140. [Des-Arg(9)]-bradykinin, an activator of B(1)R, had no effect on intracellular Ca(2+). NP [atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and urodilatin] depolarized HEK-293 cells inhibiting K(+) channels. ANP, urodilatin, BNP [binding to natriuretic peptide receptor (NPR)-A] and 8-bromo-(8-Br)-cGMP inhibited the BK-induced depolarization while CNP (binding to NPR-Bi) failed to do so. The inhibitory effect on BK-triggered depolarization could be reversed by blocking PKG using the specific inhibitor KT 5823. BK-stimulated depolarization as well as Ca(2+) signaling was completely blocked by the phospholipase C (PLC) inhibitor U-73122 (10 nM). The inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxydiphenyl borate (2-APB; 50 μM) completely inhibited the BK-induced Ca(2+) signaling. UTP, another activator of the PLC-mediated Ca(2+) signaling pathway, was blocked by U-73122 as well but not by 8-Br-cGMP, indicating an intermediate regulatory step for NP via PKG in BK signaling such as regulators of G-protein signaling (RGS) proteins. When RGS proteins were inhibited by CCG-63802 in the presence of BK and 8-Br-cGMP, cells started to depolarize again. In conclusion, as natural antagonists of the B(2)R signaling pathway, NP may also positively interact in pathological conditions caused by BK.
Collapse
Affiliation(s)
- Marina Dobrivojević
- Department of Physiology, School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
14
|
Woodfin A, Hu DE, Sarker M, Kurokawa T, Fraser P. Acute NADPH oxidase activation potentiates cerebrovascular permeability response to bradykinin in ischemia-reperfusion. Free Radic Biol Med 2011; 50:518-24. [PMID: 21167936 PMCID: PMC3038265 DOI: 10.1016/j.freeradbiomed.2010.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/12/2010] [Accepted: 12/08/2010] [Indexed: 12/02/2022]
Abstract
Free radical generation is a key event in cerebral reperfusion injury. Bradykinin (Bk) and interleukin-1β (IL-1β) have both been implicated in edema formation after stroke, although acute Bk application itself results in only a modest permeability increase. We have investigated the molecular mechanism by assessing the permeability of single pial venules in a stroke model. Increased permeability on reperfusion was dependent on the duration of ischemia and was prevented by applying the B(2) receptor antagonist HOE 140. Postreperfusion permeability increases were mimicked by applying Bk (5μM) for 10 min and blocked by coapplying the IL-1 receptor antagonist with Bk. Furthermore, 10 min pretreatment with IL-1β resulted in a 3 orders of magnitude leftward shift of the acutely applied Bk concentration-response curve. The left shift was abolished by scavenging free radicals with superoxide dismutase and catalase. Apocynin coapplied with IL-1β completely blocked the potentiation, implying that NADPH oxidase assembly is the immediate target of IL-1β. In conclusion, this is first demonstration that bradykinin, released during cerebral ischemia, leads to IL-1β release, which in turn activates NADPH oxidase leading to blood-brain barrier breakdown.
