1
|
Li MC, Chang PY, Luo HR, Chang LY, Lin CY, Yang CY, Lee OKS, Wu Lee YH, Tarng DC. Functioning tailor-made 3D-printed vascular graft for hemodialysis. J Vasc Access 2024; 25:244-253. [PMID: 35773975 DOI: 10.1177/11297298221086173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The two ends of arteriovenous graft (AVG) are anastomosed to the upper limb vessels by surgery for hemodialysis therapy. However, the size of upper limb vessels varies to a large extent among different individuals. METHODS According to the shape and size of neck vessels quantified from the preoperative computed tomography angiographic scan, the ethylene-vinyl acetate (EVA)-based AVG was produced in H-shape by the three-dimensional (3D) printer and then sterilized. This study investigated the function of this novel 3D-printed AVG in vitro and in vivo. RESULTS This 3D-printed AVG can be implanted in the rabbit's common carotid artery and common jugular vein with ease and functions in vivo. The surgical procedure was quick, and no suture was required. The blood loss was minimal, and no hematoma was noted at least 1 week after the surgery. The blood flow velocity within the implanted AVG was 14.9 ± 3.7 cm/s. Additionally, the in vitro characterization experiments demonstrated that this EVA-based biomaterial is biocompatible and possesses a superior recovery property than ePTFE after hemodialysis needle cannulation. CONCLUSIONS Through the 3D printing technology, the EVA-based AVG can be tailor-made to fit the specific vessel size. This kind of 3D-printed AVG is functioning in vivo, and our results realize personalized vascular implants. Further large-animal studies are warranted to examine the long-term patency.
Collapse
Affiliation(s)
- Ming-Chia Li
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
| | - Huai-Rou Luo
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Ling-Yuan Chang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Chuan-Yi Lin
- Taiwan Instrument Research Center, National Applied Research Laboratories, Hsinchu
| | - Chih-Yu Yang
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Der-Cherng Tarng
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
| |
Collapse
|
2
|
Douglass M, Garren M, Devine R, Mondal A, Handa H. Bio-inspired hemocompatible surface modifications for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2022; 130:100997. [PMID: 36660552 PMCID: PMC9844968 DOI: 10.1016/j.pmatsci.2022.100997] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Iwaki R, Shoji T, Matsuzaki Y, Ulziibayar A, Shinoka T. Current status of developing tissue engineering vascular technologies. Expert Opin Biol Ther 2021; 22:433-440. [PMID: 34427482 DOI: 10.1080/14712598.2021.1960976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death in western countries. Although surgical outcomes for CVD are dramatically improving with the development of surgical techniques, medications, and perioperative management strategies, adverse postoperative events related to the use of artificial prosthetic materials are still problematic. Moreover, in pediatric patients, using these artificial materials make future re-intervention inevitable due to their lack of growth potential. AREAS COVERED This review focuses on the most current tissue-engineering (TE) technologies to treat cardiovascular diseases and discusses their limitations through reports ranging from animal studies to clinical trials. EXPERT OPINION Tissue-engineered structures, derived from a patient's own autologous cells/tissues and biodegradable polymer scaffolds, can provide mechanical function similar to non-diseased tissue. However, unlike prosthetic materials, tissue-engineered structures are hypothetically more biocompatible and provide growth potential, saving patients from additional or repetitive interventions. While there are many methods being investigated to develop TE technologies in the hopes of finding better options to tackle CVD, most of these approaches are not ready for clinical use or trials. However, tissue engineering has great promise to potentially provide better treatment options to vastly improve cardiovascular surgical outcomes.
Collapse
Affiliation(s)
- Ryuma Iwaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
4
|
Surface Modification with NGF-Loaded Chitosan/Heparin Nanoparticles for Improving Biocompatibility of Cardiovascular Stent. Stem Cells Int 2021; 2021:9941143. [PMID: 33986810 PMCID: PMC8093045 DOI: 10.1155/2021/9941143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Late thrombosis and restenosis remain major challenges to the safety of drug-eluting stents. Biofunctional modification to endow the surface with selective anticoagulation and promote endothelium regeneration has become a hotpot recently. In this study, chitosan and heparin were found to form three-dimensional nanoparticles by spontaneous electrostatic interaction. Based on the specific binding properties between heparin and nerve growth factor (NGF), a new type of NGF-loaded heparin/chitosan nanoparticles was constructed for surface modification. The results of material characterization show that the nanoparticles are successfully immobilized on the surface of the material. In vitro blood compatibility and endothelial cell compatibility assay showed that the modified surface could selectively inhibit platelet adhesion and smooth muscle cell overproliferation, while accelerating endothelialization via promoting endothelial cell proliferation and enhancing endothelial progenitor cell mobilization.
