1
|
Gonçalves-Ribeiro J, Savchak OK, Costa-Pinto S, Gomes JI, Rivas-Santisteban R, Lillo A, Sánchez Romero J, Sebastião AM, Navarrete M, Navarro G, Franco R, Vaz SH. Adenosine receptors are the on-and-off switch of astrocytic cannabinoid type 1 (CB1) receptor effect upon synaptic plasticity in the medial prefrontal cortex. Glia 2024; 72:1096-1116. [PMID: 38482984 DOI: 10.1002/glia.24518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.
Collapse
Affiliation(s)
- Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Costa-Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rafael Rivas-Santisteban
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Javier Sánchez Romero
- Instituto Cajal, CSIC, Madrid, Spain
- PhD Program in Neuroscience, Universidad Autónoma de Madrid-Instituto Cajal, Madrid, Spain
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-receptor interactions and microvesicle exchange as mechanisms modulating signaling between neurons and astrocytes. Neuropharmacology 2023; 231:109509. [PMID: 36935005 DOI: 10.1016/j.neuropharm.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
It is well known that astrocytes play a significant metabolic role in the nervous tissue, maintaining the homeostasis of the extracellular space and of the blood-brain barrier, and providing trophic support to neurons. In addition, however, evidence exists indicating astrocytes as important elements for brain activity through signaling exchange with neurons. Astrocytes, indeed, can sense synaptic activity and their molecular machinery responds to neurotransmitters released by neurons with cytoplasmic Ca2+ elevations that, in turn, stimulate the release of neuroactive substances (gliotransmitters) influencing nearby neurons. In both cell types the recognition and transduction of this complex pattern of signals is mediated by specific receptors that are also involved in mechanisms tuning the intercellular cross-talk between astrocytes and neurons. Two of these mechanisms are the focus of the present discussion. The first concerns direct receptor-receptor interactions leading to the formation at the cell membrane of multimeric receptor complexes. The cooperativity that emerges in the actions of orthosteric and allosteric ligands of the monomers forming the assembly provides the cell decoding apparatus with sophisticated and flexible dynamics in terms of recognition and signal transduction pathways. A further mechanism of plasticity involving receptors is based on the transfer of elements of the cellular signaling apparatus via extracellular microvesicles acting as protective containers, which can lead to transient changes in the transmitting/decoding capabilities of the target cell.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy.
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| |
Collapse
|
3
|
Dias L, Madeira D, Dias R, Tomé ÂR, Cunha RA, Agostinho P. Aβ 1-42 peptides blunt the adenosine A 2A receptor-mediated control of the interplay between P 2X 7 and P 2Y 1 receptors mediated calcium responses in astrocytes. Cell Mol Life Sci 2022; 79:457. [PMID: 35907034 PMCID: PMC11071907 DOI: 10.1007/s00018-022-04492-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022]
Abstract
The contribution of astrocytes to Alzheimer's disease (AD) is still ill defined. AD involves an abnormal accumulation of amyloid-β peptides (Aβ) and increased production of danger signals such as ATP. ATP can direct or indirectly, through its metabolism into adenosine, trigger adaptive astrocytic responses resulting from intracellular Ca2+ oscillations. AD also triggers an upregulation of astrocytic adenosine A2A receptors (A2AR), which blockade prevents memory dysfunction in AD. We now investigated how Aβ peptides affect ATP-mediated Ca2+ responses in astrocytes measured by fluorescence live-cell imaging and whether A2AR control astrocytic Ca2+ responses mediated by ATP receptors, mainly P2X7R and P2Y1R. In primary cultures of rat astrocytes exposed to Aβ1-42, ATP-evoked Ca2+ responses had a lower amplitude but a longer duration than in control astrocytes and involved P2X7R and P2Y1R, the former potentiating the later. Moreover, Aβ1-42 exposure increased protein levels of P2Y1R in astrocytes. A2AR antagonism with SCH58261 controlled in a protein kinase A-dependent manner both P2X7R- and P2Y1R-mediated Ca2+ responses in astrocytes. The interplay between these purinoceptors in astrocytes was blunted upon exposure to Aβ1-42. These findings uncover the ability of A2AR to regulate the inter-twinned P2X7R- and P2Y1R-mediated Ca2+ dynamics in astrocytes, which is disrupted in conditions of early AD.