Collapse
|
15
|
Smeda JS, McGuire JJ, Daneshtalab N. Protease-activated receptor 2 and bradykinin-mediated vasodilation in the cerebral arteries of stroke-prone rats. Peptides 2010; 31:227-37. [PMID: 19954757 DOI: 10.1016/j.peptides.2009.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
Protease-activated receptor 2 (PAR(2)) expression is up-regulated during vascular injury associated with edema. PAR(2) and bradykinin subtype 2 receptor (B(2)) expression and function were assessed in relation to hypertensive encephalopathy (HE) and cerebral hemorrhage (CH) in middle cerebral arteries (MCA) of Kyoto Wistar stroke-prone spontaneously hypertensive rats (SHRsp). Before stroke, bradykinin and PAR(2) activation by 2-furoyl-leucine-isoleucine-glycine-arginine-leucine-ornithine-amide (2Fly) produced endothelium-dependent vasodilation that was inhibited by K(+) depolarization, carbenoxolone, and the blockade of intermediate (IK(Ca)) plus small (SK(Ca)) and (in the case of bradykinin) smooth muscle (SM) large conductance (BK(Ca)) calcium-activated K(+) channels. Responses were not altered by N omega-nitro-L-arginine methyl ester, indomethacin, 17-octadecynoic acid or Ba(2+)+ouabain. We concluded that vasodilation to 2Fly or bradykinin was not mediated by NO, cyclooxygenases, arachidonic acid-metabolizing cytochrome P450s or SM K(ir) channels+Na(+)/K(+) ATPase activation. Vasodilation likely involved the spread of endothelial hyperpolarization (generated by IK(Ca)+SK(Ca)) through myoendothelial junctions and in some cases SM BK(Ca) activation. SHRsp with HE or CH had MCA that could not constrict to pressure and did not vasodilate to bradykinin. Their responses to 2Fly remained unaltered. The patterns and densities of PAR(2) and B(2) immunoreactivity in frozen MCA sections were not altered with stroke. MCA function remained normal in SHRsp subjected to dietary manipulations that prevented stroke without altering hypertension. Despite the presence of vascular injury, edema, inflammation and the loss of endothelium-dependent bradykinin vasodilation we found no evidence that PAR(2) expression or vascular function was altered in MCA after stroke.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Bradykinin/pharmacology
- Calcium Channel Blockers/pharmacology
- Cyclooxygenase Inhibitors/pharmacology
- Cytochrome P-450 Enzyme Inhibitors
- Diet
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gap Junctions/drug effects
- Hypertensive Encephalopathy/pathology
- Hypertensive Encephalopathy/physiopathology
- Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
- Intracranial Hemorrhage, Hypertensive/pathology
- Intracranial Hemorrhage, Hypertensive/physiopathology
- Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
- Male
- Membrane Potentials/drug effects
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/metabolism
- Middle Cerebral Artery/physiopathology
- Nifedipine/pharmacology
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/metabolism
- Rats
- Rats, Inbred SHR
- Receptor, Bradykinin B2/metabolism
- Receptor, PAR-2/agonists
- Receptor, PAR-2/metabolism
- Receptors, KIR/antagonists & inhibitors
- Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
- Sodium Chloride, Dietary/pharmacology
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Stroke/pathology
- Stroke/physiopathology
- Vasoconstriction/physiology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- John S Smeda
- Division of BioMedical Sciences, Memorial University, St. John's, Newfoundland, Canada.
| | | | | |
Collapse
|
16
|
Kleinschnitz C, Austinat M, Bader M, Renné T, Stoll G. Deficiency of Bradykinin Receptor B2 Is not Detrimental in Experimental Stroke. Hypertension 2008; 51:e41; author reply e42-3. [DOI: 10.1161/hypertensionaha.107.109090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | - Thomas Renné
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Yan-Feng W, Gang L, Yan-Ting G. Bradykinin preconditioning induces protective effects on the spinal cord ischemic injury of rats. Neurosci Lett 2008; 433:114-8. [DOI: 10.1016/j.neulet.2008.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
|
18
|
Danielisová V, Gottlieb M, Némethová M, Burda J. Effects of Bradykinin Postconditioning on Endogenous Antioxidant Enzyme Activity After Transient Forebrain Ischemia in Rat. Neurochem Res 2007; 33:1057-64. [DOI: 10.1007/s11064-007-9550-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
|
19
|
Abstract
There is convincing evidence that angiotensin II, through activation of the angiotensin II type 1 (AT1) receptor, is involved in the atherosclerotic process. Similarly, angiotensin receptor blockers decrease vascular inflammation, hypertrophy and thrombosis, which are the key components of the progression of atherosclerosis. In addition, in several animal models, angiotensin receptor blockade was able to inhibit atherosclerosis. However, the effects of angiotensin receptor blockers on clinical outcome in cardiovascular patients remains to be established. Contradictory results have been found on the reduction of the risk on myocardial infarctions and in-stent restenosis, although there is solid evidence for cerebroprotective effects of these receptor blockers. These differences may be related to the role of the AT2 receptor. This review discusses the role of angiotensin II and angiotensin receptor blockers in the atherosclerotic process and its translation into clinical practice.