Collapse
|
5
|
Alfotawi R. An Update in Reconstructive Surgery. J INVEST SURG 2020; 34:1377-1378. [PMID: 32799704 DOI: 10.1080/08941939.2020.1806961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Randa Alfotawi
- Department of Oral and Maxillofacial Surgery, King Khalid University Hospital, Faculty of Dentistry, King Saud University, Riyadh, KSA
| |
Collapse
|
6
|
Krynauw H, Omar R, Koehne J, Limbert G, Davies NH, Bezuidenhout D, Franz T. Electrospun polyester-urethane scaffold preserves mechanical properties and exhibits strain stiffening during in situ tissue ingrowth and degradation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Abstract
The spectrum of ischemic heart diseases, encompassing acute myocardial infarction to heart failure, represents the leading cause of death worldwide. Although extensive progress in cardiovascular diagnoses and therapy has been made, the prevalence of the disease continues to increase. Cardiac regeneration has a promising perspective for the therapy of heart failure. Recently, extracellular matrix (ECM) has been shown to play an important role in cardiac regeneration and repair after cardiac injury. There is also evidence that the ECM could be directly used as a drug to promote cardiomyocyte proliferation and cardiac regeneration. Increasing evidence supports that applying ECM biomaterials to maintain heart function recovery is an important approach to apply the concept of cardiac regenerative medicine to clinical practice in the future. Here, we will introduce the essential role of cardiac ECM in cardiac regeneration and summarize the approaches of delivering ECM biomaterials to promote cardiac repair in this review.
Collapse
Affiliation(s)
- Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Minghui Bao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
8
|
Tseng YC, Roan JN, Ho YC, Lin CC, Yeh ML. An in vivo study on endothelialized vascular grafts produced by autologous biotubes and adipose stem cells (ADSCs). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:166. [PMID: 28914400 DOI: 10.1007/s10856-017-5986-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Currently, commercial synthetic vascular grafts made from Dacron and ePTFE for small-diameter, vascular applications (<6 mm) show limited reendothelization and are less compliant, often resulting in thrombosis and intimal hyperplasia. Although good blood compatibility can be achieved in autologous arteries and veins, the number of high quality harvest sites is limited, and the grafts are size-mismatched for use in the fistula or cardiovascular bypass surgery; thus, alternative small graft substitutes must be developed. A biotube is an in vivo, tissue-engineered approach for the growth of autologous grafts through the subcutaneous implantation of an inert rod through the inflammation process. In the present study, we embedded silicone rods with a diameter of 2 mm into the dorsal subcutaneous tissue of rabbits for 4 weeks to grow biotubes. The formation of functional endothelium cells aligned on the inner wall surface was achieved by seeding with adipose stem cells (ADSCs). The ADSCs-seeded biotubes were implanted into the carotid artery of rabbits for more than 1 month, and the patency rates and remodeling of endothelial cells were observed by angiography and fluorescence staining, respectively. Finally, the mechanical properties of the biotube were also evaluated. The fluorescence staining results showed that the ADSCs differentiated not only into endothelia cells but also into smooth muscle cells. Moreover, the patency of the ADSCs-seeded biotube remained high for at least 5 months. These small-sized ADSCs-seeded vascular biotubes may decrease the rate of intimal hyperplasia during longer implantation times and have potential clinical applications in the future.