Collapse
Affiliation(s)
- Liliana Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Daniela Madeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Rafael Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal.
| |
Collapse
|
4
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Pirnat S, Božić M, Dolanc D, Horvat A, Tavčar P, Vardjan N, Verkhratsky A, Zorec R, Stenovec M. Astrocyte arborization enhances Ca 2+ but not cAMP signaling plasticity. Glia 2021; 69:2899-2916. [PMID: 34406698 PMCID: PMC9290837 DOI: 10.1002/glia.24076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
The plasticity of astrocytes is fundamental for their principal function, maintaining homeostasis of the central nervous system throughout life, and is associated with diverse exposomal challenges. Here, we used cultured astrocytes to investigate at subcellular level basic cell processes under controlled environmental conditions. We compared astroglial functional and signaling plasticity in standard serum‐containing growth medium, a condition mimicking pathologic conditions, and in medium without serum, favoring the acquisition of arborized morphology. Using opto−/electrophysiologic techniques, we examined cell viability, expression of astroglial markers, vesicle dynamics, and cytosolic Ca2+ and cAMP signaling. The results revealed altered vesicle dynamics in arborized astrocytes that was associated with increased resting [Ca2+]i and increased subcellular heterogeneity in [Ca2+]i, whereas [cAMP]i subcellular dynamics remained stable in both cultures, indicating that cAMP signaling is less prone to plastic remodeling than Ca2+ signaling, possibly also in in vivo contexts.
Collapse
Affiliation(s)
- Samo Pirnat
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Dorian Dolanc
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
7
|
Darabid H, St-Pierre-See A, Robitaille R. Purinergic-Dependent Glial Regulation of Synaptic Plasticity of Competing Terminals and Synapse Elimination at the Neuromuscular Junction. Cell Rep 2019; 25:2070-2082.e6. [PMID: 30463006 DOI: 10.1016/j.celrep.2018.10.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 01/20/2023] Open
Abstract
The precise wiring of synaptic connections requires the elimination of supernumerary inputs competing for innervation of the same target cell. This competition is activity-dependent, strengthening some inputs whereas others are eliminated. Although glial cells are required for the elimination and clearance of terminals, their involvement in activity-dependent synaptic competition remains ill-defined. Here, we used the developing neuromuscular junctions of mice to show that perisynaptic glial cells, through 2Y1 purinergic receptors (P2Y1Rs), decode synaptic efficacy of competing terminals in a Ca2+-dependent manner. This glial activity induces long-lasting synaptic potentiation of strong but not weak terminals via presynaptic adenosine 2A receptors. Blockade of glial activity by intracellular Ca2+ chelation or blockade of P2Y1Rs prevents this plasticity. In addition, blockade of P2Y1Rs delays synapse elimination in vivo. Hence, P2Y1Rs drive glial cell regulation of strong synaptic inputs and influence synapse competition and elimination.
Collapse
Affiliation(s)
- Houssam Darabid
- Département de Neurosciences, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada; Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Alexandre St-Pierre-See
- Département de Neurosciences, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada; Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada; Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
8
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
9
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 958] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
10
|
A1 Adenosine Receptor Activation Modulates Central Nervous System Development and Repair. Mol Neurobiol 2016; 54:8128-8139. [DOI: 10.1007/s12035-016-0292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 01/22/2023]
|
11
|
Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity. Neural Plast 2015; 2015:765792. [PMID: 26339509 PMCID: PMC4539116 DOI: 10.1155/2015/765792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.
Collapse
|
12
|
Muñoz MF, Puebla M, Figueroa XF. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca(2+) signaling. Front Cell Neurosci 2015; 9:59. [PMID: 25805969 PMCID: PMC4354411 DOI: 10.3389/fncel.2015.00059] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/07/2015] [Indexed: 12/28/2022] Open
Abstract
Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process.