Collapse
Affiliation(s)
- Adriaan A Voors
- University Medical Center Groningen, Thoraxcenter, Department of Cardiology, Groningen, The Netherlands.
| |
Collapse
|
20
|
Ongali B, Hellal F, Rodi D, Plotkine M, Marchand-Verrecchia C, Pruneau D, Couture R. Autoradiographic Analysis of Mouse Brain Kinin B1 and B2 Receptors after Closed Head Trauma and Ability of Anatibant Mesylate to Cross the Blood–Brain Barrier. J Neurotrauma 2006; 23:696-707. [PMID: 16689671 DOI: 10.1089/neu.2006.23.696] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potent non-peptide B2 receptor (R) antagonist, Anatibant mesylate (Ms) (LF 16-0687 Ms), reduces brain edema and improves neurological function recovery in various focal and diffuse models of traumatic brain injury in rodents. In the present study, alteration of kinin B1 and B2R after closed head trauma (CHT) and in vivo binding properties of Anatibant Ms (3 mg/kg, s.c.) injected 30 min after CHT were studied in mice by autoradiography using the radioligands [125I]HPP-Hoe 140 (B2R), and [125I]HPP-des-Arg10-Hoe 140 (B1R). Whereas B1R is barely detected in most brain regions, B2R is extensively distributed, displaying the highest densities in the hindbrain. CHT was associated with a slight increase of B1R and a decrease of B2R (10-50%) in several brain regions. Anatibant Ms (Ki = 22 pM) displaced the B2R radioligand from its binding sites in several areas of the forebrain, basal ganglia and hindbrain. Displacement was achieved in 1 h and persisted at 4 h post-injection. The inhibition did not exceed 50% of the total specific binding in non-injured mice. After CHT, the displacement by Anatibant Ms was higher and almost complete in the cortex, caudate putamen, thalamus, hippocampus, medial geniculate nucleus, ventral tegmental area, and raphe. Evans blue extravasation in brain tissue at 4 h after CHT was abolished by Anatibant Ms. It appeared that Anatibant Ms penetrated into the brain in sufficient amounts, particularly after disruption of the blood-brain barrier, to account for its B2R-mediated neuro- and vascular protective effects. The diminished binding of B2R after CHT may reflect the occupancy or internalization of B2R following the endogenous production of bradykinin (BK).
Collapse
Affiliation(s)
- Brice Ongali
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Xia CF, Smith RS, Shen B, Yang ZR, Borlongan CV, Chao L, Chao J. Postischemic brain injury is exacerbated in mice lacking the kinin B2 receptor. Hypertension 2006; 47:752-61. [PMID: 16534002 DOI: 10.1161/01.hyp.0000214867.35632.0e] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Kallikrein cleaves low molecular weight kininogen to generate vasoactive kinins, which bind to the kinin B2 receptor, triggering a host of biological effects. Kallikrein gene delivery has been shown previously to reduce ischemia/reperfusion-induced cerebral infarction. In this study, we tested the hypothesis that the kinin B2 receptor plays a protective role in ischemic brain injury using kinin B2 receptor gene knockout (B2R-KO) mice subjected to middle cerebral artery occlusion (MCAO). The mortality rate and neurological deficit scores of B2R-KO mice (n=48) after MCAO were significantly increased compared with wild-type (WT) mice (n=40) when examined over a 14-day period. In addition, the infarct volume in B2R-KO mice was significantly larger than in WT mice at days 1 and 3 after MCAO. Similarly, apoptotic cells, detected by TUNEL labeling counterstained with propidium iodide, and caspase-3 activity in the ischemic brain increased significantly in B2R-KO mice at days 1 and 3 after MCAO. Furthermore, the accumulation of neutrophils in the ischemic brain of B2R-KO mice after MCAO increased when compared with WT mice and was associated with elevated tumor necrosis factor alpha expression. These alterations in B2R-KO mice correlated with decreased NO levels, Akt, and glycogen synthase kinase-3beta phosphorylation and increased nicotinamide-adenine dinucleotide oxidase activity. These results indicate that the kinin B2 receptor promotes survival and protects against brain injury by suppression of apoptosis and inflammation induced by ischemic stroke.