Collapse
Affiliation(s)
- Yu Chieh Tseng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jun Neng Roan
- Institute of clinical medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiovascular Surger, Department of Surgery, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ying Chiang Ho
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih Chan Lin
- Department of Medical Research, Laboratory Animal Center, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ming Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Guo Z, Grijpma DW, Poot AA. Preparation and characterization of flexible and elastic porous tubular PTMC scaffolds for vascular tissue engineering. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Z. Guo
- MIRA - Institute of Biomedical Technology and Technical Medicine and Department of Biomaterials Science and Technology, Faculty of Science and Technology; University of Twente; PO Box 217 7500 Enschede the Netherlands
| | - D. W. Grijpma
- MIRA - Institute of Biomedical Technology and Technical Medicine and Department of Biomaterials Science and Technology, Faculty of Science and Technology; University of Twente; PO Box 217 7500 Enschede the Netherlands
- W.J. Kolff Institute, Department of Biomedical Engineering, University Medical Centre Groningen; University of Groningen; PO Box 196 9700 Groningen the Netherlands
- Collaborative Research Partner; Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
| | - A. A. Poot
- MIRA - Institute of Biomedical Technology and Technical Medicine and Department of Biomaterials Science and Technology, Faculty of Science and Technology; University of Twente; PO Box 217 7500 Enschede the Netherlands
- Collaborative Research Partner; Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
| |
Collapse
|
10
|
Verma V, Samanthapudi K, Raviprakash R. Classic Studies on the Potential of Stem Cell Neuroregeneration. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2015; 25:123-141. [PMID: 26308908 DOI: 10.1080/0964704x.2015.1039904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The 1990s and 2000s were the beginning of an exciting time period for developmental neuroscience and neural stem cell research. By better understanding brain plasticity and the birth of new neurons in the adult brain, contrary to established dogma, hope for therapy from devastating neurological diseases was generated. The potential for stem cells to provide functional recovery in humans remains to be further tested and to further move into the clinical trial realm. The future certainly has great promise on stem cells to assist in alleviation of difficult-to-treat neurologic disorders. This article reviews classic studies of the 1990s and 2000s that paved the way for the advances of today, which can in turn lead to tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| | | | - Ratujit Raviprakash
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
11
|
Radiological assessment of bioengineered bone in a muscle flap for the reconstruction of critical-size mandibular defect. PLoS One 2014; 9:e107403. [PMID: 25226170 PMCID: PMC4167331 DOI: 10.1371/journal.pone.0107403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm × 15 mm) was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT), BMP-7 and rabbit mesenchymal stromal cells (rMSCs) was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT) scanning and micro-computed tomography (µ-CT) were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ± 15, the mean volume of the radio-opaque areas was 63.4% ± 20. Areas of a bone density higher than that of the mandibular bone (+35% ± 25%) were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects.
Collapse
|
12
|
Abstract
Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology-such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches-promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.
Collapse
Affiliation(s)
- Dawit G Seifu
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering and Quebec University Hospital Center, Laval University, Quebec City, QC G1V 0A6, Canada
| | | | | | | |
Collapse
|
13
|
Melchiorri AJ, Hibino N, Fisher JP. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:292-307. [PMID: 23252992 DOI: 10.1089/ten.teb.2012.0577] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Due to the lack of success in small-diameter (<6 mm) prosthetic vascular grafts, a variety of strategies have evolved utilizing a tissue-engineering approach. Much of this work has focused on enhancing the endothelialization of these grafts. A healthy, confluent endothelial layer provides dynamic control over homeo-stasis, influencing and preventing thrombosis and smooth muscle cell proliferation that can lead to intimal hyperplasia. Strategies to improve endothelialization of biodegradable polymeric grafts have encompassed both chemical and physical modifications to graft surfaces, many focusing on the recruitment of endothelial and endothelial progenitor cells. This review aims to provide a compilation of current and developing strategies that utilize in situ endothelialization to improve vascular graft outcomes, providing a context for the future directions of vascular tissue-engineering strategies that do not require preprocedural cell seeding.