Collapse
Affiliation(s)
- Manuel F Muñoz
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mariela Puebla
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Xavier F Figueroa
- Facultad de Ciencias Biológicas, Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
13
|
Verkhratsky A, Burnstock G. Purinergic and glutamatergic receptors on astroglia. ADVANCES IN NEUROBIOLOGY 2014; 11:55-79. [PMID: 25236724 DOI: 10.1007/978-3-319-08894-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astroglial cells express many neurotransmitter receptors; the receptors to glutamate and ATP being the most abundant. Here, we provide a concise overview on the expression and main properties of astroglial glutamate receptors (ionotropic receptors represented by AMPA and NMDA subtypes) and metabotropic (mainly mGluR5 and mGluR3 subtypes) and purinoceptors (adenosine receptors of A1, A2A, A2B, and A3 types, ionotropic P2X1/5 and P2X7 subtypes, and metabotropic P2Y purinoceptors). We also discuss the role of these receptors in glial physiology and pathophysiology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK,
| | | |
Collapse
|
14
|
Brisevac D, Bjelobaba I, Bajic A, Clarner T, Stojiljkovic M, Beyer C, Andjus P, Kipp M, Nedeljkovic N. Regulation of ecto-5′-nucleotidase (CD73) in cultured cortical astrocytes by different inflammatory factors. Neurochem Int 2012; 61:681-8. [DOI: 10.1016/j.neuint.2012.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/12/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022]
|
15
|
Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits 2012; 6:51. [PMID: 22907993 PMCID: PMC3414732 DOI: 10.3389/fncir.2012.00051] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022] Open
Abstract
Following the discovery of the vasorelaxant properties of nitric oxide (NO) by Furchgott and Ignarro, the finding by Bredt and coll. of a constitutively expressed NO synthase in neurons (nNOS) led to the presumption that neuronal NO may control cerebrovascular functions. Consequently, numerous studies have sought to determine whether neuraly-derived NO is involved in the regulation of cerebral blood flow (CBF). Anatomically, axons, dendrites, or somata of NO neurons have been found to contact the basement membrane of blood vessels or perivascular astrocytes in all segments of the cortical microcirculation. Functionally, various experimental approaches support a role of neuronal NO in the maintenance of resting CBF as well as in the vascular response to neuronal activity. Since decades, it has been assumed that neuronal NO simply diffuses to the local blood vessels and produce vasodilation through a cGMP-PKG dependent mechanism. However, NO is not the sole mediator of vasodilation in the cerebral microcirculation and is known to interact with a myriad of signaling pathways also involved in vascular control. In addition, cerebrovascular regulation is the result of a complex orchestration between all components of the neurovascular unit (i.e., neuronal, glial, and vascular cells) also known to produce NO. In this review article, the role of NO interneuron in the regulation of cortical microcirculation will be discussed in the context of the neurovascular unit.
Collapse
Affiliation(s)
- Sonia Duchemin
- Department of Pharmacology, Université de Montréal Montreal, QC, Canada
| | | | | | | |
Collapse
|
16
|
Demidchik V, Shang Z, Shin R, Colaço R, Laohavisit A, Shabala S, Davies JM. Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane. PLANT PHYSIOLOGY 2011; 156:1375-85. [PMID: 21562328 PMCID: PMC3135955 DOI: 10.1104/pp.111.174722] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/06/2011] [Indexed: 05/20/2023]
Abstract
Extracellular purine nucleotides are implicated in the control of plant development and stress responses. While extracellular ATP is known to activate transcriptional pathways via plasma membrane (PM) NADPH oxidase and calcium channel activation, very little is known about signal transduction by extracellular ADP. Here, extracellular ADP was found to activate net Ca(2+) influx in roots of Arabidopsis (Arabidopsis thaliana) and transiently elevate cytosolic free Ca(2+) in root epidermal protoplasts. An inward Ca(2+)-permeable conductance in root epidermal PM was activated within 1 s of ADP application and repeated application evoked a smaller current. Such response speed and densitization are consistent with operation of equivalents to animal ionotropic purine receptors, although to date no equivalent genes for such receptors have been identified in higher plants. In contrast to ATP, extracellular ADP did not evoke accumulation of intracellular reactive oxygen species. While high concentrations of ATP caused net Ca(2+) efflux from roots, equivalent concentrations of ADP caused net influx. Overall the results point to a discrete ADP signaling pathway, reliant on receptor-like activity at the PM.