Collapse
Affiliation(s)
- Chun-Fang Xia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lumenta DB, Plesnila N, Kläsner B, Baethmann A, Pruneau D, Schmid-Elsaesser R, Zausinger S. Neuroprotective effects of a postischemic treatment with a bradykinin B2 receptor antagonist in a rat model of temporary focal cerebral ischemia. Brain Res 2006; 1069:227-34. [PMID: 16378603 DOI: 10.1016/j.brainres.2005.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 11/07/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
Bradykinin, an endogenous nonapeptide produced by activation of the kallikrein-kinin system, promotes neuronal tissue damage as well as disturbances in blood-brain barrier function through activation of B2 receptors. In a rat model of focal cerebral ischemia, blockade of B2 receptors before initiation of ischemia with the B2 receptor antagonist, LF 16-0687 Ms, afforded substantial neuroprotection. In order to assess the potential clinical value of this approach, we evaluated the effect of LF 16-0687 Ms given at reperfusion following focal cerebral ischemia on local cerebral blood flow (LCBF), neurological outcome, and infarct size. Sprague-Dawley rats were subjected to MCA occlusion for 90 min by an intraluminal filament. Animals were assigned to one of four treatment arms (n = 7 each): (1) vehicle, (2) LF 16-0687 Ms (1.0 mg/kg/day), (3) LF 16-0687 Ms (3.0 mg/kg/day), or (4) LF 16-0687 Ms (10.0 mg/kg/day) given at reperfusion and repetitively over 2 days. Neurological recovery was examined daily, and infarct volume was assessed histologically on day 7 after ischemia. Physiological parameters and local CBF were not influenced by the treatment. Significant improvement of neurological outcome was observed on postischemic day 3 in animals receiving 1.0 and 3.0 mg/kg/day of LF 16-0687 Ms (P < 0.05). Inhibition of B2 receptors significantly reduced infarct volume in all treated animals predominantly in the cortex. B2 receptor blockade with LF 16-0687 Ms showed neuroprotective effectiveness even when therapy was initiated upon reperfusion, i.e. 90 min after induction of ischemia. Therefore, blockade of B2 receptors seems to be a promising therapeutic approach after focal cerebral ischemia, which deserves further experimental and clinical evaluation.
Collapse
Affiliation(s)
- D B Lumenta
- Institute for Surgical Research, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Cucchi P, Meini S, Bressan A, Catalani C, Bellucci F, Santicioli P, Lecci A, Faiella A, Rotondaro L, Giuliani S, Giolitti A, Quartara L, Maggi CA. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization. Eur J Pharmacol 2005; 528:7-16. [PMID: 16324696 DOI: 10.1016/j.ejphar.2005.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/23/2005] [Accepted: 10/05/2005] [Indexed: 11/23/2022]
Abstract
The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but not much Y295W), were crucial for the high affinity of MEN16132. In conclusion, MEN16132 is a new, potent, and selective nonpeptide bradykinin B2 receptor antagonist.
Collapse
Affiliation(s)
- Paola Cucchi
- Department of Pharmacology, Menarini Ricerche, S.p.A., via Rismondo 12A, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ping A, Chun ZX, Xue XY. Bradykinin preconditioning induces protective effects against focal cerebral ischemia in rats. Brain Res 2005; 1059:105-12. [PMID: 16182259 DOI: 10.1016/j.brainres.2005.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 07/31/2005] [Accepted: 08/05/2005] [Indexed: 12/21/2022]
Abstract
Bradykinin is recognized to play an important role in heart ischemia tolerance, and it is expressed in ischemic brain. We hypothesized that bradykinin might play a role in the regulation of tolerance to ischemic brain when administered prior to the ischemic episode. We investigated the effects of bradykinin preconditioning on ischemic damage using an in vivo model of 2-h ischemia and 24-h reperfusion focal cerebral ischemia in rats. Prior to ischemia, bradykinin was pumped into the brain via external carotid artery at a dose of 10 microg/kg/min for 15 min. A significant reduction of 41.20% in infarct size was noted in rats pretreated by bradykinin 15 min prior to ischemia. Brain edema and permeability of blood-brain barrier were also decreased. Immunohistochemical and Western blot analysis of brains revealed a significant increase in basic fibroblast growth factor protein levels. The study demonstrated that bradykinin preconditioning induces protection against ischemic brain injury, and this protection is likely due to the protection of cerebral vasculature and the promotion of neuronal survival.
Collapse
Affiliation(s)
- An Ping
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang
| | | | | |
Collapse
|
25
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 742] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|