Collapse
Affiliation(s)
- Anthony J Melchiorri
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
14
|
Baiguera S, Ribatti D. Endothelialization approaches for viable engineered tissues. Angiogenesis 2012; 16:1-14. [PMID: 23010872 DOI: 10.1007/s10456-012-9307-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/15/2012] [Indexed: 12/21/2022]
Abstract
One of the main limitation in obtaining thick, 3-dimensional viable engineered constructs is the inability to provide a sufficient and functional blood vessel system essential for the in vitro survival and the in vivo integration of the construct. Different strategies have been proposed to simulate the ingrowth of new blood vessels into engineered tissue, such as the use of growth factors, fabrication scaffold technologies, in vivo prevascularization and cell-based strategies, and it has been demonstrated that endothelial cells play a central role in the neovascularization process and in the control of blood vessel function. In particular, different "environmental" settings (origin, presence of supporting cells, biomaterial surface, presence of hemodynamic forces) strongly influence endothelial cell function, angiogenic potential and the in vivo formation of durable vessels. This review provides an overview of the different techniques developed so far for the vascularization of tissue-engineered constructs (with their advantages and pitfalls), focusing the attention on the recent development in the cell-based vascularization strategy and the in vivo applications.
Collapse
Affiliation(s)
- Silvia Baiguera
- BIOAIRLab, European Center for Thoracic Surgery, University Hospital Careggi, Florence, Italy.
| | | |
Collapse
|
15
|
Schmelzer E, Triolo F, Turner ME, Thompson RL, Zeilinger K, Reid LM, Gridelli B, Gerlach JC. Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells. Tissue Eng Part A 2010; 16:2007-16. [PMID: 20088704 DOI: 10.1089/ten.tea.2009.0569] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The ability of human fetal liver cells to survive, expand, and form functional tissue in vitro is of high interest for the development of bioartificial extracorporeal liver support systems, liver cell transplantation therapies, and pharmacologic models. Conventional static two-dimensional culture models seem to be inadequate tools. We focus on dynamic three-dimensional perfusion technologies and developed a scaled-down bioreactor, providing decentralized mass exchange with integral oxygenation. Human fetal liver cells were embedded in a hyaluronan hydrogel within the capillary system to mimic an in vivo matrix and perfusion environment. Metabolic performance was monitored daily, including glucose consumption, lactate dehydrogenase activity, and secretion of alpha-fetoprotein and albumin. At culture termination cells were analyzed for proliferation and liver-specific lineage-dependent cytochrome P450 (CYP3A4/3A7) gene expression. Occurrence of hepatic differentiation in bioreactor cultures was demonstrated by a strong increase in CYP3A4/3A7 gene expression ratio, lower alpha-fetoprotein, and higher albumin secretion than in conventional Petri dish controls. Cells in bioreactors formed three-dimensional structures. Viability of cells was higher in bioreactors than in control cultures. In conclusion, the culture model implementing three-dimensionality, constant perfusion, and integral oxygenation in combination with a hyaluronan hydrogel provides superior conditions for liver cell survival and differentiation compared to conventional culture.
Collapse
Affiliation(s)
- Eva Schmelzer
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cao Y, Poon YF, Feng J, Rayatpisheh S, Chan V, Chan-Park MB. Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls. Biomaterials 2010; 31:6228-38. [PMID: 20537704 DOI: 10.1016/j.biomaterials.2010.04.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/29/2010] [Indexed: 01/30/2023]
Abstract
Vascular smooth muscle cells (vSMCs) cultured in vitro are known to exhibit phenotype hyperplasticity. This plasticity is potentially very useful in tissue engineering of blood vessels. The synthetic phenotype is necessary for cell proliferation on the tissue scaffold but the cells must ultimately assume a quiescent, contractile phenotype for normal vascular function. In vitro control of vSMC phenotype has been challenging. This study shows that microchannel scaffolds with discontinuous walls can support primary vSMC proliferation and, when the cells reach confluence inside the channels, transform the cell phenotype towards greater contractility and promote cell alignment. A thorough time-resolved study was undertaken to characterize the expression of the contractile proteins alpha-actin, calponin, myosin heavy chain (MHC) and smoothelin as a function of time and initial cell density on microchannel scaffolds. The results consistently indicate that primary vSMCs cultured on the microchannel substrate substantially align parallel to the microwalls, become more elongated and significantly increase their expression of contractile proteins only when the cells reach confluence. MHC immunostaining was visible in the micropatterned cells after confluence but not in flat substrate cells or non-confluent micropatterned cells, which further verifies the increased contractility of the confluent channel-constrained vSMCs. The higher total amount of deposited elastin and collagen in confluent flat cultures than in confluent micropatterned cultures also provides confirmation of the higher contractility of the channel-constrained cells. These results establish that our microchanneled film can trigger the switch of primary vSMCs from a proliferative state to a more contractile phenotype at confluence.