Collapse
|
17
|
Pelligrino DA, Vetri F, Xu HL. Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 2011; 22:229-36. [PMID: 21329762 DOI: 10.1016/j.semcdb.2011.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/11/2011] [Accepted: 02/07/2011] [Indexed: 01/23/2023]
Abstract
Regional elevations in cerebral blood flow (CBF) often occur in response to localized increases in cerebral neuronal activity. An ever expanding literature has linked this neurovascular coupling process to specific signaling pathways involving neuronal synapses, astrocytes and cerebral arteries and arterioles. Collectively, these structures are termed the "neurovascular unit" (NVU). Astrocytes are thought to be the cornerstone of the NVU. Thus, not only do astrocytes "detect" increased synaptic activity, they can transmit that information to proximal and remote astrocytic sites often through a Ca(2+)- and ATP-related signaling process. At the vascular end of the NVU, a Ca(2+)-dependent formation and release of vasodilators, or substances linked to vasodilation, can occur. The latter category includes ATP, which upon its appearance in the extracellular compartment, can be rapidly converted to the potent vasodilator, adenosine, via the action of ecto-nucleotidases. In the present review, we give consideration to experimental model-specific variations in purinergic influences on gliovascular signaling mechanisms, focusing on the cerebral cortex. In that discussion, we compare findings obtained using in vitro (rodent brain slice) models and multiple in vivo models (2-photon imaging; somatosensory stimulation-evoked cortical hyperemia; and sciatic nerve stimulation-evoked pial arteriolar dilation). Additional attention is given to the importance of upstream (remote) vasodilation; the key role played by extracellular ATP hydrolysis (via ecto-nucleotidases) in gliovascular coupling; and interactions among multiple signaling pathways.
Collapse
Affiliation(s)
- Dale A Pelligrino
- Neuroanesthesia Research Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
18
|
Pelligrino DA, Xu HL, Vetri F. Caffeine and the control of cerebral hemodynamics. J Alzheimers Dis 2010; 20 Suppl 1:S51-62. [PMID: 20182032 DOI: 10.3233/jad-2010-091261] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While the influence of caffeine on the regulation of brain perfusion has been the subject of multiple publications, the mechanisms involved in that regulation remain unclear. To some extent, that uncertainty is a function of a complex interplay of processes arising from multiple targets of caffeine located on a variety of different cells, many of which have influence, either directly or indirectly, on cerebral vascular smooth muscle tone. Adding to that complexity are the target-specific functional changes that may occur when comparing acute and chronic caffeine exposure. In the present review, we discuss some of the mechanisms behind caffeine influences on cerebrovascular function. The major effects of caffeine on the cerebral circulation can largely be ascribed to its inhibitory effects on adenosine receptors. Herein, we focus mostly on the A1, A2A, and A2B subtypes located in cells comprising the neurovascular unit (neurons, astrocytes, vascular smooth muscle); their roles in the coupling of increased neuronal (synaptic) activity to vasodilation; how caffeine, through blockade of these receptors, may interfere with the "neurovascular coupling" process; and receptor-linked changes that may occur in cerebrovascular regulation when comparing acute to chronic caffeine intake.
Collapse
Affiliation(s)
- Dale A Pelligrino
- Neuroanesthesia Research Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
19
|
Abstract
Despite major advances in a variety of neuroscientific research fields, the majority of neurodegenerative and neurological diseases are poorly controlled by currently available drugs, which are largely based on a neurocentric drug design. Research from the past 5 years has established a central role of glia to determine how neurons function and, consequently, glial dysfunction is implicated in almost every neurodegenerative and neurological disease. Glial cells are key regulators of the brain's endogenous neuroprotectant and anticonvulsant adenosine. This review will summarize how glial cells contribute to adenosine homeostasis and how glial adenosine receptors affect glial function. We will then move on to discuss how glial cells interact with neurons and the vasculature, and outline new methods to study glial function. We will discuss how glial control of adenosine function affects neuronal cell death, and its implications for epilepsy, traumatic brain injury, ischemia, and Parkinson's disease. Eventually, glial adenosine-modulating drug targets might be an attractive alternative for the treatment of neurodegenerative diseases. There are, however, several major open questions that remain to be tackled.