Collapse
Affiliation(s)
- Ye Cao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | | | | | | | | | | |
Collapse
|
17
|
Horwitz JA, Shum KM, Bodle JC, Deng M, Chu CC, Reinhart-King CA. Biological performance of biodegradable amino acid-based poly(ester amide)s: Endothelial cell adhesion and inflammation in vitro. J Biomed Mater Res A 2010; 95:371-80. [DOI: 10.1002/jbm.a.32858] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization — A review of current strategies. Biotechnol Adv 2010; 28:119-29. [DOI: 10.1016/j.biotechadv.2009.10.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 12/20/2022]
|
19
|
Yun J, Rocic P, Pung YF, Belmadani S, Carrao ACR, Ohanyan V, Chilian WM. Redox-dependent mechanisms in coronary collateral growth: the "redox window" hypothesis. Antioxid Redox Signal 2009; 11:1961-74. [PMID: 19416057 PMCID: PMC2848513 DOI: 10.1089/ars.2009.2476] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review addresses the complexity of coronary collateral growth from the aspect of redox signaling and introduces the concept of a "redox window" in the context of collateral growth. In essence, the redox window constitutes a range in the redox state of cells, which not only is permissive for the actions of growth factors but also amplifies their actions. The interactions of redox-dependent signaling with growth factors are well established through the actions of many redox-dependent kinases (e.g., Akt and p38 mitogen-activated protein kinase). The initial changes in cellular redox can be induced by a variety of events, from the oxidative burst during reperfusion after ischemia, to recruitment of various types of inflammatory cells capable of producing reactive oxygen species. Any event that "upsets" the normal redox equilibrium is capable of amplifying growth. However, extremes of the redox window, oxidative and reductive stresses, are associated with diminished growth-factor signaling and reduced activation of redox-dependent kinases. This concept of a redox window helps to explain why the clinical trials aimed at stimulating coronary collateral growth, the "therapeutic angiogenesis trials," failed. However, understanding of redox signaling in the context of coronary collateral growth could provide new paradigms for stimulating collateral growth in patients.
Collapse
Affiliation(s)
- June Yun
- Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wieghaus KA, Gianchandani EP, Neal RA, Paige MA, Brown ML, Papin JA, Botchwey EA. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells. Biotechnol Bioeng 2009; 103:796-807. [PMID: 19326468 DOI: 10.1002/bit.22310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode of action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray data set of PNF1-treated (vs. control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-alpha) and, subsequently, transforming growth factor-beta (TGF-beta) signaling networks by PNF1. Here we validate this microarray data set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this data set and identify three specific TGF-beta-induced genes with regulation by PNF1 conserved over multiple timepoints-amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)-that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1-48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode of action and important for successful promotion of the neovascularization that we have observed by the drug in vivo.
Collapse
Affiliation(s)
- Kristen A Wieghaus
- Department of Biomedical Engineering, University of Virginia, Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Chan-Park MB, Shen JY, Cao Y, Xiong Y, Liu Y, Rayatpisheh S, Kang GCW, Greisler HP. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J Biomed Mater Res A 2009; 88:1104-21. [PMID: 19097157 DOI: 10.1002/jbm.a.32318] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-diameter blood vessel substitutes are urgently needed for patients requiring replacements of their coronary and below-the-knee vessels and for better arteriovenous dialysis shunts. Circulatory diseases, especially those arising from atherosclerosis, are the predominant cause of mortality and morbidity in the developed world. Current therapies include the use of autologous vessels or synthetic materials as vessel replacements. The limited availability of healthy vessels for use as bypass grafts and the failure of purely synthetic materials in small-diameter sites necessitate the development of a biological substitute. Tissue engineering is such an approach and has achieved promising results, but reconstruction of a functional vascular tunica media, with circumferentially oriented contractile smooth muscle cells (SMCs) and extracellular matrix, appropriate mechanical properties, and vasoactivity has yet to be demonstrated. This review focuses on strategies to effect the switch of SMC phenotype from synthetic to contractile, which is regarded as crucial for the engineering of a functional vascular media. The synthetic SMC phenotype is desired initially for cell proliferation and tissue remodeling, but the contractile phenotype is then necessary for sufficient vasoactivity and inhibition of neointima formation. The factors governing the switch to a more contractile phenotype with in vitro culture are reviewed.
Collapse
Affiliation(s)
- Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang D, Chang J. Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. NANO LETTERS 2008; 8:3283-7. [PMID: 18767890 DOI: 10.1021/nl801667s] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper reports a novel static method to fabricate three-dimensional (3D) fibrous tubes composed of ultrafine electrospun fibers. By using this unique technique, micro and macro single tubes with multiple micropatterns, multiple interconnected tubes, and many tubes with the same or different sizes, shapes, structures, and patterns can be prepared synchronously. Parameters that could influence the order degree of patterned architectures have also been investigated. It is expected that electrospun tubes with controllable patterned architectures and 3D configurations may be attractive in many biomedical and industrial applications.
Collapse
Affiliation(s)
- Daming Zhang
- Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | | |
Collapse
|
23
|
Wieghaus KA, Nickerson MM, Petrie Aronin CE, Sefcik LS, Price RJ, Paige MA, Brown ML, Botchwey EA. Expansion of microvascular networks in vivo by phthalimide neovascular factor 1 (PNF1). Biomaterials 2008; 29:4698-708. [PMID: 18804278 DOI: 10.1016/j.biomaterials.2008.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/20/2008] [Indexed: 12/28/2022]
Abstract
Phthalimide neovascular factor (PNF1, formerly SC-3-149) is a potent stimulator of proangiogenic signaling pathways in endothelial cells. In this study, we evaluated the in vivo effects of sustained PNF1 release to promote ingrowth and expansion of microvascular networks surrounding biomaterial implants. The dorsal skinfold window chamber was used to evaluate the structural remodeling response of the local microvasculature. PNF1 was released from poly(lactic-co-glycolic acid) (PLAGA) films, and a transport model was utilized to predict PNF1 penetration into the surrounding tissue. PNF1 significantly expanded microvascular networks within a 2mm radius from implants after 3 and 7 days by increasing microvessel length density and lumenal diameter of local arterioles and venules. Staining of histological sections with CD11b showed enhanced recruitment of circulating white blood cells, including monocytes, which are critical for the process of vessel enlargement through arteriogenesis. As PNF1 has been shown to modulate MT1-MMP, a facilitator of CCL2 dependent leukocyte transmigration, aspects of window chamber experiments were repeated in CCR2(-/-) (CCL2 receptor) mouse chimeras to more fully explore the critical nature of monocyte recruitment on the therapeutic benefits of PNF1 function in vivo.
Collapse
Affiliation(s)
- Kristen A Wieghaus
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Avci-Adali M, Paul A, Ziemer G, Wendel HP. New strategies for in vivo tissue engineering by mimicry of homing factors for self-endothelialisation of blood contacting materials. Biomaterials 2008; 29:3936-45. [PMID: 18640715 DOI: 10.1016/j.biomaterials.2008.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/01/2008] [Indexed: 02/08/2023]
Abstract
For years intensive research has been done to endothelialise vascular prostheses with autologous endothelial cells before implantation in patients. However, this procedure is extremely time-, labor- and cost-intensive and can be realized only in very few clinical cases. The discovery of circulating endothelial progenitor cells (EPCs) in 1997 brought new perspectives for the endothelialisation of blood contacting materials. Coating of synthetic graft surfaces with capture molecules for circulating EPCs mimics a pro-homing substrate for fishing out EPCs directly from the bloodstream after implantation. These cells with high proliferation potential can cover the graft with non-thrombogenic endothelium which maintains optimal haemostasis and minimize the risk of restenosis. In this review, different concepts are discussed to capture circulating EPCs on synthetic vascular grafts after implantation. We hypothesize that in vivo self-endothelialisation of blood contacting materials by homing factor-mimetic capture molecules for EPCs may bring revolutionary new perspectives towards future clinical application of stem cell and tissue engineering strategies.