Collapse
|
20
|
Verkhrasky A, Krishtal OA, Burnstock G. Purinoceptors on Neuroglia. Mol Neurobiol 2009; 39:190-208. [DOI: 10.1007/s12035-009-8063-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/24/2009] [Indexed: 02/06/2023]
|
21
|
Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 2009; 32:160-9. [PMID: 19162338 DOI: 10.1016/j.tins.2008.11.005] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 12/23/2022]
Abstract
Moment-to-moment changes in local neuronal activity lead to dynamic changes in cerebral blood flow. Emerging evidence implicates astrocytes as one of the key players in coordinating this neurovascular coupling. Astrocytes are poised to sense glutamatergic synaptic activity over a large spatial domain via activation of metabotropic glutamate receptors and subsequent calcium signaling and via energy-dependent glutamate transport. Astrocyte foot processes can signal vascular smooth muscle by arachidonic acid pathways involving astrocytic cytochrome P450 epoxygenase, astrocytic cyclooxygenase-1 and smooth muscle cytochrome P450 omega-hydroxylase activities, and by astrocytic and smooth muscle potassium channels. Non-glutamatergic transmitters released from neurons, such as nitric oxide, cyclooxygenase-2 metabolites and vasoactive intestinal peptide, might modulate neurovascular signaling at the level of the astrocyte or smooth muscle. Thus, astrocytes have a pivotal role in dynamic signaling within the neurovascular unit. Important questions remain on how this signaling is integrated with other pathways in health and disease.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
22
|
Doengi M, Deitmer JW, Lohr C. New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes. FASEB J 2008; 22:2368-78. [PMID: 18310463 DOI: 10.1096/fj.07-101782] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purinergic receptors play a key role in neuron-glia and glia-neuron interactions. In the present study, we have recorded cytosolic Ca(2+) responses using confocal imaging in astrocytes of acute olfactory bulb slices from mice (postnatal days 3-8). By application of agonists and antagonists, we identified two types of receptors, P2Y(1) and A(2A), that mediated Ca(2+) responses attributable to Ca(2+) release from intracellular stores in the astrocytes. Both receptor types were activated by application of ATP and ADP; however, when enzymatic ATP degradation was suppressed by the alkaline phosphatase inhibitor levamisole, ATP only activated MRS2179-sensitive P2Y(1) but not ZM241385-sensitive A(2A) receptors. The dose-response curve for A(2A) receptors activated by adenosine revealed an EC(50) of 0.3 microM, one order of magnitude smaller than the EC(50) of 5 microM determined for P2Y(1) receptors activated by ADP. Electrical stimulation of the olfactory nerve in the presence of glutamate receptor blockers to suppress excitation of postsynaptic neurons evoked Ca(2+) responses in most of the astrocytes, which were inhibited by blocking both P2Y(1) and A(2A) receptors. Our results indicate that olfactory nerve terminals release not only glutamate, but also ATP, which activates P2Y(1) receptors and, after degradation of ATP to adenosine, A(2A) receptors in astrocytes.