Collapse
Affiliation(s)
- Meltem Avci-Adali
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, Calwerstrasse 7/1, Tuebingen, Germany
| | | | | | | |
Collapse
|
25
|
van Weel V, van Tongeren RB, van Hinsbergh VWM, van Bockel JH, Quax PHA. Vascular growth in ischemic limbs: a review of mechanisms and possible therapeutic stimulation. Ann Vasc Surg 2008; 22:582-97. [PMID: 18504100 DOI: 10.1016/j.avsg.2008.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/15/2008] [Accepted: 02/29/2008] [Indexed: 01/13/2023]
Abstract
Stimulation of vascular growth to treat limb ischemia is promising, and early results obtained from uncontrolled clinical trials using angiogenic agents, e.g., vascular endothelial growth factor, led to high expectations. However, negative results from recent placebo-controlled trials warrant further research. Here, current insights into mechanisms of vascular growth in the adult, in particular the role of angiogenic factors, the immune system, and bone marrow, were reviewed, together with modes of its therapeutic stimulation and results from recent clinical trials. Three concepts of vascular growth have been described to date-angiogenesis, vasculogenesis, and arteriogenesis (collateral artery growth)-which represent different aspects of an integrated process. Stimulation of arteriogenesis seems clinically most relevant and has most recently been attempted using autologous bone marrow transplantation with some beneficial results, although the mechanism of action is not completely understood. Better understanding of the highly complex molecular and cellular mechanisms of vascular growth may yet lead to meaningful clinical applications.
Collapse
Affiliation(s)
- V van Weel
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
26
|
Zhou FL, Gong RH. Manufacturing technologies of polymeric nanofibres and nanofibre yarns. POLYM INT 2008. [DOI: 10.1002/pi.2395] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Wieghaus KA, Gianchandani EP, Brown ML, Papin JA, Botchwey EA. Mechanistic exploration of phthalimide neovascular factor 1 using network analysis tools. ACTA ACUST UNITED AC 2007; 13:2561-75. [PMID: 17723106 PMCID: PMC3124853 DOI: 10.1089/ten.2007.0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neovascularization is essential for the survival and successful integration of most engineering tissues after implantation in vivo. The objective of this study was to elucidate possible mechanisms of phthalimide neovascular factor 1 (PNF1), a new synthetic small molecule proposed for therapeutic induction of angiogenesis. Complementary deoxyribonucleic acid microarray analysis was used to identify 568 transcripts in human microvascular endothelial cells (HMVECs) that were significantly regulated after 24-h stimulation with 30 muM of PNF1, previously known as SC-3-149. Network analysis tools were used to identify genetic networks of the global biological processes involved in PNF1 stimulation and to describe known molecular and cellular functions that the drug regulated most highly. Examination of the most significantly perturbed networks identified gene products associated with transforming growth factor-beta (TGF-beta), which has many known effects on angiogenesis, and related signal transduction pathways. These include molecules integral to the thrombospondin, plasminogen, fibroblast growth factor, epidermal growth factor, ephrin, Rho, and Ras signaling pathways that are essential to endothelial function. Moreover, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) of select genes showed significant increases in TGF-beta-associated receptors endoglin and beta glycan. These experiments provide important insight into the pro-angiogenic mechanism of PNF1, namely, TGF-beta-associated signaling pathways, and may ultimately offer new molecular targets for directed drug discovery.
Collapse
Affiliation(s)
- Kristen A Wieghaus
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
28
|
Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 2005; 26:1857-75. [PMID: 15576160 DOI: 10.1016/j.biomaterials.2004.07.006] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/05/2004] [Indexed: 11/16/2022]
Abstract
The construction of tissue-engineered devices for medical applications is now possible in vitro using cell culture and bioreactors. Although methods of incorporating them back into the host are available, current constructs depend purely on diffusion which limits their potential. The absence of a vascular network capable of distributing oxygen and other nutrients within the tissue-engineered device is a major limiting factor in creating vascularised artificial tissues. Though bio-hybrid prostheses such as vascular bypass grafts and skin substitutes have already been developed and are being used clinically, the absence of a capillary bed linking the two systems remains the missing link. In this review, the different approaches currently being or that have been applied to vascularise tissues are identified and discussed.
Collapse
Affiliation(s)
- Ruben Y Kannan
- Biomaterials & Tissue Engineering Centre (BTEC), University Department of Surgery, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | |
Collapse
|