Collapse
Affiliation(s)
- Michael Doengi
- Abteilung für Allgemeine Zoologie, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany
| | | | | |
Collapse
|
23
|
Shi Y, Liu X, Gebremedhin D, Falck JR, Harder DR, Koehler RC. Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex. J Cereb Blood Flow Metab 2008; 28:111-25. [PMID: 17519974 PMCID: PMC2204069 DOI: 10.1038/sj.jcbfm.9600511] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine, astrocyte metabotropic glutamate receptors (mGluRs), and epoxyeicosatrienoic acids (EETs) have been implicated in neurovascular coupling. Although A(2A) and A(2B) receptors mediate cerebral vasodilation to adenosine, the role of each receptor in the cerebral blood flow (CBF) response to neural activation remains to be fully elucidated. In addition, adenosine can amplify astrocyte calcium, which may increase arachidonic acid metabolites such as EETs. The interaction of these pathways was investigated by determining if combined treatment with antagonists exerted an additive inhibitory effect on the CBF response. During whisker stimulation of anesthetized rats, the increase in cortical CBF was reduced by approximately half after individual administration of A(2B), mGluR and EET antagonists and EET synthesis inhibitors. Combining treatment of either a mGluR antagonist, an EET antagonist, or an EET synthesis inhibitor with an A(2B) receptor antagonist did not produce an additional decrement in the CBF response. Likewise, the CBF response also remained reduced by approximately 50% when an EET antagonist was combined with an mGluR antagonist or an mGluR antagonist plus an A(2B) receptor antagonist. In contrast, A(2A) and A(3) receptor antagonists had no effect on the CBF response to whisker stimulation. We conclude that (1) adenosine A(2B) receptors, rather than A(2A) or A(3) receptors, play a significant role in coupling cortical CBF to neuronal activity, and (2) the adenosine A(2B) receptor, mGluR, and EETs signaling pathways are not functionally additive, consistent with the possibility of astrocytic mGluR and adenosine A(2B) receptor linkage to the synthesis and release of vasodilatory EETs.
Collapse
Affiliation(s)
- Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland 21287-4961, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, Lo EH. Cell-cell signaling in the neurovascular unit. Neurochem Res 2007; 32:2032-45. [PMID: 17457674 DOI: 10.1007/s11064-007-9342-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/23/2007] [Indexed: 12/13/2022]
Abstract
Historically, the neuron has been the conceptual focus for almost all of neuroscience research. In recent years, however, the concept of the neurovascular unit has emerged as a new paradigm for investigating both physiology and pathology in the CNS. This concept proposes that a purely neurocentric focus is not sufficient, and emphasizes that all cell types in the brain including neuronal, glial and vascular components, must be examined in an integrated context. Cell-cell signaling and coupling between these different compartments form the basis for normal function. Disordered signaling and perturbed coupling form the basis for dysfunction and disease. In this mini-review, we will survey four examples of this phenomenon: hemodynamic neurovascular coupling linking blood flow to brain activity; cellular communications that evoke the blood-brain barrier phenotype; parallel systems that underlie both neurogenesis and angiogenesis in the CNS; and finally, the potential exchange of trophic factors that may link neuronal, glial and vascular homeostasis.
Collapse
Affiliation(s)
- Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, MGH East 149-2401, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Vlajkovic SM, Abi S, Wang CJH, Housley GD, Thorne PR. Differential distribution of adenosine receptors in rat cochlea. Cell Tissue Res 2007; 328:461-71. [PMID: 17285327 DOI: 10.1007/s00441-006-0374-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 12/22/2006] [Indexed: 12/21/2022]
Abstract
Adenosine is a constitutive cell metabolite that can be released from cells via specific bi-directional transporters and is an end-point for nucleotide hydrolysis. In the extracellular space, adenosine becomes a signalling molecule for P1 (adenosine) receptors that modulate physiological responses in a wide range of mammalian tissues. Whereas adenosine signalling has been implicated in the regulation of cochlear blood flow and in cochlear protection from oxidative damage, the potential roles for adenosine signalling in the modulation of sound transduction and auditory neurotransmission have not been established. We have characterised the expression and distribution of adenosine receptors in the rat cochlea. mRNA transcripts for all four subtypes of adenosine receptors (A(1), A(2A), A(2B) and A(3)) were detected in dissected cochlear tissue by using reverse transcription/polymerase chain reaction analysis. The protein distribution for the A(1), A(2A) and A(3) receptor subtypes was identified by immunoperoxidase histochemistry and confocal immunofluorescence labelling. These receptors were differentially expressed in the organ of Corti, spiral ganglion neurones, lateral wall tissues and cochlear blood vessels. The distribution of adenosine receptors in sensory and neural tissues and in the vasculature coincided with other elements of purinergic signalling (P2X and P2Y receptors, ectonucleotidases), consistent with the integrative regulation of many physiological processes in the cochlea by extracellular nucleotides and nucleosides. Our study provides a framework for further investigation of adenosine signalling in the inner ear, including putative roles in oxidative stress responses.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Cochlea/metabolism
- Gene Expression Regulation
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/metabolism
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
26
|
Volonté C, Amadio S, D'Ambrosi N, Colpi M, Burnstock G. P2 receptor web: Complexity and fine-tuning. Pharmacol Ther 2006; 112:264-80. [PMID: 16780954 DOI: 10.1016/j.pharmthera.2005.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 12/25/2022]
Abstract
The present review offers a new perspective on a family of receptors, termed P2 receptors, specific for nucleoside tri- and diphosphates of purines/pyrimidines. We emphasize here that while decoding the inputs of various related extracellular ligands, P2 receptors are a clear example of increasing biological complexity. They are represented by 7 ionotropic P2X and 8 metabotropic P2Y receptors; they have very heterogeneous ligands and binding characteristics, molecular properties, transduction mechanisms, cellular localization and protein-protein interactions. While the reason for this sophistication is unknown, a few compelling issues emerge while looking at such a rich variety. We ask, for instance, why so many different receptor subtypes are necessary for triggering biological properties and functions, and if these receptors are more than the sum of their single entities. A first possibility is that newly synthesized P2 proteins are casually located on the cell surface (stochastic hypothesis). Alternatively, distinct subunits are engaged on different cell phenotypes by genetic control (genetic determinism) and/or selective recruitment under physiopathological conditions and epigenetic stimuli (epigenetic determinism). Nevertheless, an appropriate way to both dissect the vast biological scenario and molecular complexity among P2 receptors and to integrate and upgrade their assortment is to regard them as a "combinatorial receptor web", that is, a dynamic architecture of P2 proteins demonstrating economic efficiency and involving a process of "fine-tuning", a mechanism which endorses the dynamic nature of all biological reactions. In the present analysis, we stimulate a scientific query about what contributes to such a vast P2 receptor sophistication.
Collapse
Affiliation(s)
- Cinzia Volonté
- Santa Lucia Foundation/CNR, Via Del Fosso di Fiorano 64, 00143 Roma, Italy.
| | | | | | | | | |
Collapse
|
27
|
Zimmermann H. Nucleotide signaling in nervous system development. Pflugers Arch 2006; 452:573-88. [PMID: 16639549 DOI: 10.1007/s00424-006-0067-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 11/24/2022]
Abstract
The development of the nervous system requires complex series of cellular programming and intercellular communication events that lead from the early neural induction to the formation of a highly structured central and peripheral nervous system. Neurogenesis continuously takes place also in select regions of the adult mammalian brain. During the past years, a multiplicity of cellular control mechanisms has been identified, ranging from differential transcriptional mediators to inducers or inhibitors of cell specification or neurite outgrowth. While the identification of transcription factors typical for the stage-specific progression has been a topic of key interest for many years, less is known concerning the potential multiplicity of relevant intercellular signaling pathways and the fine tuning of epigenetic gene regulation. Nucleotide receptors can induce a multiplicity of cellular signaling pathways and are involved in multiple molecular interactions, thus opening the possibility of cross talk between several signaling pathways, including growth factors, cytokines, and extracellular matrix components. An increasing number of studies provides evidence for a role of nucleotide signaling in nervous system development. This includes progenitor cell proliferation, cell migration, neuronal and glial cellular interaction and differentiation, and synaptic network formation.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Max-von-Lane-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Ohata H, Cao S, Koehler RC. Contribution of adenosine A2A and A2B receptors and heme oxygenase to AMPA-induced dilation of pial arterioles in rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R728-35. [PMID: 16601261 PMCID: PMC1764456 DOI: 10.1152/ajpregu.00757.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) has been implicated in mediation of cerebral vasodilation during neuronal activation and, specifically, in pharmacological activation of N-methyl-d-aspartate (NMDA) and kainate receptors. Possible mediators of cerebral vasodilation to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) have not been well studied in mature brain, although heme oxygenase (HO) activity has been implicated in newborn pigs. In anesthetized rats, 5 min of topical superfusion of 30 and 100 microM AMPA on the cortical surface through a closed cranial window resulted in increases in pial arteriolar diameter. The dilatory response to AMPA was not inhibited by superfusion of an NO synthase inhibitor, a cyclooxygenase-2 inhibitor, or a cytochrome P-450 epoxygenase inhibitor, all of which have been shown to inhibit the cortical blood flow response to sensory activation. However, the 48 +/- 13% dilation to 100 microM AMPA was attenuated 56-71% by superfusion of the adenosine A(2A) receptor antagonist ZM-241385, the A(2B) receptor antagonist alloxazine, and the HO inhibitor chromium mesoporphyrin. Combination of the latter three inhibitors did not attenuate the dilator response more than the individual inhibitors, whereas an AMPA receptor antagonist fully blocked the vasodilation to AMPA. These results indicate that cortical pial arteriolar dilation to AMPA does not require activation of NO synthase, cyclooxygenase-2, or cytochrome P-450 epoxygenase but does depend on activation of adenosine A(2A) and A(2B) receptors. In addition, CO derived from HO appears to play a role in the vascular response to AMPA receptor activation in mature brain by a mechanism that is not additive with that of adenosine receptor activation.
Collapse
Affiliation(s)
- Hiroto Ohata
- Dept. of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287-4961, USA
| | | | | |
Collapse
|
29
|
Abstract
Electrical stimulation of neurons in brain slices evokes increases in cytoplasmic Ca(2+) in neighboring astrocytes. The present study tests whether similar neuron-to-glial signaling occurs in the isolated rat retina in response to light stimulation. Results demonstrate that Müller cells, the principal retinal glial cells, generate transient increases in Ca(2+) under constant illumination. A flickering light stimulus increases the occurrence of these Ca(2+) transients. Antidromic activation of ganglion cell axons also increases the generation of Müller cell Ca(2+) transients. The increases in Ca(2+) transients evoked by light and antidromic stimulation are blocked by the purinergic antagonist suramin and by TTX. The addition of adenosine greatly potentiates the response to light, with light ON evoking large Ca(2+) increases in Müller cells. Suramin, apyrase (an ATP-hydrolyzing enzyme), and TTX substantially reduce the adenosine-potentiated response. NMDA, metabotropic glutamate, GABA(B), and muscarinic receptor antagonists, in contrast, are mainly ineffective in blocking the response. Light-evoked Ca(2+) responses begin in Müller cell processes within the inner plexiform (synaptic) layer of the retina and then spread into cell endfeet at the inner retinal surface. These results represent the first demonstration that Ca(2+) increases in CNS glia can be evoked by a natural stimulus (light flashes). The results suggest that neuron-to-glia signaling in the retina is mediated by neuronal release of ATP, most likely from amacrine and/or ganglion cells, and that the response is augmented under pathological conditions when adenosine levels increase.
Collapse
|
30
|
Abstract
Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
31
|
Cunha RA. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 2005; 1:111-34. [PMID: 18404497 PMCID: PMC2096528 DOI: 10.1007/s11302-005-0649-1] [Citation(s) in RCA: 404] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/10/2004] [Indexed: 12/11/2022] Open
Abstract
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A(1) receptors (A(1)Rs) and the less abundant, but widespread, facilitatory A(2A)Rs. It is commonly assumed that A(1)Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A(1)R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A(1)Rs in chronic noxious situations. In contrast, A(2A)Rs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A(2A)R antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A(2A)R antagonists as novel protective agents in neurodegenerative diseases such as Parkinson's and Alzheimer's disease, ischemic brain damage and epilepsy. The greater interest of A(2A)R blockade compared to A(1)R activation does not mean that A(1)R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A(2A)R antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A(1)Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.
Collapse
Affiliation(s)
- Rodrigo A Cunha
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal,
| |
Collapse
|